

D5.4
CEA’s use case final report

Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security

critical dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D5.4/ 1.0

Work package contributing to the

deliverable:
WP 5

Due date: December 2019 – M36

Actual submission date: 20th December 2019

Responsible organisation: CEA

Editor: Mounir KELLIL

Dissemination level: PU

Revision: 1.0

The project VESSEDIA has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:

The objective of this document is to discuss the work

progress of the analysis of source code associated to

a number of critical functionalities of the CEA use

case. This document also highlights the lessons learnt

from the use of different software verification tools

(Frama-C WP, Frama-C EVA, and VeriFast).

Keywords: Firmware update, 6LoWPAN, data communication

D5.4 – CEA’s use case final report

VESSEDIA D5.4 Page I

Editor

Mounir KELLIL (CEA)

Contributors (ordered according to beneficiary numbers)

Pierre, ROUX (CEA)

Allan BLANCHARD (CEA)

Bart JACOBS (KUL)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D5.4 – CEA’s use case final report

VESSEDIA D5.4 Page II

Executive Summary

The 6LoWPAN management platform ensures over-the-air software update of low power devices in
a 6LoWPAN network.

This deliverable discusses the work progress about the use of a number of software verification tools
to analyse different fragments of the source code of the 6LoWPAN management platform. This
document also presents a number of remarks regarding the lessons learnt from the analysis work.

In particular, the document exposes the usage experience of Frama-C, its WP plugin, and EVA
plugin for C code analysis and VeriFast plugin for Java code analysis.

WP plugin has been used for a particular part of the C code: MPL routing code, to verify a number
of code-specific properties, whereas EVA plugin has been used to identify potential runtime errors
over the whole C code of the 6LoWPAN management platform.

The training phase on the software verification tools has taken an important part of the work effort in
the analysis process of the 6LoWPAN management platform.

In addition, the work on the ACSL/WP annotations for the MPL code has followed several rounds in
order to improve the accuracy of the annotations and get effective analysis results. Based on the
annotations, 50 goals have been proved as valid from 152 goals. 102 goals reached a timeout. No
goal has been proved to be not valid.

Also, EVA analysis tool was very useful for detecting potential runtime errors, some of which have
been confirmed and corrected after further verification, others have been considered as not effective,
whereas others are under review.

Besides, Java source code verification with VeriFast allowed to identify risks that practical tests have
not identified. The analysis result raised a race condition issue that has been corrected.

D5.4 – CEA’s use case final report

VESSEDIA D5.4 Page III

Contents

Chapter 1 Introduction .. 1

1.1 Goal of the Document ... 1

1.2 Structure of the Document .. 1

1.3 Related deliverables .. 1

Chapter 2 Target of Evaluation ... 2

2.1 Description .. 2

2.1.1 Choice of the C code to be analysed ... 3

2.1.2 Choice of the Java code to be analysed .. 4

2.2 Security objectives .. 4

2.2.1 Choice of the verification tools for the C code .. 5

2.2.2 Choice of the verification tool for the Java code ... 5

Chapter 3 Use case realization ... 7

3.1 Analysis of the C source part – Firmware image transmission code 7

3.1.1 Preparation .. 7

3.1.2 Verification process ... 13

3.1.3 Results .. 13

3.2 Analysis of the C source part – Firmware Management on the 6LoWPAN node 19

3.2.1 Preparation .. 19

3.2.2 Verification process ... 20

3.2.3 Results .. 21

3.3 Analysis of the Java source part – 6LoWPAN management server 21

3.3.1 Preparation .. 21

3.3.2 Verification process ... 23

3.3.3 Results .. 24

Chapter 4 Lessons Learnt ... 26

4.1 Training phase .. 26

4.2 ACSL/WP for Code analysis ... 26

4.3 EVA for Code analysis .. 26

4.4 VeriFast for Java code analysis .. 26

Chapter 5 Summary and Conclusion ... 27

Chapter 6 List of Abbreviations .. 28

Chapter 7 Bibliography ... 29

D5.4 – CEA’s use case final report

VESSEDIA D5.4 Page IV

List of Figures

Figure 1: 6LoWPAN Platform Overview .. 2

Figure 2: 6LoWPAN Platform – key functionalities per functional component 3

Figure 3: Activity templates of the network manager’s java source code .. 4

Figure 4: Fragment of the WP script for MPL code analysis .. 8

Figure 5: MPL’s window_allocate() function with ACSL annotations .. 9

Figure 6: MPL’s buffer_reclaim () function with ACSL annotations .. 11

Figure 7: MPL’s window_update_bounds() () function with ACSL annotations 12

Figure 8: Fragment of the EVA script for MPL code analysis (example with double_interval() function
 .. 13

