
D5.7
Minimal contract Hoare-style verification versus

abstract interpretation
Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security critical

dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D5.7/ 1.0 |

Work package contributing to the

deliverable:
WP 5

Due date: December 2019 – M36

Actual submission date: 13th January 2020

Responsible organisation: Fraunhofer FOKUS

Editor: Jens Gerlach

Dissemination level: PU

Revision: 1.0

The project VESSEDIA has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:
Report on using deductive verification compared to

abstract interpretation.

Keywords:
Static analysis, deductive verification, minimal

contracts, abstract interpretation

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page I

Editor

Jens Gerlach (FOKUS)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page II

Executive Summary

In this report we summarise the experience of the Vessedia project with respect to two methods to
formally verify the absence of runtime errors in C software. The first method is abstract interpretation
which relies on an over approximation of the values that can occur while running the software. The
second method consists in writing so-called minimal contracts which are formal function contracts
that ideally are just strong enough to deductively verify the absence of runtime error in components.
Our experience with both Vessedia’s Contiki use case and an external case study conducted by
the French cyber security agency ANSSI shows that both approaches are meaningful . Moreover,
practical considerations suggest that both approaches are best used in tandem.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page III

Contents

Chapter 1 Introduction .. 1

1.1 Goal of the Document ... 1

Chapter 2 A simple example of deductive verification ... 2

2.1 Computing the absolute value ... 2

2.2 Why can Frama-C/WP not verify such a simple function? .. 3

2.3 Strengthening the function contract ... 4

2.4 Dealing with side effects ... 5

2.5 A minimal contract ... 7

Chapter 3 Using Frama-C in Contiki and beyond.. 8

3.1 Deductive verification for Contiki ... 8

3.2 Abstract interpretation for Contiki .. 8

3.3 The X509 case study .. 8

Chapter 4 Summary and Conclusion ... 10

Chapter 5 List of Abbreviations .. 11

Chapter 6 Bibliography ... 12

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page IV

List of Figures

Figure 1: An implementation of the absolute value function .. 2

Figure 2: A first attempt to formally specify abs_int ... 2

Figure 3: Some simple test cases for abs_int .. 4

Figure 4: Taking integer overflows into account .. 5

Figure 5: An implementation with side effects ... 5

Figure 6: Calling a logging function from abs_int ... 6

Figure 7: Specifying the absence of side effects ... 7

Figure 8: Minimal contract to ensure the absence of runtime errors in abs_int 7

List of Tables

Table 1: Some test results for abs_int ... 3

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 1 of 12

Chapter 1 Introduction

1.1 Goal of the Document

Nowadays, verification engineers can choose among different static analysis methods for software
quality assurance, ranging from a basic level (e.g. compiler warnings), via heuristic-based tools, to
mathematically rigorous formal methods. The latter can provide a high degree of confidence, but are
often considered as difficult to integrate into the development process.

Some formal static analysis tools, such as Astrée, Polyspace and the EVA plugin of Frama-C
use abstract interpretation to reliably identify potential cases of undefined behaviour in software that
can lead to serious security vulnerabilities and runtime errors. These tools have the advantage to
work on large programs. Their principal disadvantage is that they rely on an over-approximation of
the behaviour of the analysed program. Thus, they can produce a substantial number of false alarms.
This, in turn, decreases the degree of automation as an expert is then required to investigate the
alarms and classify them as true or false alarms.

On the opposite, formal analysis tools relying on deductive verification (e.g. the WP plugin of
Frama-C) can be used to verify complex software properties that go far beyond undefined
behaviours. However, these tools rely on additional annotations written by the user that specify the
expected behaviour of the program. Some annotations also help to guide the proof process. All of
them are expressed using formal specification languages (e.g. ACSL). While this approach sounds
very promising, it is common that complex properties can be successfully tackled only for relatively
small and well-designed modules. Abstract interpretation and deductive verification can thus be seen
as two opposite points of the spectrum of formal methods.

We argue that verifying what we call minimal contracts can be seen as a synthesis of both approaches

combining their respective advantages, viz. local specifications and global analysis.

Our definition of a minimal contract says that it specifies a set of properties of a function that are

necessary to verify the absence of runtime errors in this function and its callees (and sometimes also
in its callers).

