
D3.1

Modular reasoning for system validation
and verification

Project number:
731453

Project acronym:
VESSEDIA

Project title:
Verification engineering of safety and security

critical dynamic industrial applications

Start date of the project:
1st January, 2017

Duration:
36 months

Programme:
H2020-DS-2016-2017

Deliverable type:
Report

Deliverable reference number:
DS-01-731453 / D3.1 / 2.0

Work package contributing to the deliverable:
WP3

Due date:
June 2018 - M18

Actual submission date:
15th of October, 2018

Responsible organisation:
CEA

Editor:
Virgile Prevosto

Dissemination level:
PU

Revision:
2.0

Abstract:
This document describes the combination be-

tween high-level system reasoning with Di-

versity and low-level code verification with

Frama-C

Keywords:
Diversity, Frama-C, symbolic execution, rela-

tional property, deductive verification

The project VESSEDIA has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 731453.

D3.1 - Modular reasoning for system validation and verification

Editor

Virgile Prevosto(CEA)

Contributors

Imen Boudhiba (CEA),

Boutheina Bannour (CEA),

Christophe Gaston (CEA)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The content of this document reflects

only the author’s view – the European Commission is not responsible for any use that can

be made of the information it contains. The users use the information at their sole risk and

liability.

VESSEDIA D3.1 Page I

D3.1 - Modular reasoning for system validation and verification

Executive Summary

A major issue in assessing the security of a whole system is the lack of correspondence

between high-level properties expressed at model level and lower-level verification tasks that

need to be done on the implementation itself. The goal of Task 3.1 in the VESSEDIA project is

to propose a solution bridging this gap for subsystems components that are implemented

as software coded in C. More specifically, as described in this document, we propose to

combine the analysis done at the model level by the Diversity tool, over UML sequence

diagrams produced e.g. by Papyrus, with the verification that the implementation follows the

execution paths identified by Diversity, through the use of a set of Frama-C plug-ins. The

core of this method relies on the development made within Diversity to generate relational

properties, a specific kind of formal properties over C programs, that a newly developed

Frama-C plug-in, RPP, can understand and translates into more classical specifications that

standard analysis plug-ins, namely WP, can verify. Finally, in this document we also present

the first experiments that have been done with this toolchain over the 6LowPAN use case.

VESSEDIA D3.1 Page II

D3.1 - Modular reasoning for system validation and verification

Contents

1 Introduction 1

2 Frama-C toolbox 3

2.1 Frama-C kernel . 3

2.2 Properties specification . 5

2.2.1 Aoraï automata . 5

2.2.2 CaFE: CaRet Frama-C’s Extension . 6

2.2.3 RPP, Relational Properties Prover . 7

3 Diversity 8

3.1 Introduction: what is DIVERSITY . 8

3.2 Diversity entry language . 9

3.3 Diversity services . 9

4 Relational properties inference from high-level model 11

4.1 Introduction . 11

4.2 Proposed approach Overview . 11

4.3 Papyrus tool for high-level requirements modeling 12

4.3.1 UML SD models . 12

4.3.2 SD to xLIA translator . 12

4.4 New Diversity module for automatic relational properties inference 13

4.4.1 Properties inference methodology . 14

4.4.2 The inference module GUI . 15

5 Relational Property Prover Plug-in 17

5.1 Relational Properties Language . 17

5.2 Annotation Generation for Verification . 18

5.3 Axiomatic Generation . 19

5.4 Using WP to Prove Relational Properties . 20

5.5 Using StaDy to find Counter-Examples . 21

6 Example over 6LowPAN use-case 22

6.1 Quick reminder of 6LowPAN use-case . 22

6.2 SD: firmware update scenario modeling . 22

6.3 Property inference and proof results . 24

7 Conclusion 27

VESSEDIA D3.1 Page III

D3.1 - Modular reasoning for system validation and verification

List of Figures

1.1 Toolchain for verifying code-level properties assessing system-level require-

ments . 2

2.1 Example of ACSL specification . 3

2.2 Overview of Frama-C plug-ins at CEA List . 4

3.1 The symbolic execution platform of Diversity 1 8

3.2 Diversity . 9

4.1 Approach overview . 12

4.2 SD to xLIA translator . 13

4.3 IOSTS . 14

4.4 Symbolic path . 15

4.5 Inferred relational property for path feasibility 15

4.6 Inference interface . 16

6.1 Firmware update SD . 23

6.2 Relational property inference . 24

6.3 Proof . 25

List of Tables

1https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

VESSEDIA D3.1 Page IV

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

D3.1 - Modular reasoning for system validation and verification

Chapter 1

Introduction

This report describes work done inside Task 3.1 of the VESSEDIA project on modular rea-

soning for system validation and verification. Generally speaking, the goal of this task is to

propose solutions to help users derive properties to be verified at code level from high-level

properties expressed at the system level. Indeed, since systems are very often heteroge-

neous, it is not reasonable to try to find a unique verification technique for the whole system:

some parts might be black boxes that can only be assessed through testing techniques, while

some others might be software whose source code is known and which might be analysed

using static analysis tools such as the one offered in the VESSEDIA project. It is therefore

essential to boil down the problem of verifying systems to verifying, with different techniques

if needed, its sub-systems. This question has been addressed in “design by contracts” ap-

proaches in a bottom-up manner, basing reasoning and verification technologies on com-

positional results whose goal is to ensure that system requirements can be deduced from

properties of basic sub-systems. However, it is often difficult to identify the basic properties

that should hold at sub-system level in order to have a given property hold at system level.

Other approaches consider the question from a top-down perspective. Starting from system

requirements and architecture, it is possible to derive local properties that should hold at

sub-system level to ensure global correctness.

In the context of this task, we have focused on the use of the Diversity tool [13, 2], which

forms the basis of the Eclipse Formal Modeling Project (E-FMP, [14]) for system-level rea-

soning, and of the Frama-C toolset [17] for code-level verification of properties inferred from

Diversity. The proposed toolchain is summarized in figure 1.1.

Basically, we start from an UML model, e.g. designed with the Papyrus tool [15] using

the meta-model developed as part of T1.2 and T1.3. This model, expressed as a sequence

diagram, contains a certain number of function calls, as well as constraints expressed over

the variables of the models. Diversity will then explore the sequence diagram and provide

an execution tree, with path constraints indicating which conditions must be fulfilled for a

given path to be taken. Now, in our context, some of the variables of the model are in fact the

result of an internal computation (i.e. a function call). The generation of code level properties

from the path constraints of Diversity is based on the idea that the implementation of function

f must return results that are compatible with the path constraints in which a call to f is

involved. Early work in this direction [10] has shown that when there is a single call involved

in the path, it is possible to generate a partial function contracts in the ACSL specification

language [5], that is at the core of the Frama-C platform.