Figure 9: Fragment of EVA script for firmware management code analysis (case of FlashGet()
function) .. 20

Figure 10: verification of the Alarm.java source file with the graphical version of VeriFast 24

Figure 11 second run of Alarm.java verification, after modification of the source 25

List of Tables

Table 1: Critical functionalities and associated critical assets from D1.2 ... 3

Table 2: Annotated segments for firmware data transmission in the 6LoWPAN mesh network 7

Table 3: lists of alarms for MPL code based on EVA analysis ... 14

Table 4: list of firmware management code functions verified with EVA plugin 20

Table 5: list of alarms for the firmware management code based on EVA analysis 21

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 1 of 29

Chapter 1 Introduction

1.1 Goal of the Document

This document aims at elaborating on the work progress relating to CEA use case’s analysis results,
since the release of the intermediate report (D5.3). This document also discusses a number of
lessons learnt from the use of different verification tool for the 6LoWPAN management platform.

1.2 Structure of the Document

This document is organized as follows. Section 2 discusses the evaluation target and explains the
choice of the evaluation tools. Section 3 elaborates on the different steps of the verification
procedures that were applied to the different parts of the evaluation target. Section 4 details the
lessons learnt from the experience with the different verification tools applied to the 6LoWPAN
management platform. Finally, section 5 concludes this document.

1.3 Related deliverables

This deliverable complements D5.3 (CEA use case intermediate report in two ways. First, this
deliverable presents the work progress from the D5.3 by exposing the different analysis activities of
the MPL routing code, the firmware management code as well as the gateway. Second, the present
deliverable summarizes the analysis activities done during the VESSEDIA project and highlights the
experience and lessons learnt from the use of Frama-C (especially WP and EVA) and VeriFast
verification tools.

This deliverable is closely related to the D1.2, which describes the requirements of the different use
cases of WP5 and points out the assets to protect in each use case.

This deliverable is also closely related to D3.1, which discusses the automation of the inference of
properties on safety-critical scenarios, including the firmware update scenario.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 2 of 29

Chapter 2 Target of Evaluation

2.1 Description

The 6LoWPAN platform aims at providing firmware updates for 6LoWPAN mesh networks. It
comprises three functional components: 1) LLN Network Manager, 2) LLN node, and 3) LLN gateway
(cf. Figure 1).

 Management server: this component runs on Android OS. It is in charge of transmitting
firmware updates and reboot requests to the Low power & Lossy Network (LLN) node.

 Gateway (GW): it runs on Embedded Linux OS. It is in charge of interconnecting the LLN
network with a WAN to enable communication exchange between the management server
and the LLN node.

 LLN node: it is an embedded hardware platform with a microcontroller in addition to one or
more sensors and/or actuators. It runs on Contiki OS. The managed node runs some specific
application layer program (e.g., transmitting environmental/physical information like
temperature, position, etc.) to the management server. In addition, the LLN node is in charge
of forwarding/routing data packets in the LLN network. Also, the LLN node dynamically loads
the new (piece of) firmware after it completes the reception of firmware update data from the
management server.

Figure 1: 6LoWPAN Platform Overview

The gateway and LLN node functional components of the 6LoWPAN management platform have
been implemented using C in a Contiki OS environment (although the gateway runs on a
Linux/embedded Linux environment). The network manager has been implemented with
Java/Android. Figure 2 illustrates this and highlights the main functionalities per functional
component.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 3 of 29

Figure 2: 6LoWPAN Platform – key functionalities per functional component

2.1.1 Choice of the C code to be analysed

Different critical assets related to the 6LoWPAN management platform have been identified in D1.2.
The C source part represents a subset of the critical assets identified for the 6LoWPAN management
platform. This subset can be summarized in two critical functionalities:

 Operations on the Flash memory of the LLN node: it includes the set of operations related to
Flash memory initialization before the LLN node starts writing the first data of the new firmware
on the Flash memory, as well as read/write operations of firmware data on a pre-allocated Flash
memory area. These operations are particularly critical because any Flash memory read/write
failure will impact the LLN node (e.g., node failure, permanent reboot, etc.) and, consequently,
impact its neighbouring nodes as well.