Minimal contracts can be provided at a reasonable effort and can be verified by both abstract
interpretation and deductive verification. While the term minimal contracts might be new, the idea is

not really. Thus, it is not surprising that minimal contracts are already in use outside our verification
efforts for Contiki. A recent example is an RTE-free X.509 parser which was specified with ACSL
and for which a combination of the EVA and WP plugins of Frama-C was used to verify the absence
of runtime errors.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 2 of 12

Chapter 2 A simple example of deductive

verification

Frama-C is a platform dedicated to source-code analysis of C software. It has a plug-in
architecture and can thus be easily extended to different kinds of analyses. The WP plugin of
Frama-C allows one to deductively verify that a piece of C code satisfies its specification.
This implies, of course, that the user provides a formal specification of what the implementation is
supposed to do. Frama-C comes with its own specification language ACSL which stands for
ANSI/ISO C Specification Language.

2.1 Computing the absolute value

We will consider the function that computes the absolute value |x| of an integer x. In order to avoid
potential name clashes with the function abs in C standard library we use the name abs_int.

The mathematical definition of absolute value is very simple

|𝑥| = 𝑥, if 0 ≤ 𝑥

|𝑥| = −𝑥, if 𝑥 < 0

A straightforward implementation of abs_int is shown in Figure 1.

Figure 1: An implementation of the absolute value function

In order to demonstrate that this implementation is correct we have to provide a formal specification.
The listing in Figure 2 shows our first attempt for an ACSL specification of abs_int that is based on

the mathematical definition of the function |x|.

Figure 2: A first attempt to formally specify abs_int

The first thing to note is that ACSL specifications–or contracts–are placed in special C comments
which start with /*@. Thus, they do not interfere with the executable code. The ensures clause in

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 3 of 12

the specification expresses postconditions, that is, properties that should be guaranteed after the
execution of abs_int. The ACSL reserved word \result is used to refer to the return value of a C

function. Note that we use the usual C operators == and <= to express equalities and inequalities in

the specification, respectively. There is also an additional operator ==> which expresses logical

implication.

2.2 Why can Frama-C/WP not verify such a simple function?

If we can start Frama-C with the following commands

frama-c -wp -wp-rte abs_int.c

then we obtain output like this

[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no
preprocessing)
[kernel] Parsing abs_int.c (with preprocessing)
[wp] Running WP plugin...
[wp] Collecting axiomatic usage
[rte] annotating function abs_int
[wp] 3 goals scheduled
[wp] [Qed] Goal typed_abs_int_post : Valid
[wp] [Qed] Goal typed_abs_int_post_2 : Valid
[wp] [Alt-Ergo] Goal typed_abs_int_assert_rte_signed_overflow : Unknown (105ms)
[wp] Proved goals: 2 / 3
 Qed: 2
 Alt-Ergo: 0 (unknown: 1)

Although the specification and implementation in the listing above (Figure 2) look perfectly right,
Frama-C/WP cannot verify that the implementation actually satisfies its specification. The reason
becomes clear if we look at some actual return values of abs_int in the following table

x abs_int (x) Remark

0 0 

1 1 

10 10 

2147483647 2147483647 

-1 -1 

-10 -10 

-2147483648 -2147483648 Oops!

Table 1: Some test results for abs_int

Figure 3 shows the test code whose output is listed in the table above.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 4 of 12

Figure 3: Some simple test cases for abs_int

The offending value is in the last line of the table which basically states that abs_int(INT_MIN)

equals the negative value INT_MIN whereas it should equal -INT_MIN. The problem is that the type

int only presents a finite subset of the (mathematical) integers. Many computers use a two’s-

complement representation of integers which covers the range [−231, 231 − 1] on a 32-bit machine.
On such a machine the value -INT_MIN cannot be represented by a value of type int.

In a specification, Frama-C/WP interprets integers as mathematical entities. Consequently, there is
no such thing as an arithmetic overflow when adding or multiplying them in a function contract. In
other words, Frama-C/WP is perfectly right not being able to verify that abs_int satisfies our

contract. Indeed, the implementation does not respect the given specification.

2.3 Strengthening the function contract

It is of course well known that the operation -x can overflow and it is the fact that Frama-C/WP can

detect such overflows that helps to prevent incorrect verification results. The GNU Standard C
Library clearly states that the absolute value of INT_MIN is undefined.1 Under macOS the manual

page of abs mentions under the field of Bugs:

The absolute value of the most negative integer remains negative.

In other words, our formal specification should exclude the value INT_MIN from the set of

admissible value to which abs_int can be applied. In ACSL, we can use the requires clause to

1 See http://www.gnu.org/software/libc/manual/html_node/Absolute-Value.html

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 5 of 12

express preconditions of a function. Figure 4 shows an extended contract of abs_int that takes

the limitations of the type int into account.

Figure 4: Taking integer overflows into account

Frama-C/WP is capable to verify that the implementation of abs_int satisfies the improved

specification.

