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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability. 
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Executive Summary 

In this report we summarise the experience of the Vessedia project with respect to two methods to 
formally verify the absence of runtime errors in C software. The first method is abstract interpretation 
which relies on an over approximation of the  values that can occur while running the software. The 
second method consists in writing so-called minimal contracts which are formal function contracts 
that ideally are just strong enough to deductively verify the absence of runtime error in  components.  
Our experience  with both Vessedia’s  Contiki use case  and  an external  case study conducted by  
the French cyber security agency ANSSI shows that  both approaches  are meaningful . Moreover, 
practical considerations suggest that  both approaches are best used in tandem.
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Chapter 1 Introduction 

1.1 Goal of the Document 

Nowadays, verification engineers can choose among different static analysis methods for software 
quality assurance, ranging from a basic level (e.g. compiler warnings), via heuristic-based tools, to 
mathematically rigorous formal methods. The latter can provide a high degree of confidence, but are 
often considered as difficult to integrate into the development process. 

Some formal static analysis tools, such as Astrée, Polyspace and the EVA plugin of Frama-C 
use abstract interpretation to reliably identify potential cases of undefined behaviour in software that 
can lead to serious security vulnerabilities and runtime errors. These tools have the advantage to 
work on large programs. Their principal disadvantage is that they rely on an over-approximation of 
the behaviour of the analysed program. Thus, they can produce a substantial number of false alarms. 
This, in turn, decreases the degree of automation as an expert is then required to investigate the 
alarms and classify them as true or false alarms. 

On the opposite, formal analysis tools relying on deductive verification (e.g. the WP plugin of 
Frama-C) can be used to verify complex software properties that go far beyond undefined 
behaviours. However, these tools rely on additional annotations written by the user that specify the 
expected behaviour of the program. Some annotations also help to guide the proof process. All of 
them are expressed using formal specification languages (e.g. ACSL). While this approach sounds 
very promising, it is common that complex properties can be successfully tackled only for relatively 
small and well-designed modules. Abstract interpretation and deductive verification can thus be seen 
as two opposite points of the spectrum of formal methods. 

We argue that verifying what we call minimal contracts can be seen as a synthesis of both approaches 

combining their respective advantages, viz. local specifications and global analysis. 

Our definition of a minimal contract says that it specifies a set of properties of a function that are 

necessary to verify the absence of runtime errors in this function and its callees (and sometimes also 
in its callers). 

Minimal contracts can be provided at a reasonable effort and can be verified by both abstract 
interpretation and deductive verification. While the term minimal contracts might be new, the idea is 

not really. Thus, it is not surprising that minimal contracts are already in use outside our verification 
efforts for Contiki. A recent example is an RTE-free X.509 parser which was specified with ACSL 
and for which a combination of the EVA and WP plugins of Frama-C was used to verify the absence 
of runtime errors. 
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Chapter 2 A simple example of deductive 

verification  

Frama-C is a platform dedicated to source-code analysis of C software. It has a plug-in 
architecture and can thus be easily extended to different kinds of analyses. The WP plugin of 
Frama-C allows one to deductively verify that a piece of C code satisfies its specification. 
This implies, of course, that the user provides a formal specification of what the implementation is 
supposed to do. Frama-C comes with its own specification language ACSL which stands for 
ANSI/ISO C Specification Language. 

 

2.1 Computing the absolute value 

We will consider the function that computes the absolute value |x| of an integer x. In order to avoid 
potential name clashes with the function abs in C standard library we use the name abs_int. 

The mathematical definition of absolute value is very simple 

 

|𝑥| =    𝑥,  if  0 ≤ 𝑥 
 
|𝑥| = −𝑥,  if  𝑥 < 0 

 

A straightforward implementation of abs_int is shown in Figure 1. 

 

 

Figure 1: An implementation of the absolute value function  

 

 

In order to demonstrate that this implementation is correct we have to provide a formal specification. 
The  listing in Figure 2 shows our first attempt for an ACSL specification of abs_int that is based on 

the mathematical definition of the function |x|. 