 Firmware data transmission in the 6LoWPAN mesh network: it includes the operations related to
the transmission of the firmware data hop-by-hop, starting from the gateway until the last-hop
nodes. The transmission mechanism is based on MPL protocol [2], which operates, in a
distributed fashion, following three parallel phases: broadcast packets to next-hop neighbours,
announce missing packets, and re-broadcast announced missing packets. This three-phased
protocol should run safely by ensuring that the full firmware has been delivered to all the network
nodes with a minimum communication overhead.

Table 1: Critical functionalities and associated critical assets from D1.2

Critical function Critical asset (D2.1)

F
irm

w
a

re
 im

a
g
e

tra

n
s
m

is
s
io

n

F
la

s
h
 m

e
m

o
ry

p

a
rtitio

n

in
itia

liz
a

tio
n

N
o

tific
a
tio

n
 o

f e
n
d

o
f firm

w
a
re

tra
n
s
m

is
s
io

n

L
o
a

d
in

g
 o

f th
e

n
e
w

 firm
w

a
re

R
e

b
o

o
t c

o
m

m
a

n
d

Operations on the Flash memory of
the LLN node.

 X X X X

Firmware data transmission in the
6LoWPAN mesh network.

X X X

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 4 of 29

2.1.2 Choice of the Java code to be analysed

The Java source of the network manager comprises various parts (or Activity templates) illustrated
in the following figure.

To perform code analysis on the network manager’s Java source code, all the Activity templates will
be analysed with the focus on detecting race conditions (e.g., unsynchronized accesses to shared
variable in a multi-threading scenario).

Figure 3: Activity templates of the network manager’s java source code

2.2 Security objectives

The management of low power networks like 6LoWPAN networks is particularly important for
network operators and network service providers because it aims at ensuring a good network
performance, while maximizing network lifetime by correcting software bugs, enforcing security
services, and so forth. However, LLN networks are usually deployed in hard-to-reach environments
(e.g., inside pipelines, and hazardous zones) or could be massively deployed over large areas like
industrial plants, smart cities, etc. This makes manual maintenance particularly difficult. In such
cases, remotely managing nodes is an obvious alternative to the management of nodes via physical
access. The CEA use case is represented by a remote management platform for 6LoWPAN mesh
networks (6LoWPAN management platform). The platform integrates over-the-air firmware update
operations on the 6LoWPAN nodes, where the firmware update may be partial/modular or full.

The set of firmware update functions modify the behaviour of the 6LoWPAN network and associated
services and applications from one setting to another, without interrupting the current setting. This
critical procedure should be well protected against various security threats (cf. D1.2 for further details
on this objective) and safe by avoiding service interruption or abnormal behaviour of the 6LoWPAN
network (e.g., unexpected node reboot, connection interruption, buffer overflow, etc.). Code analysis
of the 6LoWPAN platform enables the verification of the correct behaviour of the said platform
and identifies potential runtime errors during the firmware update phase.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 5 of 29

2.2.1 Choice of the verification tools for the C code

To perform static analyse of the C source code associated to the LLN node and gateway functional
components of the 6LoWPAN platform, the Frama-C WP [3][4][5] and Frama-C EVA [6] plugins have
been used. Frama-C WP enables to verify the correct behaviour of the program whereas Frama-C
EVA enables to detect potential runtime errors in the program.

2.2.1.1 Use of WP plugin

The WP plugin [3] is based on the Weakest Precondition calculus, which is a technique used to
prove program properties, expressed through ACSL annotations of C functions, based on the
{P}S{Q} Hoare triple (P: precondition, Q: post condition associated to a code fragment S).