There is an important lesson that can be learned here:

Sometimes developers provide source code and imagine that a tool like Frama-C/WP can
verify the correctness of their implementation. In order to fulfil its task, however, Frama-C/WP
needs an ACSL specification. Such a specification—which must be based on a reasonably
precise description of the admissible inputs and expected behaviour—has to come from the
requirements of the software and is not magically discovered from the source code by Frama-
C/WP. The code does what it does. In order to verify that the code does what someone
expects, these expectations must be clearly expressed, that is, they must be formally
specified.

Of course, it might not always be the goal to verify the complete functionality of a piece of software.
Sometimes, it is enough to ensure that individual software components cause no run- time errors,
that is, arithmetic overflows or invalid pointer accesses. Frama-C/WP can also be used in this
situation. This is were minimal contracts come into play. Before, however, we discuss the
treatment of side effects.

2.4 Dealing with side effects

The next listing in Figure 5 shows an implementation of abs_int that writes as a side effect the

argument x to a global variable a. A natural question is to ask whether this implementation with a

side effect also satisfies the specification.

Figure 5: An implementation with side effects

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 6 of 12

Before we answer this question we consider various uses for side effects. There are of course
legitimate uses for side effects. The assignment to a memory location outside the scope of the
function might be meaningful because an error condition is reported or because some data are
logged as in the listing in Figure 6.

Figure 6: Calling a logging function from abs_int

If Frama-C/WP attempts to verify this code, then it issues the following warning:

Neither code nor specification for function logging,
generating default assigns from the prototype

Thus, it points out that the called function logging should have a proper specification that clearly
indicates its side effects. There are, on the other hand, also good reasons to minimize or even forbid
side effects:

 Imagine a malicious password checking function that writes the password to a global
variable.

 Another reason is that side effects can make it harder to understand what the real con-
sequences of a function call are. In particular, one must be concerned about unintended
consequences that are caused by side effects. The norm IEC 61508 therefore requests in
the context of software module testing and integration testing:

To show that all software modules, elements and subsystems interact correctly to
perform their intended function and do not perform unintended functions.
[§7.4.7.2,§7.7.2.9 in [1]]

Of course, it is quite difficult to ensure by testing alone that something does not happen and this is
one of the reasons static code analysis is important.

To come back to our question about whether our first example with side effects satisfies the
contract it is important to understand that Frama-C/WP verifies indeed that the implementation
shown there satisfies the specification. If one wishes to forbid that a function changes global
variables one can use an assigns \nothing clause as shown in Figure 7. Frama-C/WP will then

point out that this implementation pre- vents the verification of the assigns clause.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 7 of 12

Figure 7: Specifying the absence of side effects

2.5 A minimal contract

Figure 8 shows an example of what we call a minimal contract for abs_int.

Figure 8: Minimal contract to ensure the absence of runtime errors in abs_int

The contract is just strong enough such that its verification ensures that no undefined behaviour
such as integer overflows or buffer overflows can occurs. It also makes a clear statement about its
potential side effects. A drawback of this smaller contract is that it does not really say something
about the functional behaviour of the code.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 8 of 12

Chapter 3 Using Frama-C in Contiki and beyond

Various forms of static and dynamic analyses have been conducted to verify parts of the Contiki
operating system. The results of these analyses are described in [2]. With respect to sound static
analyses both the deductive verification plug-in Frama-C/WP and the abstract interpretation plug-in
Frama-C/EVA have been used.

3.1 Deductive verification for Contiki

Frama-C/WP was primarily applied to verify minimal contracts of Contiki components both by INRIA
and Fraunhofer FOKUS in order to ensure that no runtime errors can occur. Among others the
following functions from the Contiki OS support library were verified

 os/lib/crc16.c

 os/lib/ifft.c

 os/lib/ringbuf.c

 os/lib/ringbufindex.c

Another important example for the application of minimal contracts is the verification of Contiki’s
AES-CCM block cipher mode of operation.

However, proper functional properties have also been investigated, in particular for the list_t

module of Contiki operations for adding and removing elements have been verified which is a
considerable achievement.

3.2 Abstract interpretation for Contiki

Interestingly, Frama-C’s EVA plug-in has was also applied to the above-mentioned AES-CCM
module. This allowed to compare both minimal contracts and abstract interpretation on the same
piece of software. The verifiers observed that “while the minimal contracts where indeed (relatively)
easy to write for this module, the EVA analysis remained more efficient here” (see 4.3.3 of [3]).

