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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the 
information is fit for any particular purpose. The content of this document reflects only the author`s view – the 
European Commission is not responsible for any use that may be made of the information it contains. The 
users use the information at their sole risk and liability. 
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Executive Summary 

This deliverable describes the metrics identified for VESSEDIA tools in quality assurance. Metrics 
are crucial for assessing safety and security assurance and enable developers to prioritize critical 
bugs to be fixed - moreover, they also contribute to the assessment of security evaluation and/or 
certification effort. Some metrics presented in this document are newly defined for the Frama-C 
plugins while others are improvements for the already existing metrics, such as code coverage. 
Further metrics will provide qualitative data on the progress of code analysis and indications of the 
severity and/or criticality of the identified vulnerabilities in a scored way. The document first gives 
an overview about metrics in general and in the context of Common Criteria. After the definition, 
the proposed metrics are described along with related plugins and implementation guides. Finally, 
the metrics which are already present in Frama-C are described, focusing on the integration with 
the proposed metrics.  
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Chapter 1 Introduction 

1.1 VESSEDIA motivation and background 

The VESSEDIA project aims to bring safety and security to many new software applications and 
devices. In the fast evolving world we live in, the Internet has brought many benefits to individuals, 
organisations and industries. With the capabilities offered now (such as IPv6) to connect billions of 
devices and therefore humans together, the Internet brings new threats to the software developers 
and VESSEDIA will allow connected applications to be safe and secure. VESSEDIA proposes to 
enhance and scale up modern software analysis tools, namely the mostly open-source Frama- C 
Analysis platform, to allow developers to benefit rapidly from them when developing connected 
applications. At the forefront of connected applications is the IoT, whose growth is exponential and 
whose security risks are real (for instance in hacked smart phones). VESSEDIA will take this 
domain as a target for demonstrating the benefits of using our tools on connected applications. 
VESSEDIA will tackle this challenge by 1) developing a methodology that allows to adopt and use 
source code analysis tools efficiently and produce similar benefits than already achieved for highly-
critical applications (i.e. an exhaustive analysis and extraction of faults), 2) enhancing the Frama-C 
toolbox to enable efficient and fast implementation, 3) demonstrating the new toolbox capabilities 
on typical IoT (Internet of Things) applications including an IoT Operating System (Contiki), 4) 
developing a standardisation plan for generalising the use of the toolbox, 5) contributing to the 
Common Criteria certification process, and 6) defining a label “Verified in Europe” for validating 
software products with European technologies such as Frama-C. 

1.2 Structure of the document 

After these introductory sections, Chapter 2 gives an overview about metrics in general and in the 
context of Common Criteria. Chapter 3 defines the proposed metrics with examples and some 
implementation guidelines. After the proposed metrics, Chapter 4 describes the current metrics in 
Frama-C. Finally, Chapter 5 concludes the document and paves the way for the subsequent work 
in the project. 

1.3 Related deliverables 

Based on the metrics definitions described by this deliverable, implementation activities will be 
performed in WP3. The implemented metrics will be used during further work in the use-case 
evaluation in D4.6 [3] and quality tests in D4.5 [2]. 
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Chapter 2 Metrics in the security and safety 

assurance process (AMO) 

2.1  Metrics overview 

Source code analysis is used by two different kinds of users during the life-cycle of a product: 
developers and security evaluators. Source code analysis is used for testing and bug tracking by 
developers. A good coding behaviour is to integrate some source code analysis tools to the 
project. Once an analysis tool is set up, it can be used all along the project on each version of the 
code. Developers have full knowledge of their product so they can finely tune the analyser to avoid 
false positives. Remaining false positives can be checked and documented in order to make the 
next analysis always more precise. Thus, source code analysis is also part of source code 
maintenance in the life-cycle of a product. 

In another hand, security evaluator uses source code analysis to find vulnerabilities in a product. 
They are using source code analysis tools like “vulnerability scanners”. They do not have a full 
knowledge of the product. Depending of the documentation they have been provided by the 
developers, reverse engineering has to be performed to understand the role of each module of the 
project. Thus, evaluators cannot check the whole code of a program because it would be too time 
consuming. They have to focus on critical modules where critical vulnerabilities are more likely to 
be. In the same way, analysers’ outputs have to be as synthetic as possible. The goal of a security 
evaluator is not to discover every vulnerability in the product. Detecting one critical vulnerability 
may be enough to set a verdict for the evaluation and to consider the product as non-secure.  

Note that a security evaluator has to prove that a vulnerability can be exploited and that it is indeed 
a security issue for the product. In the main case, developers do not need to know if a potential 
bug can be exploited or not. Safety processes require that developers should patch the code and 
fix every known bug.  

To sum up, developers need source code analysers to avoid as many bugs as possible, whereas 
security evaluators need automatic tools to quickly find some vulnerabilities even if they are 
missing some of them. This is one of the main differences of process between verification and 
evaluation. 

Depending on the user’s objectives metrics in static analysers will not be used in the same way. 
General metrics about the code like the number of lines of code (LOC), the cyclomatic complexity, 
numbers of warning per lines of code etc. are relevant as indicator of the code quality and can be 
very useful for project management. To fix bugs and detect vulnerabilities, metrics which extend 
warning information are the most valuable. These metrics enable developers to choose which 
warnings are important or which warnings can be quickly fixed. The same kind of metrics is used 
by security evaluator to focus only on bugs that can lead to security flaws. 

2.2  Metrics in Common Criteria 

In Common Criteria, no specific metrics on source code are defined from the evaluator point-of-
view. No list of metrics is provided and no Common Criteria Component directly depends on 
source code metrics that evaluators have to check. 
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However, source code metrics are referred in part 3 of Common Criteria1 in class ALC which is 
about “Life-cycle support”. Some examples are given as source code complexity metrics, defect 
density (errors per size of code) or mean time to failure. These metrics are not about security, they 
are more about safety and code maintenance. They do not directly refer to attacks or to 
vulnerabilities but they can help evaluators to understand how developers are working, how they 
are testing their product. Evaluators are more likely to trust developers that can provide metrics 
which reveal that the target has been heavily tested. Thus, providing this kind of metrics increases 
the assurance in the security of the product even if they do not directly address security issues.  