From the aforementioned list of assets, it was decided to use WP plugin to verify the properties of
the firmware image transmission asset, because this particular asset includes many critical C
functions that aim at ensuring the reliable delivery of the firmware data from the management server
to the 6LoWPAN nodes. A “reliable delivery” means that, when a 6LoWPAN node receives a
firmware packet, it not only passes this packet to the application layer, but it also both stores a copy
of this packet, broadcasts another copy to the neighbouring nodes, and re-broadcasts any stored
copy of packet if some neighbouring node did not receive it. This distributed store-and-forward
operations require packet buffering structures as well as variables and associated functions in the
6LoWPAN node. These C program elements need to be verified/analysed by the code developer in
order to make sure that the said operations behave as expected.

2.2.1.2 Use of EVA plugin

The Eva plugin [4] is in charge of automatically computing sets of possible values for variables of an
analyzed program and warns about possible runtime errors. Eva plugin has been used to detect
potential runtime errors in the whole C code of the 6LoWPAN management platform (6LoWPAN
node and 6LoWPAN gateway). This C code encompasses all the critical assets mentioned in section
2.1.1.

It is worth mentioning, though, that a preliminary work has been conducted with regard to the use of
WP plugin for the verification of the following assets: flash memory partition initialization, notification
of end of firmware transmission, loading of the new firmware, reboot command (cf. section 3.1.1 of
D5.3). However, because of the significant amount of work needed to annotate the whole C code of
the 6LoWPAN management platform, the priority has been given to the application of EVA tool to
check those assets against potential runtime errors while focusing the WP analysis work mainly on
firmware image transmission.

2.2.2 Choice of the verification tool for the Java code

The software update management server is a key component of the OTA software update solution.
Therefore, its reliability is essential.

Though extensive tests can be used to make the management server somehow trustworthy, full trust
in the software management server demands software verification.

Because the 6LoWPAN use case was initially meant as a proof of concept demonstrator, both server
and terminal functionalities have been merged in the same equipment for simplicity.

The Android Operating System was selected for this equipment, so that server functionalities are
implemented as an Android application.

Software verification of an Android application requires a software verification tool that is able to
perform verification on java programs.

In the context of VESSEDIA, we have selected VeriFast [7] for performing Java software verification
on this Android application. However, VeriFast is not limited to software verification of Java
programs: other programming languages such as the C language can be analyzed with VeriFast as
well.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 6 of 29

The focus for program verification was not put on the Android OS itself, but rather on the Android
application source code. The purpose was to detect malfunctioning of the code such as race
conditions, resource leakage, and so on. Race conditions, in particular, may translate into a seldom
and random malfunctioning, which may not be observed during elementary tests of the Java
application.

In a way similar to other software verification tools, VeriFast requires source code annotations that
allow the programmer to express in a formal way the properties that he/she expects from the
implementation. In particular, pre-conditions and post-conditions can be described for each method
in a Java class, under the form of annotations which are ignored by compilers but exploited by
verification programs such as VeriFast.

The programmer describes which assumptions (pre-conditions) are to be considered from method
arguments at method calling time, and he/she should describe as well which properties are expected
on the returned value of the method.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 7 of 29

Chapter 3 Use case realization

The analysis of the 6LoWPAN management platform encompasses the analysis of C code’s critical
functions (operations on the Flash memory of the LLN node and firmware data transmission in the
6LoWPAN mesh network) and Java code’s critical functions (all the activity templates, with the focus
on detecting race conditions) exposed in section 2.1.

3.1 Analysis of the C source part – Firmware image transmission code

Analysing firmware transmission of the CEA use case leads to the analysis of the MPL source code
of Contiki OS1, encompassing the 6LoWPAN node (MPL router) and 6LoWPAN gateway (MPL
source) . This code is particularly critical in that if a bug occurs in the MPL routing, this may result in
the interruption of the firmware transfer procedure. Therefore, it is particularly important to analyse
the MPL source code with a particular focus on loops and buffers.

3.1.1 Preparation

Firmware image transmission is ensured using MPL routing protocol, which runs on the 6LoWPAN
gateway (MPL source) and the 6LoWPAN node (MPL router). The operations related to MPL routing
at the 6LoWPAN node have been verified using both the WP plugin and the EVA plugin of Frama-
C. For the MPL operations at the gateway (MPL source), only the EVA plugin has been used.

The table below summarizes the different sections of the MPL source code on the 6LoWPAN node.