In contrast, a couple of difficulties occurred when applying the Frama-C/EVA plug-in on the whole
Contiki operating system. In principle, an abstract interpretation tool such as the EVA plugin is well-
suited to analyse a large code base. One issue that was clear from the beginning is the fact that due
to the high degree of configurability it is not meaningful to speak of analysing the whole Contiki OS.
Rather, one can only specific instances, that is particular configurations of Contiki for particular
hardware platforms. This also includes several applications (defined as processes) on top of it. All
these components are linked together to one specific Contiki executable during compilation.
Section 4.4 of Deliverable D5.2 describes in more detail the problems that arose during various
analysis attempts. In particular, it became clear that some complex core modules such as list_t

and the MEMB allocation module prevented achieving tangible results with Frama-C/EVA. Another

reason is the recursive nature of the Contiki scheduler. Handling of recursion is currently not well
supported in the EVA plug-in.

3.3 The X509 case study

It is interesting to have look at the efforts to implement a parser of X.509 certificates that is
guaranteed to be free of runtime errors (RTE). This was conducted by researchers at ANSSI, the
National Cybersecurity Agency of France.
The stated goal was achieved by

 starting with a clean state and not relying on existing implementations

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 9 of 12

 using a combination of the Frama-C/EVA and Frama-C/WP plug-ins

 employing best coding practices for the planned static analysis

 relying on a large representative test suite

The primary plug-in used in this case study was Frama-C/EVA. More advanced properties were
specified with ACSL and with Frama-C/WP. Basically, the developers wrote what they call basic
function contracts that dealt with buffer-related information such as validity and length. In other
words, these contracts are what we call minimal contracts.

Of the overall 9000 lines, 5000 were C code while 1200 lines were (ACSL) annotations. We agree
with the authors that this this seems like a reasonable investment for guaranteeing the complete
absence of runtime errors. While Frama-C was their verification platform of choice, they point out
that development rules are not tailored specifically to Frama-C.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 10 of 12

Chapter 4 Summary and Conclusion

Both abstract interpretation and deductive verification have been essential in verifying security
properties of Contiki. We have applied deductive verification with minimal contracts in a proper sense
that is writing small contracts that capture only basic properties directly related to possible runtime
errors. This approach, however, did not extend to the verification of the list_t data type. Due to

the inherent complexity of these data structure minimal contracts turned out to be fully functional
contracts. Nevertheless, we were able to verify these contracts, too.

The apparent advantage that abstract interpretation tools such as Frama-C/EVA can be applied for
fairly large programs has been, in fact, a challenge because of complexities of the Contiki’s
configuration space and some very difficult to handle code artefacts of Contiki.

A possibly even more important insight comes from comparing our experience with applying Frama-
C with the X.509 case study conducted by ANSSI. The rigorous bottom-up approach of the ANSSI
team enabled an effective combination of abstract interpretation and deductively verified minimal
contracts that culminated in an X.509 parser that is verified to be free of runtime errors. With Contiki
such an approach would be possible too (at least for some well-defined core). However, it would
require a very different development process where the needs of security and verification are put
centre stage.

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 11 of 12

Chapter 5 List of Abbreviations

Abbreviation Translation

RTE Runtime Errors

WP Work Package

D5.7 Minimal contract Hoare-style verification versus abstract interpretation

VESSEDIA D5.7 Page 12 of 12

Chapter 6 Bibliography

[1] IEC 61508-2010, International Electrotechnical Commission, „Functional safety of
electrical/electronic/programmable electronic safety-related systems“.

[2] Jochen Burghardt, Robert Clausecker, Jens Gerlach, Annotating IoT-Software With
Minimal Contracts, Preliminary Results, Internal report of the VESSEDIA project,
Fraunhofer FOKUS, 2017

[3] Allan Blanchard, Inria’s use case final report, Deliverable D5.2, VESSEDIA, 2019

[4] Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila. Journey to a RTE-free X.509 parser,
Symposium sur la Sécurité des Technologies de l’Information et des Communications
(SSTIC), 2019

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Goal of the Document

	Chapter 2 A simple example of deductive verification
	2.1 Computing the absolute value
	2.2 Why can Frama-C/WP not verify such a simple function?
	2.3 Strengthening the function contract
	2.4 Dealing with side effects
	2.5 A minimal contract

	Chapter 3 Using Frama-C in Contiki and beyond
	3.1 Deductive verification for Contiki
	3.2 Abstract interpretation for Contiki
	3.3 The X509 case study

	Chapter 4 Summary and Conclusion
	Chapter 5 List of Abbreviations
	Chapter 6 Bibliography