However, when there are several function calls on the same path, contracts are not suf-

ficient anymore. In particular, they fail to capture possible relations between the results re-

VESSEDIA D3.1 Page 1 of 29

D3.1 - Modular reasoning for system validation and verification

Figure 1.1: Toolchain for verifying code-level properties assessing system-level requirements

turned by different calls. Fortunately, a Frama-C plug-in, RPP [8], is currently developed to

allow expressing properties over several function calls. We have thus investigated the pos-

sibility of generating RPP properties instead of plain ACSL contracts.

The primary target of the experiments made in this direction has been extracted from the

6LowPan use-case of VESSEDIA. The chosen property focuses on the main functional re-

quirements of the firmware update: basically, we want to ensure that the update of a node is

considered successful if and only if all blocks of the new firmware are received, their check-

sums are verified, they are written in the corresponding slot of the flash memory, and the

checksums of the memory blocks are also correct. A model of the node in UML has been de-

veloped and various path constraints have been generated by Diversity, giving rise to RPP

properties. However, the corresponding 6LowPan code used many assembly parts and/or

external functions, making it unsuitable to analyse directly. Analysis has thus been done on

an equivalent pure C implementation. Equivalence with the actual code has been manually

assessed with the help of LSC lab at CEA Tech List, who develops the firmware update code

in the first place.

The report is structured as follows. First, we briefly present the Frama-C platform (chap-

ter 2) and the Diversity tool (chapter 3). Then, chapter 4 describes how function calls are

taken into account at the model level, and what kind of code-level properties can be derived

from such a model. The RPP plugin of Frama-C is detailed in chapter 5. Finally, chapter 6

explains how the whole toolchain has been put into practice into the examples derived from

the 6LowPan use-case.

VESSEDIA D3.1 Page 2 of 29

D3.1 - Modular reasoning for system validation and verification

Chapter 2

Frama-C toolbox

2.1 Frama-C kernel

Frama-C [17] is a platform dedicated to the analysis of C programs. It features a modular

design, centered around a kernel that takes care of parsing C files and maintaining the re-

sulting internal representation as an Abstract Syntax Tree (AST), as well as collecting the

information emitted by the various analyzers in order to save it on disk, or conversely load

the results of previous analyses. On top of this kernel, analyzers are built as plug-ins.

In addition, it is possible to provide, together with the code, formal specifications in the

form of ACSL [5] annotations. The core components of ACSL are contracts and assertions.

A contract let a user specify what a function requires from its caller (the pre-condition, a

constraint about the program state when the execution of the function begins) and what it

ensures in return (the post-condition, a formula characterizing the state of the program at the

point where the function returns successfully). ACSL’s assertions, like C’s assert, state that

a property should hold at a given program point. The language in which an ACSL assert

can be expressed is however much richer than C.

Figure 2.1 gives a very simple example ofACSL annotations, with a contract for a function

swap that takes as argument two valid pointers (pointers that can be safely dereferenced),

and ensures that it swaps their contents, leaving the rest of the memory intact (this is the

sense of the assigns clause).

/*@ requires validity: \valid(a) && \valid(b);

assigns *a, *b \from *a, *b;

ensures exchange: *a == \at(*b, Pre) && *b == \at(*a, Pre);

*/

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

/*@ assert tmp == \at(*a, Pre); */

*b = tmp;

}

Figure 2.1: Example of ACSL specification

Figure 2.2 gives a brief overview of the main plug-ins that are maintained at CEA Tech

List. The ones that are most relevant for the activities of this task are marked in yellow and

VESSEDIA D3.1 Page 3 of 29

D3.1 - Modular reasoning for system validation and verification

in
c
lu
d
e
d
in

m
a
in

d
is
trib

u
tio

n

d
is
trib

u
te
d
e
x
te
rn
a
lly

F
ra
m
a
-C

P
lu
g
-In

s

D
y
n
a
m
ic
A
n
a
ly
s
is E
x
e
c
u
ta
b
le
-A
C
S
L

P
a
th
C
ra
w
le
r

S
ta
D
y

C
o
n
c
u
rre

n
c
y

M
th
re
a
d

T
e
m
p
o
ra
l
P
ro
p
e
rtie

s

C
a
F
E

A
o
ra
ï

G
e
n
e
ra
te

a
n
n
o
ta
tio

n
s

P
IL
A
T

R
T
E

R
P
P

F
o
rm

a
l
M
e
th
o
d
s

D
e
d
u
c
tiv
e

V
e
rific

a
tio

n W
P

J
e
s
s
ie

A
b
s
tra

c
t

In
te
rp
re
ta
tio

n

E
V
A

F
ro
m

A
n
a
ly
s
is

C
o
d
e
T
ra
n
s
fo
rm

a
tio

n

S
e
m
a
n
tic

c
o
n
s
ta
n
t

fo
ld
in
g

S
lic
in
g

S
p
a
re

c
o
d
e

B
ro
w
s
in
g
o
f

u
n
fa
m
ilia

r
c
o
d
e

S
tu
d
ia

V
a
ria

b
le

o
c
c
u
rre

n
c
e
s

Im
p
a
c
t
A
n
a
ly
s
is

M
e
tric

s
c
o
m
p
u
ta
tio

n

Figure 2.2: Overview of Frama-C plug-ins at CEA List

VESSEDIA D3.1 Page 4 of 29

D3.1 - Modular reasoning for system validation and verification

will be described in more details in the following chapters, but, from a very high-level point

of view, these plugins can be grouped in a few broad categories as follows.

Semantic analysis: the most important plug-ins of the platform, EVA and WP, provide infor-

mation about the semantics of the program under analysis, implementing respectively

abstract interpretation and deductive verification techniques.

Dynamic analysis: although Frama-C is mainly dedicated to static analysis, some plug-ins,

notably E-ACSL and PathCrawler, target concrete executions over instrumented code

Property specification: Function contracts and assertions offered by ACSL are not always

the most convenient way to express properties that the code is supposed to verify.

Some plug-ins propose other means to write these properties. This includes in par-

ticular temporal logic (LTL or CaRet) formulas with the Aoraï and CaFE plug-ins, RTE

(generation of an assertion at each program point where an undefined behavior would

appear if the assertion does not hold), or, as mentioned before, RPP.

Program transformation: it is possible to use the results of the analyses to perform various

kind of transformations (constant propagation, dead-code elimination, ...)

Code browsing: Some plugins provide facilities for browsing through the code, especially

for understanding the root causes of problems reported by the analyses.

2.2 Properties specification

As mentioned previously, the first targets for generating code-level properties from Diversity

scenarios were pure ACSL contracts. This setting was not very satisfying for taking into

account execution paths with multiple function calls. While it would have been possible to

extend Diversity to directly generate a set of contracts also in this case, a better solution was

to investigate whether some of the plug-ins dedicated to property specifications would offer

a convenient target for Diversity. More specifically, three plug-ins were potential candidates:

Aoraï [24], CaFE [12], and RPP [8].