 Annotated segments of the source code Description
6LoWPAN
node

static void init() Initialization of MPL routing timers and buffers
static struct sliding_window *

window_allocate()

Allocation of the sliding window on the MPL router, where
the sliding window is associated to a given MPL source

static void

window_update_bounds(void)

Update upper and lower bounds of the sliding window

static struct mcast_packet *

buffer_reclaim(void)

Release a data buffer entry

static struct mcast_packet *

buffer_allocate(void)

Allocate additional memory space for a data buffer

static void icmp_output(void) Transmit ICMP control messages
static void icmp_input(void) Receive ICMP control messages
static uint8_t in (void) Filter incoming multicast packet based on already

internally registered multicast addresses.
static void double_interval (void

*ptr)

Double the trickle interval when the current one expires

static clock_time random_interval

(clock_time_t, unint8_t)

Generating clock ticks randomized over a given time
interval

static void reset_trickle_timer

(uint8_t)

Reset the trickle timer

static uint8_t accept(uint8_t in) Parse the hop-by-hop MPL header
static void handle_timer (void *) Manage trickle timer structure (e.g., update its values)

based on received multicast packets
static void out (void) Add the MPL hop-y-hop option header to the outgoing

IPv6 packet

6LoWPAN
gateway

static void multicast_send (void) Transmit multicast packets in the 6LoWPAN network

static void ipaddr_add (const uip_ipaddr_t *) Adding an IP address to the routing table

Table 2: Annotated segments for firmware data transmission in the 6LoWPAN mesh network

1 MPL implemenation of Conitki OS has been a bit modified by CEA to enable interfacing with the firmware-specific

operation on the Flash memory of the LLN node.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 8 of 29

The table below summarizes the different sections of the MPL source code on the gateway.

3.1.1.1 Preparation for code verification with WP

D5.3 described some preliminary work on the preparation of MPL code analysis with the WP plugin
(installation of the WP plugin, first ACSL annotations written for the MPL code, and modification of a
Contiki OS-specific script written by FOKUS to use the WP plugin for MPL code analysis).

Figure 4: Fragment of the WP script for MPL code analysis

Since then, the work on the ACSL annotations for the MPL code has followed several rounds in order
to improve the accuracy of the annotations and get effective analysis results. The main difficulty lied
in adapting conventional ACSL annotations, exemplified in WP tutorials [4][5], to the case of MPL
code, where the code structure includes different types of data structures; many pointers, nested
conditional segments, and loop iterations based on pointers.

A typical example of this case is the annotation of function window_allocate(); a function that

allocates a sliding window data structure per MPL source (like in TCP) for message storage and
retransmission (cf. Figure 5). In this function, it was necessary to formulate the inequality of the loop

invariant associated to the pointer iterswptr of the list of sliding windows, with integer parameters

(in the form: A<=k<=i, where A is an integer value. k and i are integer variables) and not (intuitively)

with iterswptr pointer type parameters. This kind of formulation exercise is very common

throughout all the MPL code. A similar example is shown in Figure 6, with the buffer_reclaim()

function. Figure 7 shows another example of annotated code for the function

window_update_bounds(), where there is a quite complex code fragment structure including

a nested ‘if’ statement within a ‘for’ loop.

frama-c-gui roll-tm_wp.c \

 -cpp-extra-args=" -DCONTIKI=1"\

" -DCONTIKI_TARGET_NATIVE=1"\

" -DNETSTACK_CONF_WITH_IPV6=1"\

" -DUIP_CONF_IPV6_RPL=1"\

" -I/usr/local/include"\

.

.

" -I../../../../platform/native/"\

" -I../../../.."\

" -DCONTIKI_VERSION_STRING=\"Contiki-3.x-3214-

gedb3046\"" \

 -wp \

 "$@"

exit

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 9 of 29

Figure 5: MPL’s window_allocate() function with ACSL annotations

/*@

requires \valid (iterswptr);

ensures \valid (iterswptr);

assigns windows[0..(ROLL_TM_WINS -1)].count;

assigns windows[0..(ROLL_TM_WINS -1)].lower_bound;

assigns windows[0..(ROLL_TM_WINS -1)].upper_bound;

assigns windows[0..(ROLL_TM_WINS -1)].min_listed;