For example, the assurance in the security of the product is increased when developers can 
provide metrics that prove that they have a high coverage for their testing campaign. 

Metrics are also used in Common Criteria during the Independent Testing (ATE_IND) Independent 
Vulnerability Analysis (AVA_VAN) performed by the evaluator. During this part of the evaluation, 
the source code of the product can be audited. Evaluators are using code analyser to speed up 
their work and to automate it as much as possible. The main difficulty is to categorise the warning 
returned by the tools. Which warning is reliant and which one is a false positive? The evaluator has 
to manually check the warnings to be sure and this is very time-consuming. Thus, the more metrics 
an evaluator has to qualify a warning, the more he is able to select valuable issues and the more 
efficient his work is. 

                                                

1 Common Criteria Documentation is available at https://www.commoncriteriaportal.org/cc/ 
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Chapter 3 VESSEDIA metrics 

During development, verification and evaluation process a large number of alarms can be raised 
by the different components of the Frama-C. Some alarms are important, some alerts have less 
relevance and some other alerts are false positives. If the number of these alarms is too high, the 
developer or the evaluator will not be able to check every single alarm one by one. Thus, there 
should be some quantitative data, which make possible to sort the alarms by their severity or 
criticality and finally the developers and evaluators can focus on the most severe and critical 
problems first. 

Every calculation of severity and criticality values is based on subjective categories. There is a 
constant effort to make these assessments as objective as possible. One of the most 
acknowledged calculation method is the Common Vulnerability Scoring System2 (CVSS), which is 
currently at version 3.0. Even the CVSS tries to assess the severity of a vulnerability in a 
qualitative and objective way: in case of the meltdown and spectre3 vulnerabilities the CVSSv2 
resulted scores from 2.0 to 5.1, while the CVSSv3 resulted scores from 6.7 to even 8.14, which 
means very high range. Therefore in VESSEDIA, we do not aim to develop an automated way of 
vulnerability and alarm scoring in an objective way, but we try to collect metrics, which correlates 
with the severity or criticality of the vulnerability in some way and giving the opportunity to the 
developer and the evaluator to use the most relevant metrics supporting the actual task. 

3.1 SecuRate 

SecuRate metrics is aimed to measure the criticality of an alarm in terms of the estimated number 
of affected products and the estimated number of affected devices. In general a complex software 
solution uses a lot of libraries, reused codes and open source software projects. In case of the IoT-
related code, the code reuse is also an increasing trend, since it is required to implement complex 
functionality within a very limited time and resources. 

We identified the following tasks, which should be performed by the SecuRate plugin: 

• Identifying known vulnerabilities using vulnerability databases such as CVE and NVD 
and using internal database from previous problems and alerts. 

• Estimate the severity of the alarm by assessing the number of affected products. 

For example, the following code from the dnsmasq (version below 2.78)5 is vulnerable to a stack-

based buffer overflow as we analysed in detail in D2.1. 

/* RFC-6939 */ 
if ((opt = opt6_find(opts, end, OPTION6_CLIENT_MAC, 3))) 
{ 
    state->mac_type = opt6_uint(opt, 0, 2); 
    state->mac_len = opt6_len(opt) - 2; 
    memcpy(&state->mac[0], opt6_ptr(opt, 2), state->mac_len); 
} 

The above code was compiled into the dnsmasq if the DHCPv6 was enabled and used, but in 

most of the cases the IPv6 is supported in modern IoT devices. Although the vulnerability was 
disclosed at September 27th 2017, the latest version of dnsmasq in our firmware database was 

                                                

2 https://www.first.org/cvss/ 
3 https://meltdownattack.com/ 
4 https://www.scademy.com/2-10-cvss-not-the-meltdown-youd-expect/ 
5 https://security.googleblog.com/2017/10/behind-masq-yet-more-dns-and-dhcp.html 
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2.76 and the latest firmware of various routers contained the vulnerable dnsmasq with DHCPv6 

enabled. 

3.1.1 Integration with Frama-C 

The metrics generated by the SecuRate requires a large database, which contains binary and 
source fingerprints and the collected alarm and vulnerability information pieces. Although the 
databases and the related functionality can be deployed to the same infrastructure than the source 
code analysis, in most cases it is better to collect the required information in a centralized way. 
Because of this, the service functionality is separated from the integration with the source code 
analysis as it is presented in the Figure below. 

SecuRate service
Frama-C

Source code analysis
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Alarm 

raised SecuRate 

plugin 

controller

Source

fingerprinting

Binary

fingerprinting

Source code

alarm details
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Figure 1: SecuRate integration with Frama-C 

The SecuRate plugin, which make the connection possible between the SecuRate service and the 
Frama-C, has the following components: 

- SecuRate plugin controller: The plugin controller is responsible for collecting every relevant 
information details about alarms raised by other analyser plugins, such as EVA or WP. 

- Source and binary fingerprinting: Depending on the availability of the source and binary 
code, the main features of the function, component or library are extracted and sent to the 
SecuRate service via the Communication interface. 

- Communication interface: The SecuRate Frama-C plugin and the SecuRate service should 
communicate with each other via a secure channel provided by the Communication 
interface. 

- Metrics number generation: Based on the received data from the SecuRate service the 
Metrics number generation component will calculate a metrics in proportion to the 
relevance of the module or code part. 

3.1.2 Design of the SecuRate service 

The SecuRate service is designed to perform the following tasks: 

- Identifying the binary or source code based on the fingerprints. For this task an internal 
firmware and source code database should be created and maintained. 

- Collect new vulnerabilities or alarms to the internal vulnerability database in order to use 
this information to check existing vulnerabilities and to measure the quality of other 
modules using the same component. 