2.2.1 Aoraï automata

Aoraï is historically the first plug-in of Frama-C that allowed users to express properties in

another form than ACSL contracts. More precisely, the initial input language offered by Aoraï

is Linear Temporal Logic (LTL [22]). LTL formulas allow specifying properties over a poten-

tially infinite sequence of events, using temporal operators, in addition to boolean connectors:

• Xp, indicating that p must hold at the next event;

• pUq, indicating that p must hold until q becomes true (which it will eventually);

• Fp, indicating that p will hold at some point in the future, that can be defined as true U p

• Gp, indicating that p will always hold, that can be defined as ¬(F¬p)

In the context of Aoraï, the events that are tracked are function calls and return. For

example, the following formula expresses the fact that it is not possible to access sensitive

information before a proper authentication check:

VESSEDIA D3.1 Page 5 of 29

D3.1 - Modular reasoning for system validation and verification

(!CALL(get_private_data))

U (RETURN(authentication) && authorized == 1)

Aoraï relies on an external tool to generate a Büchi automaton from a LTL formula. It is

also possible to directly describe the property of interest as an automaton, whose transitions

are guarded by the events of interest and conditions over the variables of the programs. The

automaton has one initial state, in which it is at the beginning of the execution, and some

accepting states, in which it must be at the end of the execution. An automaton corresponding

to the formula above would be for instance:

%init S0;

%accept Sf;

%deterministic;

S0: CALL(get_private_data) -> fail

| RETURN(authentication) && authorized == 1 -> Sf

| other -> S0;

Sf: -> Sf;

fail: -> fail;

Given an automaton and an implementation, Aoraï will instrument the code to reflect the

transitions taken by the automaton and generate ACSL contracts to ensure that the program

ends in an accepting state. It is then up to other plug-ins to verify these ACSL annotations.

While there are some obvious similarities between Aoraï’s automata and sequence dia-

grams used by Diversity, some technical difficulties prevent targeting these automata with

Diversity directly. First, the diagrams only provide an abstraction of the call graph of the

program, while Aoraï traces all call and return events and does not provide any mecha-

nism to ignore some functions. Second, and more importantly, the constraints put on the

model might rely on external variables that do not exist in the implementation. There is no

possibility to introduce such variables in the guards of the automaton or in the LTL formula.

In particular, this makes it impossible to specify a relation between the arguments and return

values of two distinct calls, for instance to enforce that a FILE f obtained from fopen must

be closed through a call to fclose with f as argument.

2.2.2 CaFE: CaRet Frama-C’s Extension

One of the issues of using pure LTL for specifying program executions is that there are no

built-in operators to speak directly of the call stack. In order to overcome that, the CaRet

language [1] distinguishes between call, return and internal events in the execution trace,

and proposes three sets of temporal operators:

• general operators (X@N) are the normal LTL operators;

• abstract operators (X@A) ignore the events that occur in inner calls;

• past operators (X@P) permits to go back on the call stack.

As an example, the following formula requires that any function that enters a critical sec-

tion must release it before returning:

VESSEDIA D3.1 Page 6 of 29

D3.1 - Modular reasoning for system validation and verification

G@N (Call{enter_critical} ==> (!Ret U@A Call{exit_critical}))

While CaFE’s input language makes it easier to abstract away the calls that are not

present inside the model, it still lacks the possibility of using variables that are not present in

the implementation, making it unsuitable in its current form for our purposes.

2.2.3 RPP, Relational Properties Prover

Relational properties are properties that, unlike function contracts, allow specifying relations

that should hold between several function calls. Two simple examples are the monotony

of a function int f(int), i.e. the fact that for any x and y such that x < y, we have

f(x) < f(y). Relational properties can also involve distinct functions. For instance, given

two functions for encrypting and decrypting a message

char* crypt(char *msg, long key);

char* decrypt(char *encrypted, long key);

it would be desirable to have for any msg and key that the following property holds:

strcmp(decrypt(crypt(msg,key), key), msg) == 0

RPP is a Frama-C plug-in that proposes an extension to ACSL for expressing relational

properties and translates those properties into two sets of ACSL annotations. The first one

is dedicated to prove the property using WP, while the second provides an axiomatic that

allows WP to use the property as a hypothesis in other proofs. While RPP is relatively new

and under heavy development, its relational properties, by allowing the introduction of fresh

variables through universal quantification, are an appropriate target for the generation of

code-level specifications through Diversity. We have thus based our work in task T3.1 on

this setting. Because of its importance in this activity, RPP is described in more details in

chapter 5

VESSEDIA D3.1 Page 7 of 29

D3.1 - Modular reasoning for system validation and verification

Chapter 3

Diversity

In this chapter, we present the DIVERSITY tool developed at CEA Tech List and used in the

context of our project.

3.1 Introduction: what is DIVERSITY

DIVERSITY is a customizable model analysis tool based on symbolic execution. It is an

open source tool (Eclipse license EPL) available in the Eclipse Formal Modeling Project [18].

It offers an extensible platform in order to take into consideration various formal analysis

possibilities.

Figure 3.1: The symbolic execution platform of Diversity 1

Namely, Diversity provides a common Symbolic Execution (SE) platform (Figure 3.1):

• generic enough to take into account the semantics of a wide range of models;

• extensible to allow customizing the basic symbolic treatments to implement specific

Formal Analysis Modules (FAM), such as Model-Based Testing (MBT) algorithms, ex-

ploration strategies and heuristics;

• connected with many solvers, e.g., Z32, CVC43 and YICES[11] which can easily be

used to implement new FAMs.

2https://z3.codeplex.com/
3http://cvc4.cs.nyu.edu/web/

VESSEDIA D3.1 Page 8 of 29

https://z3.codeplex.com/
http://cvc4.cs.nyu.edu/web/

D3.1 - Modular reasoning for system validation and verification

DIVERSITY is composed of two distinct parts depicted in Figure 3.2: an Eclipse-based

Graphical User Interface (GUI) and an SE kernel developed in C++. GUI. It provides a textual

editor and a graphical editor for xLIA models. The latter is implemented as a UML/SysML

specialization using the Papyrus technology. The GUI provides as well utilities for symbolic

tree visualization and debug with different logging levels. Some of the existing FAMs of

DIVERSITY have been associated with GUI forms in order to enter required user parameters.

Note that DIVERSITY kernel EXE can be run in command line: it takes as input an XML-like

user parameters file including the xLIA model location.

Figure 3.2: Diversity

3.2 Diversity entry language

Diversity has the ability to analyze a wide range of modeling languages. In fact, it provides a

pivot language called xLIA (eXecutable Language for Interaction & Architecture) which is a

generic language introducing a set of communication and execution primitives allowing one to

encode a wide class of dynamic model semantics, e.g., IOSTS/Timed IOSTS, UML/SysML,

SDL, Communicating STS, abstractions of hybrid systems.