*/

static struct sliding_window * window_allocate()

{

//ACSL comment: when the loop finishes, 'iterswptr' will be at (windows - 1) value

because of the large inequality. It's a decrementing loop

 /*@

 loop invariant iterswptr < &windows[ROLL_TM_WINS - 1] &&

!SLIDING_WINDOW_IS_USED(iterswptr) ==> (iterswptr+1)->count == 0 &&

 (iterswptr+1)->lower_bound == -1 && (iterswptr+1)->upper_bound == -1 &&

(iterswptr+1)->min_listed == -1;

 loop invariant &windows[0]<iterswptr<=&windows[ROLL_TM_WINS - 1];

 loop invariant !SLIDING_WINDOW_IS_USED(iterswptr) ==> \forall integer k ;

0<=k<=((&windows[ROLL_TM_WINS - 1]-iterswptr)/sizeof(struct sliding_window)) ==>

windows[(ROLL_TM_WINS -1)-k].count==0 && windows[(ROLL_TM_WINS -1)-k].lower_bound==-

1 && windows[(ROLL_TM_WINS -1)-k].upper_bound==-1 && windows[(ROLL_TM_WINS -1)-

k].min_listed==-1;

 loop assigns iterswptr, iterswptr->count, iterswptr->lower_bound, iterswptr-

>upper_bound, iterswptr->min_listed;

 loop variant iterswptr-windows;

 */

 for(iterswptr = &windows[ROLL_TM_WINS - 1]; iterswptr >= windows;

 iterswptr--) {

 if(!SLIDING_WINDOW_IS_USED(iterswptr)) {

 iterswptr->count = 0;

 iterswptr->lower_bound = -1;

 iterswptr->upper_bound = -1;

 iterswptr->min_listed = -1;

 return iterswptr;

 }

 }

 return NULL;

}

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 10 of 29

static struct mcast_packet *

buffer_reclaim()

{

 struct sliding_window *largest = windows;

 struct mcast_packet *rv;

 /*@

requires \valid (largest);

requires \valid (rv);

ensures \valid (largest);

ensures \valid (rv);

 */

/*@

 loop invariant iterswptr < &windows[ROLL_TM_WINS - 1] && (iterswptr->count >

largest->count) ==> largest == (iterswptr+1) ;

 loop invariant &windows[0] <iterswptr<=&windows[ROLL_TM_WINS - 1];

 loop invariant (iterswptr->count > largest->count) ==> \forall integer k ;

(int)&windows[ROLL_TM_WINS - 1]>k>= (int)iterswptr &&

largest==&windows[(ROLL_TM_WINS -1)-k];

 loop assigns iterswptr, largest, iterswptr->count;

 loop variant iterswptr- windows;

 */

 for(iterswptr = &windows[ROLL_TM_WINS - 1]; iterswptr >= windows;

 iterswptr--) {

 if(iterswptr->count > largest->count) {

 largest = iterswptr;

 }

 }

...

 /*@

 loop invariant locmpptr < &buffered_msgs[ROLL_TM_BUFF_NUM - 1] &&

MCAST_PACKET_IS_USED(locmpptr) &&(locmpptr->sw == largest) &&

 (SEQ_VAL_IS_EQ(locmpptr->seq_val, largest->lower_bound)) ==>

rv==(locmpptr+1);

 loop invariant (int)(buffered_msgs-

1)<=(int)locmpptr<=(int)&buffered_msgs[ROLL_TM_WINS - 1];

 loop invariant MCAST_PACKET_IS_USED(locmpptr) &&(locmpptr->sw == largest) &&

(SEQ_VAL_IS_EQ(locmpptr->seq_val, largest->lower_bound)) ==> \forall integer m ;

0<m<=(ROLL_TM_BUFF_NUM - 1) && rv == &buffered_msgs[(ROLL_TM_BUFF_NUM-1)-m];

 loop assigns locmpptr, rv, largest->count;

 loop variant locmpptr-buffered_msgs;

 */

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 11 of 29

Figure 6: MPL’s buffer_reclaim () function with ACSL annotations

 for(locmpptr = &buffered_msgs[ROLL_TM_BUFF_NUM - 1];

 locmpptr >= buffered_msgs; locmpptr--) {

 if(MCAST_PACKET_IS_USED(locmpptr) && (locmpptr->sw == largest) &&

 SEQ_VAL_IS_EQ(locmpptr->seq_val, largest->lower_bound)) {

 rv = locmpptr;