- Identifying every products/devices which contains the same component, which was 
identified based on the fingerprint. 

- Estimate the number of remotely accessible devices, which uses the identified component. 
For this estimation SecuRate service will use open-source intelligence (OSINT) techniques, 
such as IoT search engines, next to the internal databases. 

- Collect and process new firmwares and source codes from various sources. 
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Figure 2: SecuRate service architecture 

3.1.3 Fingerprint techniques overview 

The SecuRate metrics uses fingerprints in order to find existing vulnerabilities by comparing its 
input to vulnerable sources. Fingerprinting algorithms, in general, map arbitrary large data items to 
bit strings of a given length, which uniquely identify the original data. This section describes the 
existing fingerprint techniques and provides rationale on which approaches could be integrated 
with SecuRate.  

Since the SecuRate metrics aims at identifying common vulnerabilities in binary and source codes 
as inputs and then estimates the number of affected devices and products, not all fingerprinting 
methods can be considered. For example, plain hash functions cannot solve this problem, as even 
a one-bit change to a given file would result in a completely different hash value.  The remaining 
options consist of advanced hash functions, like rolling hash and fuzzy hash; comparison tools 
which discover and analyse differences between the functions of two given binary or source codes; 
and other solutions, such as comparing strings existing in two input files. The sections below 
describe such existing solutions and implementations which could be integrated to SecuRate. 

Hashing schemes  

The hashing schemes which have the property that a small change to the file being hashed results 
in a small change to the hash are called similarity digests. There are several different approaches, 
such as feature extraction, Locality Sensitive Hashing (LSH) schemes and Context Triggered 
Piecewise Hashing (CTPH) schemes.  

- ssdeep6 
The ssdeep hash is a similarity digest which is a de facto standard in the area of malware 

analysis, and is an implementation of the CTPH scheme, also called as fuzzy hashes. The 

                                                

6 https://ssdeep-project.github.io/ssdeep/index.html 
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scheme operates by segmenting the file and then evaluating a 6 bit hash value for each 
segment. Then, as a similarity measure, ssdeep calculates the edit distance between the 
digests. 

- sdhash7 
Sdhash created a similarity digest by first identifying features with low empirical probability, 

then hashed these features into a bloom filter and encodes the bloom filter as the output 
digest. The similarity score is calculated by a normalized entropy measure between the two 
digests.  

- Nilsimsa8 
The Nilsimsa hash implements a bit sampling LSH scheme, using the hamming distance 

between the digests as a similarity measure. 
- TLSH9 

TLSH (Trend Micro Locality Sensitive Hash) is a fuzzy matching library. For comparison, it 

computes 35 bytes long hash values where the first 3 bytes capture the information about 
the file as a whole (such as length, etc.), while the last 32 bytes capture information about 
the incremental parts of the file.  

- Rolling hash 
Usually used for comparison of strings and pattern matching, a rolling hash is a hash 
function where the input is hashed in a window that moves through the input – thus the 
name - , allowing new hash values to be rapidly calculated from the previous hash values. 
There are several implementations of rolling hashes in different languages, such as 
rollinghashcpp10 and rollinghashjava11. 

Data comparison schemes 

Data comparison schemes calculate and display the differences and similarities between data, 
typically used to compare source or binary code. Named after the Unix diff utility, the 
implementations, methods and results of data comparison are called diffs. Below a list of tools are 
described which could be useful for the development of SecuRate. 

- BinDiff12 
BinDiff is a comparison tool for binary files - as an add-on to IDA-, widely used by 

security professionals to find similarities and differences in disassembled code, for example 
to analyse vulnerability patches, malware variants, etc.  

- Turbodiff13 
Turbodiff is a binary diffing tool, developed as a plugin for IDA. It discovers and analyses 

differences between the functions of two binaries. 
- Rizzo14 

Rizzo is an IDA plugin that identifies and renames functions between two or more IDA 
database files (IDBs) based on formal signatures, references to unique strings and unique 
constants, fuzzy signatures and call graphs. 

- Lscan15 
Lscan is a tool which identifies libraries in statically linked/stripped binaries. It can be used 

for recognizing common functions in compiled binaries and for determining what libraries 

                                                

7 https://github.com/sdhash/sdhash 
8 https://github.com/rholder/nilsimsa 
9 https://github.com/trendmicro/tlsh 
10 https://github.com/lemire/rollinghashcpp 
11 https://github.com/lemire/rollinghashjava 
12 https://www.zynamics.com/bindiff.html 
13 https://www.coresecurity.com/corelabs-research/open-source-tools/turbodiff 
14 https://github.com/devttys0/ida/blob/master/plugins/rizzo/rizzo.py 
15 https://github.com/maroueneboubakri/lscan 
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they are using. It uses FLIRT (Fast Library and Recognition Technology) signatures to 
perform the library identification. 

 

- Kam1n016 
Kam1n0 tries to solve the efficient subgraph search problem (i.e. graph isomorphism 

problem) for assembly functions. Given a target function it can identity the cloned 
subgraphs among other functions in the repository. Kam1n0 supports rich comment format 
and has an IDA Pro plug-in to use its indexing and searching capabilities via IDA Pro. 

- FCatalog17 
Fcatalog finds similarities between different binary blobs. It has two parts: server and 

client – the client side of Fcatalog is an IDA plugin that can compare newly acquired 

binary functions to previously reversed binary functions. 
- Diaphora18 

Diaphora is a program diffing plugin for IDA Pro and Radare2, very similar to BinDiff 

and Turbodiff (see above). 

- BinSourcerer19 
BinSourcerer is an Assembly to Source Code matching framework for IDA Pro, written in 

Python. BinSourcerer was intended to recreate the functionalities that RE-Google was 

providing before the Google Code Search API was discontinued. The plugin can be used 
for code search (e.g. on GitHub), function tagging and generates a disassembly feature file 
which can be used in binary analysis. 