In particular, xLIA supports classical automata syntax involving symbolic data and commu-

nication actions. In our case, we use xLIA modeling language to encode transition systems

where transitions are composed of a source and a target control state, and a sequence of

instructions such as guards built from state variables (e.g. x <= y), some communication

actions (receptions of values stored on state variables or emissions of values through some

ports) (e.g. input c(x) and output r(OK)), and variable updates denoted by classical assign-

ments (e.g. y := y + 42).

3.3 Diversity services

Diversity is based on symbolic execution techniques. Symbolic execution (SE) consists in

computing the semantics of a model in an abstract manner by constraint propagation on

input symbolic values. The result of the symbolic execution is a tree-like structure where

a path abstracts a class of concrete execution of the analyzed object. Symbolic trees are

potentially infinite structures due to the possibility of repeatedly executing an unbounded loop

VESSEDIA D3.1 Page 9 of 29

D3.1 - Modular reasoning for system validation and verification

for example. Classically, SE allows setting stopping criteria related to the tree size. Once

such a symbolic tree is computed, SE provides post processing facilities to conduct formal

analysis on the symbolic tree. In addition, the SE infrastructure has been designed to allow

customized formal treatment on the fly during the construction of the symbolic tree.

These are descriptions of some available FAMs which will be used and assessed in the

frame of the VESSEDIA project:

• EC-Inclusion: This FAM stops the symbolic execution of any Execution Context (EC),

during pre-filtering, if it is included in another already computed EC in the symbolic tree.

• Reachability heuristics: This FAM computes a set of symbolic states that are the final

states of some paths satisfying a coverage goal such as covering (successively) some

transitions, states, I/O actions, function calls, or satisfying logical formulas on the model

state variables.

• k-robustness analysis: this FAM is used to analyze the robustness of a design to some

known cyber attacks, in terms of intrusion detection. The goal is to ensure that the

design model is equipped with a watchdog able to emit a warning in less than k actions

of the attacker (k is an integer specified by the designer of the detection mechanism

endowed in the watchdog).

• Testing: beyond these few examples, one major application domain for DIVERSITY

is model-based testing. Let us emphasize that the development of DIVERSITY has

been mainly driven by needs issued from model-based testing, such as time modeling,

customizable tool or selection criteria.

In the scope of VESSEDIA, a new FAM is being developed in DIVERSITY: its objective is

to be used intertwined with the Reachability heuristics in order to infer code annotations for

a cooperation of function calls which implement specific safe high level system scenarios.

VESSEDIA D3.1 Page 10 of 29

D3.1 - Modular reasoning for system validation and verification

Chapter 4

Relational properties inference from

high-level model

4.1 Introduction

In this chapter, we propose a top-down approach to safety and security engineering that

handles the combination of high-level system reasoning and low-level code verification. We

are focusing on automatic generation of code annotations from a high-level requirements

model enriched with function calls.

In fact, it may happen that some requirements specifying high-level security and safety

properties occurring at the system model put constraints on the execution of called func-

tions. In such a case we need to verify these requirements at code level, with the greatest

rigor and accuracy. This implies that we need to translate high-level properties into low-level

verification tasks.

To do so, we propose to automatically generate code annotations (in the format of re-

lational properties) for functions called within the system model. The inference approach

is achieved by exploring constraints coming from the model and transporting those system

constraints at the functions level.

The proposed methodology is considered as an advanced formal verification framework

which is implemented by combining a variety of tools: Papyrus (modeling), Diversity (model

simulation and properties inference) and Frama-C (code analysis and proof). Furthermore,

it presents a significant step towards bridging the gap between a model-based approach in

which user-defined functions are abstracted away and a code-based approach in which small

pieces of code are separately considered regardless of the way they are combined.

4.2 Proposed approach Overview

We now give a brief overview of the proposed approach for extracting relational properties

on C functions from the system description. It consists in the following steps:

• System modeling taking into consideration safety and security properties. To achieve

this we use UML sequence diagrams (as presented in D1.3) enriched with function

calls. Then the sequence diagram will be automatically translated into an xLIA model

(to be analyzed with Diversity).

VESSEDIA D3.1 Page 11 of 29

D3.1 - Modular reasoning for system validation and verification

• Generate properties which the code is required to realize in order to ensure that the

system code operates as intended.

• Check the code correctness against inferred properties coming from the system high-

level design (this will be detailed in the following chapter).

Figure 4.1: Approach overview

4.3 Papyrus tool for high-level requirements modeling

Papyrus is an UML standard Open Source modeling tool for embedded systems’ design and

specification and especially real time critical systems.

4.3.1 UML SD models

In the context of our work, we use Papyrus to specify systems as UML Sequence Dia-

grams. The complete specification of Sequence Diagrams in UML2 can be found at http:

//www.omg.org/spec/UML/2.3/. In addition, a refined version of this specification tai-

lored to our needs in Vessedia is described in D1.3 In summary, a Sequence Diagram al-

lows describing interactions between components of a system. Basically, Lifelines represent

parts life cycle, communication between parts are represented by message exchanges and

executions are represented by Execution specifications that can be Action or Behavior exe-

cution. In particular, User-defined functions can be called within the sequence diagram as

behavior executions.

4.3.2 SD to xLIA translator

The UML sequence diagram semantics is implemented by translating it to an xLIA model

(IOSTS), on which Diversity can be applied. xLIA allows representing the semantics of the

VESSEDIA D3.1 Page 12 of 29

http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/

D3.1 - Modular reasoning for system validation and verification

sequence diagrams in a more compact way, better suited to symbolic execution and espe-

cially more modular (the regions of the combined fragment are translated into hierarchical /

composite states). This last point will allow easier maintenance of this translator. The trans-

lation is a hierarchical translation that respects the semantics of the UML model. First, we

perform model-to-model translation, from UML Sequence diagram to UML State Machine di-

agram. In a second step, we transform the UML State Machine into xLIA since both format

are semantically close: both are based on the notion of automaton and transitions system.

In addition, the results of this translation are viewable in the property view of the DIVERSITY

GUI (see figure 4.2), which facilitates debugging.

Figure 4.2: SD to xLIA translator

4.4 New Diversity module for automatic relational proper-

ties inference

In this section, we focus on code annotations inference from UML sequence diagrams. More

precisely, we start with a sequence diagram, translated to an xLIA model (IOSTS) calling

functions and we show how to generate constraints on called functions code from path con-

dition constraints.

VESSEDIA D3.1 Page 13 of 29

D3.1 - Modular reasoning for system validation and verification

4.4.1 Properties inference methodology

Path conditions (constraints gathered with SE and that characterize under which circum-

stances a given execution path might be taken) are not reduced to one function call. For that

reason, we propose to generate code annotations in the format of a relational property (per

path, or in other words per possible system behavior) which is a formula that, in the general

case, may involve several function calls.