 

Figure 2: A first attempt to formally specify abs_int  

 

The first thing to note is that ACSL specifications–or contracts–are placed in special C comments 
which start with /*@. Thus, they do not interfere with the executable code. The ensures clause in 
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the specification expresses postconditions, that is, properties that should be guaranteed after the 
execution of abs_int. The ACSL reserved word \result is used to refer to the return value of a C 

function. Note that we use the usual C operators == and <= to express equalities and inequalities in 

the specification, respectively. There is also an additional operator ==> which expresses logical 

implication. 

 

2.2 Why can Frama-C/WP not verify such a simple function?  

If we can start Frama-C with the following commands    
 

frama-c -wp -wp-rte abs_int.c 
 
then we obtain output like this 
 
[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no 
preprocessing) 
[kernel] Parsing abs_int.c (with preprocessing) 
[wp] Running WP plugin... 
[wp] Collecting axiomatic usage 
[rte] annotating function abs_int 
[wp] 3 goals scheduled 
[wp] [Qed] Goal typed_abs_int_post : Valid 
[wp] [Qed] Goal typed_abs_int_post_2 : Valid 
[wp] [Alt-Ergo] Goal typed_abs_int_assert_rte_signed_overflow : Unknown (105ms) 
[wp] Proved goals:    2 / 3 
     Qed:             2  
     Alt-Ergo:        0  (unknown: 1) 
 

Although the specification and implementation in the listing above (Figure 2) look perfectly right, 
Frama-C/WP cannot verify that the implementation actually satisfies its specification. The reason 
becomes clear if we look at some actual return values of abs_int in the following table  

x abs_int (x) Remark 

0 0  

1 1  

10 10  

2147483647 2147483647  

-1 -1  

-10 -10  

-2147483648 -2147483648 Oops! 

Table 1: Some test results for abs_int  

 

Figure 3 shows the test code whose output is listed in the table above.  
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Figure 3: Some simple test cases for abs_int 

 

The offending value is in the last line of the table which basically states that abs_int(INT_MIN) 

equals the negative value INT_MIN whereas it should equal -INT_MIN. The problem is that the type 

int only presents a finite subset of the (mathematical) integers. Many computers use a two’s-

complement representation of integers which covers the range [−231, 231 − 1] on a 32-bit machine. 
On such a machine the value -INT_MIN cannot be  represented by a value of type int. 

In a specification, Frama-C/WP interprets integers as mathematical entities. Consequently, there is 
no such thing as an arithmetic overflow when adding or multiplying them in a function contract. In 
other words, Frama-C/WP is perfectly right not being able to verify that abs_int satisfies our 

contract. Indeed, the implementation does not respect the given specification.  

 

2.3 Strengthening the function contract 

It is of course well known that the operation -x can overflow and it is the fact that Frama-C/WP can 

detect such overflows that helps to prevent incorrect verification results. The GNU Standard C 
Library clearly states that the absolute value of  INT_MIN is undefined.1 Under macOS the manual 

page of abs mentions under the field of Bugs: 

The absolute value of the most negative integer remains negative. 

In other words, our formal specification should exclude the value INT_MIN from the set of 

admissible value to which abs_int can be applied. In ACSL, we can use the requires clause to 

                                                

1 See http://www.gnu.org/software/libc/manual/html_node/Absolute-Value.html 
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express preconditions of a function. Figure 4 shows an extended contract of abs_int that takes 

the limitations of the type int into account.  

 

Figure 4: Taking integer overflows into account  

 

Frama-C/WP is capable to verify that the implementation of abs_int satisfies the improved 

specification.  