- Cardinal20 
Cardinal (CPC Aggregation by reversing and Dumping in Arrays Lightweight) is a tool 

that can find similarities even between binaries compiled with different optimization flags or 
completely different compilers, in order to overcome malware compiling variations.  

- Nucleus21 
Nucleus is a tool integrable with IDA Pro, based on the paper “Compiler-Agnostic Function 

Detection in Binaries”22, published at EuroS&P 2017. 
- radiff223 

Radiff2 is a feature of radare2 offering offset-based function diffing. By default it shows 

the bytes that were changed and the corresponding offsets, but it is also capable of 
computing the distance and the percentage of similarity between two files. 

- Multidiff24 
Multidiff aims to provide differences between a large set of objects by doing diffs 

between relevant objects and displaying them in a sensible manner, handy when looking 
for patterns. 

Other 

This section describes solutions that fallout from the first two schemes, but they are relevant for 
fingerprinting and similarity matching. 

- Qira25 

                                                

16 https://github.com/McGill-DMaS/Kam1n0-Plugin-IDA-Pro 
17 https://www.xorpd.net/pages/fcatalog.html 
18 https://github.com/joxeankoret/diaphora 
19 https://github.com/BinSigma/BinSourcerer 
20 https://github.com/syreal17/Cardinal 
21 https://bitbucket.org/vusec/nucleus.git 
22 https://syssec.mistakenot.net/papers/eurosp-2017.pdf 
23 http://radare.today/posts/binary-diffing/ 
24 https://github.com/juhakivekas/multidiff 
25 https://github.com/geohot/qira 



D4.1 - Metrics for VESSEDIA tools in quality assurance  

VESSEDIA D4.1 Page 9 of 24 

Qira (QEMU Interactive Runtime Analyser) is a timeless debugger, competitor to strace 

and gdb. 

- Bap26 
Bap (Binary Analysis Platform) is a reverse engineering platform that targets binaries. It is 

written in Ocaml, but has bindings to C, Python and Rust. 

- ByteWeight27 
ByteWeight is a tool that recognizes functions in binaries. It outputs function information 

by providing function start (lowest address of each function), function boundary (a pair of 
the lowest and the highest addresses) and function instructions (a list of addresses, where 
each address is a start of a disassembled instruction). 

- Distorm28 
Distorm is a binary stream disassembler library project. It provides details of the 

disassembled instructions – hence called decomposer - which can be used for advanced 
binary code analysis. 

- Capstone29 
Capstone is a disassembly framework which is also a decomposer – it provides details 

and semantics of the disassembled instruction, such as a list of implicit registers read and 
written. 

3.1.4 Implementation details 

The SecuRate service will be capable of handling different hashing and comparison schemes 
implemented in separate plugins. Thus the user of the SecuRate service will be able to choose the 
most appropriate schemes for the actual task. As a baseline framework, SecuRate will use the 
FACT30 framework developed by Fraunhofer FKIE, which provides a multitasking environment with 
the capability of initial firmware unpacking and analysis. 

 

3.2 CriticalDepth 

A metrics named CriticalDepth is prototyped by DA in the context of WP4. Its goal is to 

present, in the GUI of Frama-C, the call stack depth for each alarm generated by EVA, given the 
fact that an alarm may be generated by several different potential execution paths. 

This metrics permits to assess the reachability of the given alarms in terms of callstack depth. The 
depth is computed from the entry point of the analysis (by Frama-C plugin EVA).  

It provides the verification team with an evaluation of the reachability from data and statements 
supposed to be potentially under the control of an attacker (namely from the entry point of the 
library or the whole application). Thus, the criticality of identified vulnerabilities is evaluated in 
terms of depth. A large depth would mean more effort to build an exploit scenario for a given 
weakness in the source code, from an attacker point of view (of course, this is heuristics, and does 
not apply to all cases!). On the contrary, the developers will be more inclined to focus - as a first 
intent - on shorter execution paths, then focusing more rapidly on the origin of the weakness, in 
practice potentially common to all of the other longer and vulnerable call paths. 

This metric is implemented inside a Frama-C plugin (EVA) and its results are displayed through the 
EVA’s GUI module. Further improvements could be made in the context of WP3/T3.4 if needed, in 

                                                

26 https://github.com/BinaryAnalysisPlatform/bap 
27 http://security.ece.cmu.edu/byteweight/ 
28 https://github.com/gdabah/distorm 
29 https://github.com/aquynh/capstone 
30 https://fkie-cad.github.io/FACT_core/ 
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order to merge and synthetize the measurements done by the plugin to present them as 
conveniently as possible to the user. 

As an illustration, the figure below presents the whole call graph of the Apache apr_memcache 

resource (analyzed from the apr_memcache_incr function by Frama-C): 

 

Figure 3: Call graph of the Apache apr_memcache resource 

When analyzing this module, several alarms are raised. Some of them can be considered as 
critical, their status “INVALID” meaning that the execution will systematically lead to runtime errors. 
The figure below presents the function ms_find_conn, in which a statement handling the conn 

variable raises an alarm about its lack of initialization. In the Callstack column in the Values 

panel, the depth of the corresponding call stack is indicated by the CriticalDepth metrics plugin. 