The inference approach is achieved by exploring constraints coming from the IOSTS

symbolic execution and transporting those system constraints at the functions level. Our

working hypothesis for the inference is that the concrete implementation of the functions

should not add additional constraints to the system. In other words, if a path condition is

satisfiable when considering the function calls as returning abstract values on which nothing

is known beyond the patch condition itself, it must still be satisfiable when using an actual

implementation for each function. In practice we generate the relational property using the

following steps:

• identify the set of variables of the path condition related to the sequence of function

calls occurring along the path;

• elicit the sub-formula from the path condition on which the calls depend;

• use the obtained constraints to formulate the relational property in a format acceptable

by Frama-C (and more specifically its RPP plugin).

Example 4.4.1 In order to explain clearly our approach, we focus on the toy example shown

in figure 4.3. It is an IOSTS describing a computational process calling two functions f and

g with some input/output actions and some guards.

q0 q1 q3q2 q4
ch?a a < 10

b 7→ f(a)
b < a+ 1
z 7→ a+ b

z ≥ 5
ch!z

z < 5
t 7→ g(z)

t > 8 + a
ch!t

Figure 4.3: IOSTS

In the following we consider the IOSTS path q0 − q1 − q2 − q3 − q4 − q0. It includes two

function calls (f and g) and its path condition is a1 < 10 ∧ b1 < a1 + 1 ∧ a1 + b1 < 5 ∧ t1 > 8,
where a1, b1 and t1 are free variables generated by the symbolic execution, corresponding

respectively to the value received on ch during the first transition, the value returned by f(a)
and the value returned by g(z) (or in terms of symbolic variables g(a1 + b1)).

Suppose that the user wants to make sure that this particular behavior of the given sys-

tem is feasible. In order to reach the leaf of the considered path, the called functions within

the path must satisfy some constraints that may be deduced from the path condition. These

constraints will be automatically generated in the format of a relational property on different

functions called within the considered path. In our example, the relational property corre-

sponding to the given path is shown in figure 4.5. Let us note that function calls are explicitly

VESSEDIA D3.1 Page 14 of 29

D3.1 - Modular reasoning for system validation and verification

Init : (q0,>, [a → a0, b → b0, z → z0, t → t0])

η1 : (q1,>, [a → a1, · · ·])

η2 : (q2, a1 < 10, [b → b1, · · ·] , {(f, a1, b1)})

η3 : (q3, a1 < 10 ∧ b1 < a1 + 1, [z → a1 + b1, · · ·] , {(f, a1, b1)})

η4 : (q4, a1 < 10 ∧ b1 < a1 + 1 ∧ a1 + b1 < 5,
[t → t1 · · ·] , {(f, a1, b1), (g, a1 + b1, t1)})

η6 : (q0, a1 < 10 ∧ b1 < a1 + 1 ∧ a1 + b1 < 5 ∧ t1 > 8,
[· · ·] , {(f, a1, b1), (g, a1 + b1, t1)})

ch?t1

τ

τ

τ

ch?a1

Figure 4.4: Symbolic path

specified in the \callset construct and \call(f,< args >), denoting the call f(< args >) to
f with arguments < args >. Each call is associated to an identifier (namely idf and idg in
our case). \callresult takes a call − id as parameter and refers to the value returned by the

corresponding call.

/*@relational

\forall

integer a1;
\callset(

\call(f, a1, idf),
\call(g, a1 + \callresult(idf), idg)

)

==>

(a1 < 10 ==>

(\callresult(idf)< a1 + 1 && a1+ \callresult(idf)< 5 ==>
\callresult(idg) > 8 + a1)

);

*/

Figure 4.5: Inferred relational property for path feasibility

4.4.2 The inference module GUI

Our methodology is developed as a FAM in Diversity. The inference FAM has been asso-

ciated with GUI forms in order to enter required user parameters. The user can configure

the input model, the behavior for which they want to automatically generate a corresponding

relational property and the output file that will contain the property.

VESSEDIA D3.1 Page 15 of 29

D3.1 - Modular reasoning for system validation and verification

The following figure shows the inference module within the GUI forms.

Figure 4.6: Inference interface

VESSEDIA D3.1 Page 16 of 29

D3.1 - Modular reasoning for system validation and verification

Chapter 5

Relational Property Prover Plug-in

This chapter describes the RPP plug-in, that takes as input the formulas generated by Di-

versity, together with a C implementation of the UML model, and will try to prove that the im-

plementation is conforming to the properties. We first present the input language of RPP in

detail (section 5.1). The verification task can be decomposed in two steps: First, RPP gener-

ates a wrapper function, in the spirit of self-composition [3], together with a set of annotations

whose proof amounts to proving that the relational property holds for the original functions.

This is explained in section 5.2. At the same time, RPP is generating anACSL axiomatic that

makes it possible to use the relational property as a hypothesis when verifying other ACSL

annotations. While this feature has not been used in the context of T3.1, we briefly describe

it in section 5.3.

Once the annotations are generated, RPP delegates the proof task itself to the deduc-

tive verification plug-in of the platform, WP [4]. As with any deductive verification task, this

might require writing additional ACSL annotations, notably loop invariants. This process is

presented in section 5.4. Finally, for annotations that WP is unable to prove, it is possible

to try generating counter-examples, i.e. sets of inputs for which the property does not hold.

This relies on the StaDy [21, 20] plug-in, that executes the program over test cases gen-

erated by the PathCrawler [9] plug-in and checks whether one of the cases invalidates the

property, as translated into C by the E-ACSL [23, 19] plug-in. While this possibility has not

been used yet on the use case presented in chapter 6, we describe it in section 5.5. From a

VESSEDIA perspective, it is also worth noting that it presents many similarities with the work

done in T3.2 for combining static and dynamic analysis.

5.1 Relational Properties Language

RPP takes advantage of the ACSL extension mechanism proposed in Frama-C. Namely,

a plug-in can register a new keyword (in our case relational) in order to introduce new

clauses in a function contract beyond the ones that are already recognized. For historical

reasons, it is not possible to extend global annotations this way, which means that a rela-

tional property over several functions must be written in the contract of the last function to be

declared (in order for the others to be in scope).

A first kind of relational clause can be written when the functions involved in the property

behave like pure mathematical functions, that do not perform any access (neither writing nor

reading) to the global memory. In other words, they do not perform any global side-effect

and their returned value only depends on the input parameters. In that case, a relational

VESSEDIA D3.1 Page 17 of 29

D3.1 - Modular reasoning for system validation and verification

clause can be basically reduced to a standardACSL predicate, with special terms of the form

\call(f,x_1,...,x_n) to denote the result of a call to f with the corresponding arguments.