 PRINTF("ROLL TM: Reclaim seq. val %u\n", locmpptr->seq_val);

 MCAST_PACKET_FREE(rv);

 largest->count--;

 window_update_bounds();

 VERBOSE_PRINTF("ROLL TM: Reclaim - new bounds [%u , %u]\n",

 largest->lower_bound, largest->upper_bound);

 return rv;

 }

 }

*@

requires \valid (iterswptr);

requires \valid (locmpptr) && \valid (locmpptr->sw);

ensures \valid (iterswptr);

ensures \valid (locmpptr);

ensures \valid (locmpptr->sw);

assigns windows[0..(ROLL_TM_WINS -1)].lower_bound;

assigns windows[0..(ROLL_TM_WINS -1)].upper_bound;

 */

static void

window_update_bounds()

{

 /*@

 loop invariant &windows[0]<iterswptr<=&windows[ROLL_TM_WINS - 1];

 loop invariant \forall integer k ; 0<k<=(ROLL_TM_WINS - 1)==>

windows[(ROLL_TM_WINS -1)-k].lower_bound==-1 ;

 loop assigns iterswptr, iterswptr->lower_bound;

 loop variant iterswptr-windows;

 */

 for(iterswptr = &windows[ROLL_TM_WINS - 1]; iterswptr >= windows;

 iterswptr--) {

 iterswptr->lower_bound = -1;

 }

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 12 of 29

Figure 7: MPL’s window_update_bounds() () function with ACSL annotations

 /*@

 loop invariant locmpptr < &buffered_msgs[ROLL_TM_BUFF_NUM - 1] &&

MCAST_PACKET_IS_USED(locmpptr) ==> iterswptr ==(locmpptr+1)->sw;

 loop invariant locmpptr < &buffered_msgs[ROLL_TM_BUFF_NUM - 1] &&

MCAST_PACKET_IS_USED(locmpptr) && (iterswptr->lower_bound < 0 ||

SEQ_VAL_IS_LT(locmpptr->seq_val, iterswptr->lower_bound)) ==> iterswptr-

>lower_bound == (locmpptr+1)->seq_val;

 loop invariant locmpptr < &buffered_msgs[ROLL_TM_BUFF_NUM - 1] &&

MCAST_PACKET_IS_USED(locmpptr) && (iterswptr->upper_bound < 0 ||

SEQ_VAL_IS_GT(locmpptr->seq_val, iterswptr->upper_bound)) ==> iterswptr-

>upper_bound == (locmpptr+1)->seq_val;

 loop invariant &buffered_msgs[0]<=locmpptr<=&buffered_msgs[ROLL_TM_WINS -

1];

 loop invariant MCAST_PACKET_IS_USED(locmpptr) ==>\forall integer l ;

0<l<=(ROLL_TM_BUFF_NUM - 1) && iterswptr ==buffered_msgs[(ROLL_TM_BUFF_NUM-1)-

l].sw;

 loop invariant MCAST_PACKET_IS_USED(locmpptr) && (iterswptr->lower_bound <

0 || SEQ_VAL_IS_LT(locmpptr->seq_val, iterswptr->lower_bound))==> \forall integer

m ; 0<m<=(ROLL_TM_BUFF_NUM - 1) && iterswptr->lower_bound==iterswptr->lower_bound

== buffered_msgs[(ROLL_TM_BUFF_NUM-1)-m].seq_val;

loop invariant MCAST_PACKET_IS_USED(locmpptr) && (iterswptr->upper_bound < 0 ||

SEQ_VAL_IS_GT(locmpptr->seq_val, iterswptr->upper_bound)) ==> \forall integer n ;

0<n<=(ROLL_TM_BUFF_NUM - 1) && iterswptr->upper_bound==iterswptr->upper_bound ==

buffered_msgs[(ROLL_TM_BUFF_NUM-1)-n].seq_val;

 loop assigns locmpptr, iterswptr, iterswptr->lower_bound, iterswptr-

>upper_bound ;

 loop variant locmpptr-&buffered_msgs[0];