The first call stack has a depth of 3 (displayed between brackets), and the second one is 6. The 
user is obviously invited to first explore the 3-long call stack issue, in order to potentially find more 
rapidly the origin of the flaw (which could be also the same origin for the second, longer, path in the 
call stack). 
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Figure 4: Alarms in the function ms_find_conn 

The figure below zooms in the call graph on the faulty function ms_find_conn (with an Invalid 

status alarm). Several execution paths are possible, from apr_memcache_incr and 

ms_find_conn functions, before reaching the dangerous statement: 

 

Figure 5: Call graph on the faulty function ms_find_conn 

The metrics will then just help developers deal first with the shortest path from the entry point of the 
function, to the function/statement on which the alarm was raised. 
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3.3 Liveness Metrics 

From a security point of view, a bug can be considered as a vulnerability if it is related to user 
inputs. When a warning is raised by Frama-C, the analyst has to check the origin of the data 
involved. Thus, one metrics to characterize a warning is raised by Frama-C is, for each data, a list 
of instructions which handled this data from its definition to its use in the suspicious instruction. 
Let’s consider the following typical program: 

z = get(user_input) // z is set from a user input 
if(z) 
     if (z < 10) 
        y = <value> // <value> is a constant integer value 
    else 
        y = z+1 
    ptr = y 
    *ptr // the pointer ptr is used for a writing, a reading or an  
         // execution 
else 
    …  // some junk code (block E and F in Figure 2) 
…. // some junk code (block G in Figure 2) 

Figure 6: Example of a program in pseudo code 

In our example, *ptr means that a pointer ptr is used in a line of code for a reading, a writing 

or an execution. An alert can be raised if this pointer ptr is dereferenced and if it targets an invalid 

memory region. 

This program gets some data from the user and set them in the variable z. Depending on the value 

of this input, the variable y will be initialised with the value z+1 or with a constant integer. Then, the 

pointer ptr is initialized with the value of y. 

It has the following graph: 

 

Figure 7: Control Flow Graph of the program defined in Figure 6 

Each block is a set of lines of code which are always iteratively executed.  

Let’s consider that an alert is risen by Frama-C in block D for the instruction *ptr. Thanks to the 

liveness metrics, an analyst would be able to know which instructions have modified the value of 
the pointer ptr. Thus, there will be no need to check in blocks E and F. 
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A simpler metrics can be the number of instructions that have handled the data involved in an alert 
since the data definition. 

There are two ways to interpret this metrics. The first is to consider that the lesser instructions 
there are between the use and the definition of some data, the more likely an alarm using this data 
is a vulnerability. 

Indeed, the relation between the original inputs and the data is likely to be all the more complex 
that the data are handled by several lines of code. If the relation is too complex, Frama-C may fail 
to reconstruct it and there may be a false positive. 

Moreover, the simpler a vulnerability can be understood by an attacker, the easier it is for him to 
build an exploit. Therefore, simplest vulnerability should be promptly corrected.  

As explain for the metrics CriticalDepth, if the distance between the definition of data and a crash is 
quite small, the work for the analyst to check the validity of a Frama-C warning is reduced. This is 
why warning with a low liveness metrics should be treated more urgently.   

Technically, this metric can be implemented as a taint analysis based on the EVA plugin.      

3.4 Size Definition Distance Metrics 

The Size Definition Distance Metrics is the number of instructions between the definition of the size 
of a buffer and the use of this buffer. 

For instance, let us consider the following code: 

1. int buffer[10]; 
2. int iter = 0; 
3. int value = 1; 
4. for (iter = 0; iter < 12 ; iter++) 
5. { 
6.     buffer[iter] = value; //warning overflow 
7. } 

Figure 8: Example of a buffer overflow in C 

In this example, there is a buffer overflow in line 6. Since buffer is defined in line 1, the Size 
Definition Distance Metrics would be 5, as there are 5 lines of code between the overflow warning 
and the definition of the vulnerable buffer. 

For instance, let us consider the following code: 

1. void function0() 
2. { 
3.     int buffer[10]; 
4.     … // 1000 lines of junk code 
1004.     function1(buffer); 
1005.     … // junk code 
1998. } 
1999.  
2000. void function1(int * buffer) 
2001. { 
2002.     int iter = 0; 
2003.     int value = 1; 
2004.     for (iter = 0; iter < 12 ; iter++) 
2005.     { 
2006.         buffer[iter] = value; //warning overflow 
2007.     } 
2008. } 

Figure 9: Example of a buffer overflow in C 
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In this example, there is a buffer overflow in line 2006. Since buffer is defined in line 3, the Size 
Definition Distance Metric would be 1005, as there are 1005 lines of code from the definition of the 
buffer to its misuse. 

Thus, this metrics is quite similar to the Liveness Metrics. The smaller the distance is, the easier a 
buffer overflow warning can be checked. Since the size definition is quite close to the instruction 
that raises the warning, the number of lines of code that should be checked by an analyst is quite 
small too.  

Moreover, if the distance between the definition of the size of a buffer and an instruction that raises 
a buffer overflow warning is large, there is a risk that the developer “forgot” the value of the size 
and made a mistake by using it. 

Thus, if the value of this metrics is small, the warning should be quite simple to be checked by a 
human analyst and if the value is very large, it is more likely that a developer made a mistake when 
handling the size of the buffer. 

Technically, this metrics can be implemented as a taint analysis based on the EVA plugin.    

3.5 Dangling Pointers Persistence Metrics 

Dangling pointers may be the cause of Use-After-Free and Double Free vulnerabilities. Any freed 
pointer should be erased as quickly as possible. 

The Dangling Pointers Persistence Metrics is the number of instructions between the freeing of a 
pointer and the erasure of its value. A large value for this metrics means that this dangling pointer 
may be used by a large amount of instructions before being erased. Thus, this pointer can be 
considered as suspicious and it should be checked.  

For instance, let us consider the following code: 

1. int * my_ptr = malloc(4*sizeof(int)); 
2. … // code using my_ptr 
3. free(my_ptr) 
4. … // junk code without reallocating my_ptr 
5. my_ptr[2]=5; //User-After-Free 
6. … // junk code 
7. my_ptr = 0; //erasing the pointer 

Figure 10: Example of a User-After-Free in C 

In the code sample above, some data are set in the memory chunk pointed by my_ptr in line 5, 

but my_ptr was already freed in line 3. Thus, there is a User-After-Free vulnerability. 