There is an important lesson that can be learned here:  

Sometimes developers provide source code and imagine that a tool like Frama-C/WP can 
verify the correctness of their implementation. In order to fulfil its task, however, Frama-C/WP 
needs an ACSL specification. Such a specification—which must be based on a reasonably 
precise description of the admissible inputs and expected behaviour—has to come from the 
requirements of the software and is not magically discovered from the source code by Frama-
C/WP. The code does what it does. In order to verify that the code does what someone 
expects, these expectations must be clearly expressed, that is, they must be formally 
specified.  

Of course, it might not always be the goal to verify the complete functionality of a piece of software. 
Sometimes, it is enough to ensure that individual software components cause no run- time errors, 
that is, arithmetic overflows or invalid pointer accesses. Frama-C/WP can also be used in this 
situation. This is were minimal contracts come into play. Before, however, we discuss the 
treatment of side effects. 

 

2.4 Dealing with side effects 

The next listing in Figure 5 shows an implementation of abs_int that writes as a side effect the 

argument x to a global variable a. A natural question is to ask whether this implementation with a 

side effect also satisfies the specification. 
 

 

Figure 5: An implementation with side effects  
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Before we answer this question we consider various uses for side effects. There are of course 
legitimate uses for side effects. The assignment to a memory location outside the scope of the 
function might be meaningful because an error condition is reported or because some data are 
logged as in the listing in Figure 6. 

 

 

Figure 6: Calling a logging function from abs_int 

 

If Frama-C/WP attempts to verify this code, then it issues the following warning:  

 

Neither code nor specification for function logging, 
generating default assigns from the prototype 

 

Thus, it points out that the called function logging should have a proper specification that clearly 
indicates its side effects. There are, on the other hand, also good reasons to minimize or even forbid 
side effects:  

 Imagine a malicious password checking function that writes the password to a global 
variable. 

 Another reason is that side effects can make it harder to understand what the real con- 
sequences of a function call are. In particular, one must be concerned about unintended 
consequences that are caused by side effects. The norm IEC 61508 therefore requests in 
the context of software module testing and integration testing:  

To show that all software modules, elements and subsystems interact correctly to 
perform their intended function and do not perform unintended functions. 
[§7.4.7.2,§7.7.2.9 in [1]] 

Of course, it is quite difficult to ensure by testing alone that something does not happen and this is 
one of the reasons static code analysis is important. 

To come back to our question about whether our first example with side effects satisfies the 
contract it is important to understand that Frama-C/WP verifies indeed that the implementation 
shown there satisfies the specification. If one wishes to forbid that a function changes global 
variables one can use an assigns \nothing clause as shown in Figure 7. Frama-C/WP will then 

point out that this implementation pre- vents the verification of the assigns clause.  
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Figure 7: Specifying the absence of side effects  

 

 

2.5 A minimal contract 

Figure 8 shows an example of what we call a minimal contract for abs_int. 

 

 

Figure 8: Minimal contract to ensure the absence of runtime errors in abs_int  

 

The contract is just strong enough such that its verification ensures that no undefined behaviour 
such as integer overflows or buffer overflows can occurs. It also makes a clear statement about its 
potential side effects. A drawback of this smaller contract is that it does not really say something 
about the functional behaviour of the code. 
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Chapter 3 Using Frama-C in Contiki and beyond 

Various forms of static and dynamic analyses have been conducted to verify parts of the Contiki 
operating system. The results of these analyses are described in [2]. With respect to sound static 
analyses both the deductive verification plug-in Frama-C/WP and the abstract interpretation plug-in 
Frama-C/EVA have been used. 

 

3.1 Deductive verification for Contiki 

Frama-C/WP was primarily applied to verify minimal contracts of Contiki components both by INRIA 
and Fraunhofer FOKUS in order to ensure that no runtime errors can occur. Among others the 
following functions from the Contiki OS support library were verified 

 os/lib/crc16.c 

 os/lib/ifft.c 

 os/lib/ringbuf.c 

 os/lib/ringbufindex.c 

Another important example for the application of minimal contracts is the verification of Contiki’s 
AES-CCM block cipher mode of operation. 