As an example, the following clause specifies that f should be increasing.

relational inc:

\forall int x,y; x <= y ==> \call(f,x) <= \call(f,y);

However, as soon as we are considering functions that may read from and/or write to

locations in the global memory, this simple syntax is not sufficient. Indeed, we need to be

able to refer in the relational formula to the values of these locations at the various pre- and

post- states of the functions involved in the property. In order to take that into account, the

additional construction \callset can be used to give a name to each of the calls, and use

these names as a basis to refer to their respective pre- and post- state through the use of the

standard ACSL contruction \at(expr, Lab), which indicates that a given expression is to

be evaluated in the state corresponding to the given label. In addition, \callresult(name)

allows refering to the result return by the call identified by the corresponding name. As an

example, the relational property over functions:

void encrypt(char *msg,unsigned char key, size_t length);

void decrypt(char *msg, unsigned char key, size_t length);

indicating that decrypting an encryptedmessage with the same key should give back the orig-

inal content can be expressed as follows (where same_content is a predicate that compares

the content of two buffers in two separate memory states).

relational

\forall char *msg, *enc;

\forall unsigned char k;

\forall size_t n;

\callset(\call(encrypt,msg,k,n,encryption),

\call(decrypt,enc,k,n,decryption)) ==>

same_content{Post_encryption, Pre_decryption}(msg, enc, 0, n)

==>

same_content{Pre_encryption, Post_decryption}(msg, enc, 0, n);

This is this second form of annotation that is the target of Diversity.

5.2 Annotation Generation for Verification

The idea beyond the generation of plain ACSL annotations for verifying relational properties

is relatively simple. Basically, all that is needed is generating a wrapper function that will sim-

ulate the calls involved in the property and store the intermediate results into local variables,

that can then be referenced to into an ACSL assert. The wrapper takes the universally

quantified variables as parameters at the top of the formula, and if there are conditions over

them, takes that as requires clause. Similarly, pre-conditions of the functions involved in

the properties are lifted to the wrapper.

One key element of this technique, known as self-composition, is that each distinct call

must operate on a separate portion of the global memory from the others in order to ensure

a complete independence of the calls made by the wrapper. This is done by generating

additional local variables, based on the assigns ... \from ... clauses provided in plain

VESSEDIA D3.1 Page 18 of 29

D3.1 - Modular reasoning for system validation and verification

ACSL contracts. It is therefore required that all functions involved in a relational property are

equipped with such clauses, that give the set of locations that may be written to during a call

(the assigns part, which is also required for doing plain deductive verification with WP), and

for each of them the set of locations whose content may be read to compute the new value

(the \from part).

The wrapper corresponding to the encrypt/decrypt example above is then the following:

/*@ requires independence: \separated(msg+(0 .. n), enc+(0 .. n));

requires req_encrypt: \valid(msg+(0 .. n));

requires req_decrypt: \valid(enc+(0 .. n));

*/

void relational_wrapper(

char *msg, char* enc, unsigned char k, size_t n) {

/*@ assert req_encrypt: \valid(msg + (0 .. n)); */

// inlining of the body of encrypt

/*@ assert req_decrypt: \valid(enc + (0 .. n)); */

// inlining of the body of decrypt

/*@ assert relational_property:

same_content{Here, Pre}(msg, enc, 0, n) ==>

same_content{Pre, Here}(msg, enc, 0, n);

*/

}

The independence requirements ensures that encrypt and decrypt will operate on

separate buffers, while the req_encrypt and req_decrypt requirements and assertions

impose the pre-conditions of each functions over the corresponding arguments of the wrap-

per. Finally, the assertion at the end of the wrapper is the property that we want to check,

now reduced to a standard ACSL annotation that can be proved by WP, as will be shown in

section 5.4.

5.3 Axiomatic Generation

One of the originalities of RPP is that it is not meant only to verify relational properties, but it

also generates ACSL annotations that make it possible to use them as hypotheses in other

deductive verification activities, not necessarily related to other relational properties. Again,

the key idea in this direction is quite simple: we generate into an axiomatic a declaration of

an ACSL predicate for each function involved in the property, and an axiom corresponding

to the property. Then, we relate each predicate with the corresponding C function by adding

an additional post-condition indicating the pre- and post-states of the function must verify the

predicate. Again, using predicates is required to deal with non-pure functions.

The axiomatics generated for our running example is the following:

/*@ axiomatic Relational_axiom_1 {

predicate encrypt_acsl{pre, post}(char *msg, key, n)

reads \at(*(msg + (0 .. n)),post), \at(*(msg + (0 .. n)),pre);

VESSEDIA D3.1 Page 19 of 29

D3.1 - Modular reasoning for system validation and verification

predicate decrypt_acsl{pre, post}(int *enc, key, n)

reads \at(*(msg + (0 .. n)),post), \at(*(msg + (0 .. n)),pre);

lemma Relational_lemma

{pre_encryption, post_encryption,

pre_decryption, post_decryption}:

\forall char *msg, *enc;

\forall unsigned char k;

\forall size_t n;

encrypt_acsl{pre_encryption, post_encryption}(msg, k, n) ==>

decrypt_acsl{pre_decryption, post_decryption}(enc, k, n) ==>

same_content{post_encryption, pre_decryption}(msg, enc, 0, n)

==>

same_content{pre_encryption, post_decryption}(msg, enc, 0, n);

}

*/

The reads clauses are directly extracted from the assigns ... \from ... of the func-

tions, and indicates all the memory locations in both of the states that are involved in deciding

the truth value of the predicate. Then, the lemma states that for any four states that can be

related respectively by encrypt_acsl and decrypt_acsl, the relational property hold.

Finally, the post-condition for the encrypt function is the following (the post-condition for

decrypt is nearly identical, except that of course it calls the decrypt_acsl predicate).

ensures encrypt_acsl{Pre,Post}(msg, k, n);

5.4 Using WP to Prove Relational Properties

RPP does not prove anything by itself. Instead, once ACSL annotations have been gener-

ated, it relies on WP to perform a normal deductive verification on the new annotations. As

is always the case with this technique, some additional annotations may be required though.

In particular, all loops appearing in the body of one of the functions involved in the relational

property must be equipped with loop invariants. These invariants are normal ACSL loop

invariants that are meant to abstract the behavior of the loop, regardless of the numbers of

steps that have been done. Similarly, the locations that may be modified during the execu-

tion of the loop must be given in a standard ACSL loop assigns clause. There is currently

no mechanism to write relational property specific clauses for loops, that could for instance

make an invariant dependent on the behavior of other calls involved in the property.

Once WP has run on the wrapper, RPP will lift its results to the initial relational property.

More precisely, it takes advantage of the property status dependency mechanism of Frama-

C [11] to indicate that:

• the relational property holds as soon as the last assert at the end of the corresponding

wrapper function is verified;

• the lemma in the axiomatic also holds whenever the relational property holds

• the post-conditions introduced in the contracts of the functions to make the correspon-

dence with the generated ACSL predicates always hold (more precisely, they depend

VESSEDIA D3.1 Page 20 of 29

D3.1 - Modular reasoning for system validation and verification

on the correction of RPP itself, something which has to be assessed outside of Frama-

C).