For multiple reasons, like code complexity, this User-After-Free may not be detected by static 
analysis. However, if the analysist can know in line 3, where the free is done, that the value of the 
pointer will be erased in the next lines of code, then the risk that the freed pointer will be reused is 
low. On the other hand, if the value of the Dangling Pointers Persistence Metrics is high, the 
pointer is still alive for a long period after its freeing, the risk that pointer is reused after being freed 
is higher.   

Technically, this metrics can be implemented as a taint analysis based on the EVA plugin.  

3.6 Cryptographic Secrets Persistence Metrics 

Cryptographic secrets have to be erased from memory as soon as possible. Thus, their 
persistence in memory must be checked during a code audit. 

The Cryptographic Secrets Persistence Metrics is the number of instructions between the last use 
of a cryptographic secret and its erasure from the memory. It is quite similar to the Dangling 
Pointers Persistence Metrics. 

The larger this metrics is, the longer a value persists in memory and the more likely this value can 
be accessed from memory by an attacker. Thus, this value should be as small as possible.   
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For instance, let us consider the following code: 

1. int key = 0xdeadbeef; 
2. crypt_file(my_file, key); 
3. … // n lines of junk code 
4. key = 0; 

Figure 11: Example of a C program using cryptographic secret 

In the code sample above, the cryptographic secret is the variable key defined in line 1 and use in 

the function crypt_file in line 2. The variable key is no longer used, thus there is no reason 

that it is not erased just after the call to crypt_file. If the user annotated the variable key as a 

cryptographic secret in the analyser, the user would be able thanks the Cryptographic Secrets 
Persistence Metrics, to know the number of lines of code that separate the erasure of the key from 
its last use in the crypt_file function. If this value is too high, it is a sign that the cryptographic 

secret is not erased as soon as possible as it should be. 

Technically, this metrics can be implemented as a taint analysis based on the EVA plugin.  

3.7 Static Analysis Coverage Metrics 

Abstract-interpretation based static analyzers like the EVA plug-in in Frama-C perform an abstract 
execution of the code starting from a given entry point and an abstract initial context. Depending on 
this entry point and the initial context, not all statements of the code under analysis may be visited 
during the execution. For instance, if we seek to analyze the function f shown in Figure 12, using 

either main1 or main2, we will end up with different results. Frama_C_interval is a built-in that 

returns a non-deterministic result in the interval defined by its two arguments. Hence main1 will 

only activate the first branch of f, while an analysis starting at main2 will cover both branches of 

the function. 

int f(int x) { 
  if (x <= 4) return 0; 
  else return 1; 
} 
 
int main1 () { 
  int test = Frama_C_interval(0,4); 
  return f(x); 
} 
 
int main2 () { 
  int test = Frama_C_interval(0,10); 
} 

Figure 12: Code coverage example 

Of course, vulnerabilities lying in branches that are not visited by an analysis will not be detected. It 
is thus important to be able to measure which proportion of the code under analysis actually has 
been covered by the analyzer. This metrics can be compared to the various coverage criteria that 
have been proposed for assessing the quality of test suites [1]. As it is the case with software 
testing, the most obvious an easily computable metrics, i.e the ratio between the number of 
statements covered and the total number of statements in the code under analysis might not 
always be the most relevant coverage measure. Indeed, if for instance the two branches of a given 
if statement have very different lengths, an analysis covering only the longest branch could 

achieve a pretty good coverage but still miss a critical vulnerability in the shortest branch. It is thus 
important to provide a set of coverage measurement that go beyond statement coverage. Branch 
coverage (ratio of the number of branches that have been considered by the analysis over the total 
number of branches in the code) is an interesting metrics in this respect. More generally, there 
exist many coverage criteria in the testing world, and a certain number of them would probably be 
relevant in abstract interpretation as well. 
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3.8 Quantitative assessment for deductive verification tools 

Deductive verification tools attempt to prove that a given piece of code is conforming to some 
formal specification, usually expressed under the form of a function contract. As shown in Figure 
13, such contract expresses what a function requires from its callers, and what properties it 
ensures when it returns back from having been called in a state which respects its requirements. In 
some circumstances, notably in the case of loops, additional annotations are needed and are to be 
proved as well as the main specification. 

/*@ requires 0 <= x < 100; 
    ensures \result == x * (x+1) / 2; 
*/ 
int sum(int x) { 
int res = 0; 
/*@ loop invariant 1<=i<=x+1; 
    loop invariant res == i * (i-1)/2; 
    loop assigns i, res; 
*/ 
for (int i = 1; i <=x; i++) { res += i;} 
return res; 
} 

Figure 13: Code and specification sample 

An obvious metrics in this context is thus to count the number of annotations that have been 
verified, the number of annotations for which a proof attempt failed, and the number of annotations 
that have been verified under the hypothesis that a yet-unproved annotation holds. In addition, this 
should be combined with the number of functions equipped with a contract. Indeed, by definition, 
only those functions are subject to verification through deductive proof-based tools. Thus, for the 
purpose of this kind of tools, the target of evaluation would be the set of formally specified 
functions. 

While this metrics would provide a first evaluation of the amount of verification that has been done 
on a given code base, it is however not sufficient. In particular, if one puts too restrictive pre-
conditions on a contract, it will become easier to prove the respective post-conditions, but at the 
expense of the callers. Conversely, a weak post-condition is easy to prove, but provide few 
guarantees. At worst, the following contract can be proved for any function: 

/*@ requires \false; 
    ensures \true; 
*/ 
int f(int x); 

Figure 14: Always-true contract 

Thus, there is also a need to define some metrics assessing the quality of contracts. This point is a 
very new topic of investigation, and the proposals made here should not be taken as a definitive 
answer on this subject. 

First, a measure of the quality of the pre-condition would be the proportion of execution branches 
that can be taken inside the function when starting from a context respecting the pre-condition over 
the total number of possible execution branches. This can be done by successively adding on each 
branch annotations that can only be proved if the branch is unreachable and check whether they 
are proved or not. For instance, in the following function, proving the assertion dead implies that 

the pre-condition is masking half of the function from the deductive tool, while being unable to 
prove live would indicate at least this branch is covered. 