However, proper functional properties have also been investigated, in particular for the list_t 

module of Contiki operations for adding and removing elements have been verified which is a 
considerable achievement. 

 

3.2 Abstract interpretation for Contiki 

Interestingly, Frama-C’s EVA plug-in has was also applied to the above-mentioned AES-CCM 
module. This allowed to compare both minimal contracts and abstract interpretation on the same 
piece of software. The verifiers observed that “while the minimal contracts where indeed (relatively) 
easy to write for this module, the EVA analysis remained more efficient here” (see 4.3.3 of [3]). 

In contrast, a couple of difficulties occurred when applying the Frama-C/EVA plug-in on the whole 
Contiki operating system. In principle, an abstract interpretation tool such as the EVA plugin is well-
suited to analyse a large code base. One issue that was clear from the beginning is the fact that due 
to the high degree of configurability it is not meaningful to speak of analysing the whole Contiki OS. 
Rather, one can only specific instances, that is particular configurations of Contiki for particular 
hardware platforms. This also includes several applications (defined as processes) on top of it. All 
these components are linked together to one specific Contiki executable during compilation. 
Section 4.4 of Deliverable D5.2 describes in more detail the problems that arose during various 
analysis attempts. In particular, it became clear that some complex core modules such as list_t 

and the MEMB allocation module prevented achieving tangible results with Frama-C/EVA. Another 

reason is the recursive nature of the Contiki scheduler. Handling of recursion is currently not well 
supported in the EVA plug-in. 

 

3.3 The X509 case study 

It is interesting to have look at the efforts to implement a parser of X.509 certificates that is 
guaranteed to be free of runtime errors (RTE). This was conducted by researchers at ANSSI, the 
National Cybersecurity Agency of France.  
The stated goal was achieved by  

 starting with a clean state and not relying on existing implementations 
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 using a combination of the Frama-C/EVA and Frama-C/WP plug-ins 

 employing best coding practices for the planned static analysis 

 relying on a large representative test suite  

The primary plug-in used in this case study was Frama-C/EVA. More advanced properties were 
specified with ACSL and with  Frama-C/WP. Basically, the developers wrote what they call basic 
function contracts that dealt with buffer-related information such as validity and length. In other 
words, these contracts are what we call minimal contracts.  

Of the overall 9000 lines, 5000 were C code while 1200 lines were (ACSL) annotations. We agree 
with the authors that this this seems like a reasonable investment for guaranteeing the complete 
absence of runtime errors. While Frama-C was their verification platform of choice, they point out 
that development rules are not tailored specifically to Frama-C.
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Chapter 4 Summary and Conclusion 

Both abstract interpretation and deductive verification have been essential in verifying security 
properties of Contiki. We have applied deductive verification with minimal contracts in a proper sense 
that is writing small contracts that capture only basic properties directly related to possible runtime 
errors. This approach, however, did not extend to the verification of the list_t data type. Due to 

the inherent complexity of these data structure minimal contracts turned out to be fully functional 
contracts. Nevertheless, we were able to verify these contracts, too. 

The apparent advantage that abstract interpretation tools such as Frama-C/EVA can be applied for 
fairly large programs has been, in fact, a challenge because of complexities of the Contiki’s 
configuration space and some very difficult to handle code artefacts of Contiki. 

A possibly even more important insight comes from comparing our experience with applying Frama-
C with the X.509 case study conducted by ANSSI. The rigorous bottom-up approach of the ANSSI 
team enabled an effective combination of abstract interpretation and deductively verified minimal 
contracts that culminated in an X.509 parser that is verified to be free of runtime errors. With Contiki 
such an approach would be possible too (at least for some well-defined core). However, it would 
require a very different development process where the needs of security and verification are put 
centre stage. 



D5.7 Minimal contract Hoare-style verification versus abstract interpretation 

VESSEDIA D5.7 Page 11 of 12 

Chapter 5 List of Abbreviations  

Abbreviation Translation 

RTE Runtime Errors 

WP Work Package 
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