5.5 Using StaDy to find Counter-Examples

When WP fails to prove some ACSL annotation, it is not always easy to understand the

causes of the problem. Basically, three main issues can appear:

• the automated provers are not powerful enough for the kind of property that is given to

them;

• some auxiliary annotations (notably loop invariants or loop assigns) are missing;

• there’s a bug in the implementation, the specification, or both.

The terse Valid/Unknown answer provided by WP for each proof obligation that it has

generated is generally not sufficient to decide in which case we are. A possible answer

to this issue is providing the user with a counter-example: a set of inputs that falsifies the

property. The StaDy plug-in [20] is meant to do that. More precisely, it takes advantage of

the test-case generation plug-in PathCrawler [9], that structurally explores all paths of the

function under analysis (up to a certain depth of course), and guides it to generate test cases

that will activate the branch in which the annotation to be verified lies. If one of the generated

test cases falsifies the annotation, it can be shown to the user to help them understand the

situation that leads to the problematic behavior of the program. On the other hand, if no set

of inputs falsifies the annotation, it is not possible to be sure that the annotation holds, unless

PathCrawler can conclude that it has explored all possible paths of interest (e.g. if no loop

is involved in the computation).

In addition to WP, RPP is thus also able to use StaDy as a backend and identify inputs

for which the desired relational property does not hold. This has been experimented [7] on

a small benchmark unrelated to the VESSEDIA use case described in chapter 6 but could

probably be used on it as well if needed. However, counter-examples would be expressed

over the implementation (C code), not on the UML model itself, as there is currently no

mechanism to trace back the results of the code analysis up to the model.

VESSEDIA D3.1 Page 21 of 29

D3.1 - Modular reasoning for system validation and verification

Chapter 6

Example over 6LowPAN use-case

6.1 Quick reminder of 6LowPAN use-case

The 6LowPAN management platform aims at maintaining a good performance and sustain-

ability of the 6LowPAN networks. This includes over-the-air firmware update operations on

the 6LowPAN nodes, where the firmware update may be partial/modular or full. The plat-

form comprises three functional components: the management server, the gateway, and the

managed node.

• Management server: this component runs onAndroid OS. It is in charge of transmitting

firmware updates and reboot requests to the Low power & Lossy Network (LLN) node.

• Gateway (GW): it runs on Embedded Linux OS. It is in charge of interconnecting the

LLN network with a WAN to enable communication exchange between the manage-

ment server and the LLN node.

• LLN node: it is an embedded hardware platform with a microcontroller in addition to

one or more sensors and/or actuators. It runs on Contiki OS. The managed node

runs some specific application layer program (e.g., transmitting environmental/physical

information like temperature or position to the management server). In addition, the

LLN node is in charge of forwarding/routing data packets in the LLN network.

6.2 SD: firmware update scenario modeling

According to its manual [16], the LLN node dynamically loads the new (piece of) firmware

after it completes the reception of firmware update data from the management server. In this

section, we propose an SD that models the firmware update scenario edited with Papyrus.

In the following, we give a brief description of its main steps:

• Receive the first package which contains somemeta-data like the number of packages,

the package size, the crc code of the firmware. or etc.

• Load the address into the flash memory (which contains two partitions).

• Release of the flash memory area that will receive the firmware (modeled with the

”rom_util_page_erase” function call).

VESSEDIA D3.1 Page 22 of 29

D3.1 - Modular reasoning for system validation and verification

• Receive the rest (with the Loop CombinedFragment) of the firmware packages and

write each received package to the flash memory (modeled with the ”rom_util_pro-

gram_flash” function call).

• Integrity check (modeled with the ”crc” function call).

• Reception confirmation sent by the node to the gateway.

In the actual implementation of the use case, these functions include significant parts writ-

ten directly in assembly code (asm directive) and not in C. As part of our experimental setup

in this task, we have proposed equivalent C code to replace these parts. This methodology

is quite standard for handling assembly code within a Frama-C-based verification task and

requires of course a manual validation step for ensuring that the C transposition is indeed

a faithful representation of the original assembly code. In the present case, this has been

confirmed by working closely with the use-case owners.

Independently from the VESSEDIA project, work is done at CEA to use the BINSECbinary

analyzer [6] to automatically generate C code from assembly and validate the equivalence.

While this work is in a too early stage to be deployed on real-world use cases, it will probably

be possible in the future to automate this stage as well.

Figure 6.1: Firmware update SD

VESSEDIA D3.1 Page 23 of 29

D3.1 - Modular reasoning for system validation and verification

6.3 Property inference and proof results

The modeled SD serves as a basis for the relational property generation. In the following we

show the low-level property corresponding to the selected firmware update scenario in the

form of a relational property that permits to check if no involved function would inappropriately

return a success status even though an error (e.g. reception of a bad packet or write failure)

occurred.

Figure 6.2: Relational property inference

Let us note that the property annotates the functions called within the model. It will be

used later for low-level verification with Frama-C in order to check if the functions’ code is

conforming to the paths conditions extracted by Diversity.

The following figure then shows the result of the proof of the firmware update code with

the generated property, using the RPP plugin of Frama-C. The green bullets show that the

corresponding ACSL annotations (as generated by RPP from the initial relational property)

are proven.

VESSEDIA D3.1 Page 24 of 29

D3.1 - Modular reasoning for system validation and verification

Figure 6.3: Proof

VESSEDIA D3.1 Page 25 of 29

D3.1 - Modular reasoning for system validation and verification

Glossary

Abbreviation Translation

ACSL ANSI/ISO C Specification Language

AST Abstract Syntax Tree

EC Execution Context

EVA Evolved Value Analysis

FAM Formal Analysis Module

GUI Graphical User Interface

GW Gateway

IOSTS Input-Output Symbolic Transition System

LLN Low-power and Lossy Network

LTL Linear Temporal Logic

MBT Model-Based Testing

RPP Relational Properties Prover

RTE Run-time Error

SD Sequence Diagram

SDL Specification and Description Language

SE Symbolic Execution

STS Symbolic Transition System

UML Unified Modeling Language

WAN Wide Area Network

WP Weakest Precondition

xLIA eXecutable Language for Interaction and Architecture

VESSEDIA D3.1 Page 26 of 29

D3.1 - Modular reasoning for system validation and verification

Chapter 7

Conclusion

The work presented in this report shows a first step towards a complete toolchain to express

property over a high-level model and have them checked on the concrete implementation at

C level. First experiments have been conducted on the 6LowPAN use case of WP5 and are

quite promising. It is also a good demonstration of the advantages of Frama-C’s modular

design and the use of ACSL as a common base for all plug-ins to exchange information,

as the generation of ACSL annotations by RPP implies that it is then easy to directly re-

use existing analysis methodologies (symbolized by WP and StaDy) for the verification of

relational properties.

During the remainder of this task, we plan to strenghten the link between Diversity and

RPP, notably by checking whether it is possible to deal with several scenarios at once in a

single relational property. Another important aspect will be to target more complex properties,

notably security-related one, expressed within the dedicated UML profile designed in WP1

for Papyrus, and over a larger body of code, directly extracted from the use cases, with as

few stubs and assembly code as possible.