/*@ requires x > 0; 
    ensures \result == 2; 
*/ 
int f(int x) { 
  if (x <= 0) { 
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    /*@ assert dead: \false; */ 
 return 1; 
  } else { 
 /*@ assert live: \false; */ 
 return 2; 
  }   
} 

Figure 15: Metrics for pre-conditions 

Second, for post-conditions, contracts could be required to have an assigns clause, and a 

metrics could be the proportion of memory locations that could be modified according to the  
assigns clause that appears in the post-conditions. Indeed, for such locations that are not 

mentioned, we do not have any information about the value that they can hold after the call. For 
instance, in the following code, our post-condition does not say anything about the value of *p, 

hence we do not know what the function might have done with it (note however that we still refer to 
the value of *p in the old state, but not to its actual value). From the point of view of a caller of f, 

the post-condition is incomplete, in the sense that it does not accurately describe the state of the 
program after a call to f. The purpose of the proposed metrics is to indicate which proportion of the 
function’s footprint is described in its post-condition, as an indication of the quality of the contract. 

/*@ requires \valid(p); 
    assigns *p; 
    ensures \result == \old(*p); 
*/ 
int f(int *p) { 
 int tmp = *p; 
 *p = 42; 
    return *p; 
} 

Figure 16: Post-conditions metrics 

3.9 “CWE scoring of an alarm” Metric 

Security standards, such as CWE enumeration or CERT coding rules come with an evaluation of 
the potential severity of a given alarm. Hence, tools that can categorize the issues they report 
according to such standards will also be able to rank them according to these numbers. In 
particular, they could implement the Common Weakness Scoring System proposed by CWE 
(https://cwe.mitre.org/cwss/cwss_v1.0.1.html), or the Common Vulnerabilities Scoring System 
proposed by FIRST (https://www.first.org/cvss/). However, as noted in the document defining 
CWSS itself, it is very unlikely that an automated tool can compute an accurate score for all the 
components that are taken into account in the aggregated score, and some human intervention will 
be required to provide additional inputs. 

Regarding Frama-C, no plug-in is currently reporting alarms according to CWE or CVE 
categorization, and it is not possible to obtain a CWSS scoring. Since a certain amount of user 
intervention is expected anyway, Frama-C MDR plug-in might be a suitable candidate to propose a 
template for CWSS and/or CVSS scoring of each alarm reported by EVA or WP, in order to help 
sorting these alarms according to their criticality. This template would then be filled by the user of 
MDR, in the same way as they currently provide additional information about each alarm in a free 
format. In particular, one of the major point of the current version of MDR is the possibility for the 
user to explain why an alarm raised EVA is in fact a false alarm, due to the abstractions made by 
the tool, and not a real vulnerability in the program under analysis. This is directly related to the 
“Finding Confidence” (FC) criterion of CWSS, and MDR users should thus easily be able to provide 
a suitable value for this criterion. 

In addition, the taint analysis metrics proposed in the next section would provide valuable 
information for assessing the value of the “Internal Control Effectiveness” criterion, in the sense 

https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://www.first.org/cvss/
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that the metrics is intended to show the distance between values from which at least one of them 
can be directly provided by an attacker and their use in operations that can lead to a runtime error. 

3.10 “Criticality of an alarm” taint analysis Metrics 

Taint analysis is an analysis technique that allows tracking where untrusted (“tainted”) input data 
can propagate to during the execution of a program. Based on this information, a useful metrics for 
evaluating the severity of an alarm is to compute the number of computational operations and/or 
tests over the tainted values that separate the values which trigger the alarm from tainted values 
(that must be assumed to be under the control of an attacker): the closer they are, the easier it will 
be for an attacker to craft a malicious vector of input data. This metrics assumes that the code has 
been annotated to indicate which functions read untrusted input and possibly which functions are 
able to sanitize such inputs. 

struct input { 
 size_t buf_length; 
 const char* buffer; 
} 
 
/*@ tainted \result; */ 
struct input* read_input(); 
 
void process_data(char *); 
 
int main (void) { 
 struct input* in = read_input(); 
 if (in->buf_length > 0) { 
  /*@ assert array_len: in->buf_length > 0; */ 
  char my_buffer[in->buf_length]; 
  /*@ assert cpy_length: in->buf_length >= strlen(in->buffer); */ 
  strcpy(my_buffer,in->buffer); 
  process_data(my_buffer); 
  return 0; 
 } 
 return 1; 
} 

Figure 17: Taint analysis example 

If we take the example of Figure 17, where the function read_input is assumed to fill the 

structure it returns with data coming from an unknown source (meaning in particular that we cannot 
assume that buf_length contains the length of buffer), the first ACSL annotation is trivially true, 

as the value of buf_length is properly guarded by the condition just above. On the other hand, 

there are no checks of the consistency between the two fields of the structure, which means that 
the second ACSL annotation indicates a real alarm, which could directly be triggered by an 
attacker setting a buf_length lower than the actual length of buffer). 

Frama-C currently has a plug-in dedicated to detection of information leak, which is based on 
techniques that are extremely similar to taint analysis, but no plug-in performs taint analysis as 
such. 

3.11  “Statistics” Metric 

The most straightforward metrics that can be computed on a program are purely syntactic 
information. They do not really inform about vulnerabilities per se, but can give a rough idea of the 
complexity of the code, hence of the amount of effort that will be required to analyze it. Many 
proposal have been made over the years to provide such metrics, such as cyclomatic complexity 
or Halstead’s complexity and can easily be implemented by the tools to provide a first overview of 
the code. The metrics plug-in of Frama-C already offers some of these metrics, both on the original 
(though post preprocessing) code and the normalized version on which the analyzers of the 
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platform usually operate. The former should be privileged, as the normalization introduces 
constructions, notably gotos that are usually considered as making the code harder to understand 

(hence increasing the complexity) from a user point of view (as opposed to automated analysis 
plug-ins which are the primary users of the normalized code). 