Time permitting, other experiments might be tried, in particular designing and implement-

ing Aoraï and/or CaFE prototypes that could be used as target for Diversity, or, on a longer

run, for Papyrus itself.

Finally, depending on the progress of external developments regarding the assembly/C

correspondance (see section 6.2), it might be possible to replace the manually written C

implementation that is currently used in our experiments by C code automatically generated

from the actual assembly used by 6LowPAN. This is however a secondary objective from

T3.1’s perspective whose primary goal remain the generation of lower level specifications

(RPP, Aoraï or plain ACSL inputs) from higher level model (sequence diagrams), regardless

on the verification tasks that are performed afterwards on the implementation.

VESSEDIA D3.1 Page 27 of 29

D3.1 - Modular reasoning for system validation and verification

Bibliography

[1] RajeevAlur, Kousha Etessami, and PMadhusudan. A temporal logic of nested calls and

returns. In Tools and Algorithms for the Construction and Analysis of Systems, pages

467–481. Springer, 2004.

[2] Boutheina Bannour, Jose Pablo Escobedo, Christophe Gaston, Pascale Le Gall, and

Gabriel Pedroza. Security weaknesses detection by symbolic analysis of scenarios.

In 21st Asia-Pacific Software Engineering Conference, APSEC, pages 367–374. IEEE,

2014.

[3] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-

composition. Mathematical Structures in Computer Science, 21(6):1207–1252, 2011.

[4] Patrick Baudin, François Bobot, Loïc Correnson, and Zaynah Dargaye. WP Plugin

Manual v1.0, 2016.

[5] Patrick Baudin, Pascal Cuoq, Jean C. Filliâtre, Claude Marché, Benjamin Monate, Yan-

nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. http:

//frama-c.com/acsl.html.

[6] BINSEC: Formal Methods for Binary CodeAnalysis. https://binsec.github.io/.

[7] Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall, Virgile Prevosto, and Guillaume

Petiot. Static and Dynamic Verification of Relational Properties on Self-Composed C

Code. In Test and Proofs (TAP), 2018.

[8] Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall, and Virgile Prevosto. RPP: automatic

proof of relational properties by self-composition. In TACAS, volume 10205 of LNCS,

pages 391–397, 2017.

[9] Bernard Botella, Mickaël Delahaye, Stéphane Hong Tuan Ha, Nikolai Kosmatov, Patri-

ciaMouy, Muriel Roger, andNickyWilliams. Automating structural testing of C programs:

Experience with PathCrawler. In AST, 2009.

[10] Imen Boudhiba, Christophe Gaston, Pascale Le Gall, and Virgile Prevosto. Model-

based Testing from Input Output Symbolic Transition Systems Enriched by Program

Calls and Contracts. In Proceedings of ICTSS, 2015.

[11] L. Correnson and J. Signoles. Combining analyses for C program verification. In the

17th International Workshop on Formal Methods for Industrial Critical Systems (FMICS

2012), August 2012.

[12] Steven de Oliveira, Virgile Prevosto, and Saddek Bensalem. CaFE: un model-checker

colaboratif. InApproches Formelles pour le Développement de Logiciels (AFADL), 2018.

VESSEDIA D3.1 Page 28 of 29

http://frama-c.com/acsl.html
http://frama-c.com/acsl.html
https://binsec.github.io/

D3.1 - Modular reasoning for system validation and verification

[13] Julien Deltour, Alain Faivre, Emmanuel Gaudin, and Arnault Lapitre. Model-based test-

ing: An approach with sdl/rtds and diversity. In System Analysis and Modeling: Models

and Reusability, volume 8769 of LNCS, pages 198–206, Cham, 2014.

[14] Eclipse Formal Modeling Project. https://projects.eclipse.org/proposals/

eclipse-formal-modeling-project.

[15] Eclipse Modeling Project. https://www.eclipse.org/modeling/.

[16] Oscar Guillen, Bhargavi Nisarga, Luis Reynoso, and Ralf Brederlow. Crypto-Bootloader

– Secure in-field firmware updates for ultra-low power MCUs. Texas Instrument, 2015.

[17] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris

Yakobowski. Frama-C: A software analysis perspective. Formal Asp. Comput.,

27(3):573–609, 2015. https://frama-c.com.

[18] Arnaud Mathilde, Bannour Boutheina, and LapitreArnault. An illustrative use case of the

diversity platform based on uml interaction scenarios. Electron. Notes Theor. Comput.

Sci., pages 21–34, 2016.

[19] Guillaume Petiot, Bernard Botella, Jacques Julliand, Nikolai Kosmatov, and Julien

Signoles. Instrumentation of annotated C programs for test generation. In Interna-

tional Working Conference on Source Code Analysis and Manipulation, (SCAM), pages

105–114. IEEE, 2014.

[20] Guillaume Petiot, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand. How test

generation helps software specification and deductive verification in Frama-C. In TAP,

2014.

[21] Guillaume Petiot, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand. StaDy: Deep

Integration of Static and Dynamic Analysis in Frama-C. Technical report, 2014. http:

//hal.archives-ouvertes.fr/hal-00992159.

[22] A. Pnueli. The temporal logic of programs. Proc. 18th IEEE Symp. on Foundations of

Computer Science (1977), pages 46–77, 1977.

[23] Julien Signoles. E-ACSL: Executable ANSI/ISO C Specification Language, 2012.

http://frama-c.com/download/e-acsl/e-acsl.pdf.

[24] Nicolas Stouls and Virgile Prevosto. Aoraï Plugin Tutorial. http://frama-c.com/

aorai.html.

VESSEDIA D3.1 Page 29 of 29

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://www.eclipse.org/modeling/
https://frama-c.com
http://hal.archives-ouvertes.fr/hal-00992159
http://hal.archives-ouvertes.fr/hal-00992159
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/aorai.html
http://frama-c.com/aorai.html

	Introduction
	Frama-C toolbox
	Frama-C kernel
	Properties specification
	AoraÃ¯ automata
	CaFE: CaRet Frama-C's Extension
	RPP, Relational Properties Prover

	Diversity
	Introduction: what is DIVERSITY
	Diversity entry language
	Diversity services

	Relational properties inference from high-level model
	Introduction
	Proposed approach Overview
	Papyrus tool for high-level requirements modeling
	 UML SD models
	 SD to xLIA translator

	New Diversity module for automatic relational properties inference
	Properties inference methodology
	The inference module GUI

	Relational Property Prover Plug-in
	Relational Properties Language
	Annotation Generation for Verification
	Axiomatic Generation
	Using WP to Prove Relational Properties
	Using StaDy to find Counter-Examples

	Example over 6LowPAN use-case
	Quick reminder of 6LowPAN use-case
	SD: firmware update scenario modeling
	Property inference and proof results

	Conclusion