An example of the output provided by the Frama-C metrics plug-in is given in Figure 18 and Figure 
19. The program under analysis is the bzip2 version that is analysed in the Open-Source Case 
Studies repository (https://github.com/Frama-C/open-source-case-studies/). 

[metrics] Halstead metrics 

    ================ 

    Total operators: 5494  

    Distinct operators: 139  

    Total_operands: 3185  

    Distinct operands: 915  

    Program length: 8679  

    Vocabulary size: 1054  

    Program volume: 87151.56  

    Effort: 21083772.01  

    Program level: 0.00  

    Difficulty level: 241.92  

    Time to implement: 1171320.67  

    Bugs delivered: 25.44  

     

     

    Global statistics (Halstead) 

    ============================ 

    Operators 

    --------- 

      continue: 8 

      const: 6 

      typedef: 64 

      goto: 34 

… 

Figure 18: Metrics over original code 

 [metrics] Defined functions (44) 

    ====================== 

     addFlagsFromEnvVar (2 calls); applySavedFileAttrToOutputFile (2 

calls); 

     applySavedTimeInfoToOutputFile (2 calls); cadvise (3 calls); 

     cleanUpAndFail (8 calls); compress (2 calls); compressStream (1 

call); 

    …. 

    Undefined functions (8) 

    ======================= 

     BZ2_bzRead (2 calls); BZ2_bzReadClose (4 calls); 

     BZ2_bzReadGetUnused (2 calls); BZ2_bzReadOpen (2 calls); 

     BZ2_bzWrite (1 call); BZ2_bzWriteClose64 (2 calls); 

     BZ2_bzWriteOpen (1 call); BZ2_bzlibVersion (2 calls);  

    Potential entry points (1) 

    ========================== 

     main; 

    Global metrics 

    ==============  

    Sloc = 1373 

    Decision point = 352 

    Global variables = 25 

    If = 300 

    Loop = 31 

    Goto = 97 

    Assignment = 389 

https://github.com/Frama-C/open-source-case-studies/
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    Exit point = 44 

    Function = 52 

    Function call = 421 

    Pointer dereferencing = 95 

    Cyclomatic complexity = 396 

Figure 19: Metrics over normalized code 
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Chapter 4 Metrics in Frama-C 

Currently, the main plug-ins in the Frama-C platform for providing metrics are the following: 

• Report provides the status of each ACSL annotation (including the ones generated by other 
plug-ins, e.g. as the result of an alarm of EVA). Raw numbers of annotations that are valid, 
valid under hypothesis, unknown, or invalid can be obtained in a CSV table. 

• MDR generates a markdown based template detailing the results of an analysis (mostly 
using EVA at this point). This template is meant to be completed by the user with additional 
information indicating e.g. why an alarm is spurious or whether a reported issue is mitigated 
through other parts of the system under analysis. 

• Metrics provides syntactic metrics and, when launched after EVA, some basic coverage 
information (number of statements reached by EVA). 

More information on these plug-in is available in D3.2. While the three plug-ins mentioned above 
will likely stay the preferred plug-ins for outputting relevant information to the user, some 
extensions to the analysis plug-ins themselves might be required. In particular, the proposals made 
to assess the quality of a specification in Section 3.8 would be better driven directly from the WP 
plug-in. Likewise, EVA has some internal information about the branches that it explores that is 
only available while the analysis is running and not kept in the analyzer’s state that can be queried 
by other plug-ins once the analysis has completed. Fine-grained branch coverage information as 
envisaged in Section 3.7 would thus imply modifications to EVA itself. 

Taint analysis is not currently part of any plug-in that is included in Frama-C base distribution, 
hence the metrics of Section 3.10 will require new developments in order to be implemented. EVA 
and its associated plug-ins provide strong basic blocks for a taint analyzer, but some new 
annotations (for indicating which values are initially tainted, and what can be done to sanitize them) 
need to be designed, and written by the user of the analyzers. 
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Chapter 5 Summary and Conclusion 

The following new metrics had been identified with the collaboration of different partners have been 
proposed and described in this document with design and implementation details on related tools: 

Metrics name Technical 
implementation 

Type Related plugin/tool 

SecuRate Fingerprint matching Numeric value SecuRate, EVA 

CriticalDepth Call stack depth Numeric value EVA 

Liveness Metrics Taint analysis Numeric value EVA 

Size Definition Distance Metrics Taint analysis Numeric value EVA 

Dangling Pointers Persistence 
Metrics 

Taint analysis Numeric value EVA 

Cryptographic Secrets Persistence 
Metrics 

Taint analysis Numeric value EVA 

Static Analysis Coverage Metrics Abstract Interpretation Ratio EVA 

Quantitative assessment for 
deductive verification tools 

Deductive Verification Numeric value WP 

“CWE scoring of an alarm” Metric Classification Numeric value Report/MDR 

“Criticality of an alarm” taint 
analysis Metrics  

Taint analysis / Control-
flow assessment 

Boolean / 
Numeric value 

EVA 

“Statistics” Metric Collection of existing 
metrics 

Set of numeric 
values 

Metrics 

Table 1: Table of new metrics 

These metrics pose a relevant improvement in conducting security assessments and will enable 
future analysts and developers to determine and prioritize the most crucial vulnerabilities. Based 
description and specification of proposed metrics introduced in this deliverable, implementation 
activities will be performed in WP3. The integrated metrics will be demonstrated during further 
activities in the use-case evaluation in D4.6 [3] and quality tests in D4.5 [2]. 
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Chapter 6 List of Abbreviations  

Abbreviation Translation 

CVE Common Vulnerabilities and Exposures 

CVSS Common Vulnerabilities Scoring System 

CWE Common Weakness Enumeration 

CWSS Common Weakness Scoring System 

EVA Enhanced Value Analysis 
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