 */

 for(locmpptr = &buffered_msgs[ROLL_TM_BUFF_NUM - 1];

 locmpptr >= buffered_msgs; locmpptr--) {

 if(MCAST_PACKET_IS_USED(locmpptr)) {

 iterswptr = locmpptr->sw;

 VERBOSE_PRINTF ("ROLL TM: Update Bounds: [%d - %d] vs %u\n",

 iterswptr->lower_bound, iterswptr->upper_bound,

 locmpptr->seq_val);

 if(iterswptr->lower_bound < 0

 || SEQ_VAL_IS_LT(locmpptr->seq_val, iterswptr->lower_bound)) {

 iterswptr->lower_bound = locmpptr->seq_val;

 }

 if(iterswptr->upper_bound < 0 ||

 SEQ_VAL_IS_GT(locmpptr->seq_val, iterswptr->upper_bound)) {

 iterswptr-> upper_bound = locmpptr->seq_val;

 }

 }

 }

}

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 13 of 29

All the functions of the MPL code on the 6LoWPAN node (MPL router) have been annotated.

3.1.1.2 Preparation for code verification with EVA

In order to use Frama-C EVA plugin for MPL code analysis, the WP script has been slightly modified
(just replacing the WP plugin command line by the EVA plugin command line) and then applied to
both the 6LoWPAN node (MPL router) and the gateway (MPL source).

Figure 8: Fragment of the EVA script for MPL code analysis (example with double_interval() function

All the functions of the MPL code on the 6LoWPAN node (MPL router) have been verified with EVA.

3.1.2 Verification process

3.1.2.1 Verification with WP

The verification of the annotated MPL code, which covers all the functions of the MPL code, lasts
about 5 minutes. The verification has been performed on an Intel Core i3 CPU m370 2.4 GHz
processor.

3.1.2.2 Verification with EVA

All the MPL code functions have been verified with EVA plugin. This encompasses both the
6LoWPAN node part (MPL router) and the gateway part (MPL source). The verification of MPL code
functions lasts about 2 to 3 seconds per function. The verification has been performed on an Intel
Core i3 CPU m370 2.4 GHz processor..

3.1.3 Results

3.1.3.1 Results of WP verification

The WP analysis generated the following results:

frama-c-gui -eva-slevel 100 -eva -main

double_interval roll-tm.c \

 -cpp-extra-args=" -DCONTIKI=1"\

" -DCONTIKI_TARGET_NATIVE=1"\

" -DNETSTACK_CONF_WITH_IPV6=1"\

.

.

" -I../../../../core/ctk"\

" -I../../../../core/net/llsec"\

" -I../../../../platform/native/"\

" -I../../../.."\

 "$@"

exit

.

.

[wp] Proved goals: 50 / 152

 Qed: 37 (4ms-50ms-988ms)

 Alt-Ergo: 13 (32ms-86ms-448ms)

(1495) (interrupted: 102)

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 14 of 29

In sum, based on the annotations, 50 goals have been proved as valid from 152 goals. 102 goals
reached a timeout. No goal has been proved to be not valid.

3.1.3.2 Results of EVA verification for 6LoWPAN node

The results of EVA analysis for the MPL code on the 6LoWPAN node are summarized in the following
table.

Table 3: lists of alarms for MPL code based on EVA analysis

EVA alarms enabled to point out a number of potential runtime errors in the 6LoWPAN node’s MPL
routing code. Some are effective, other are not effective, whereas others are under review. Further
details are provided in the following sub-sections, with a focus on the functions that issued critical

alarms: random_interval(), double_interval(), and icmp_input().

3.1.3.2.1 random_interval () function

A very low risk of division by zero has been pinpointed in the random_interval() function and

corrected as follows:

Old code fragment:

In this old version of the code fragment, the expression TRICKLE_TIME(i_min, d) - 1 - min) is equal
to zero when:

static clock_time_t

random_interval(clock_time_t i_min, uint8_t d)

{

 clock_time_t min = TRICKLE_TIME(i_min >> 1, d);

 VERBOSE_PRINTF("ROLL TM: Random [%lu, %lu)\n", (unsigned long)min,

 (unsigned long)(TRICKLE_TIME(i_min, d)));

 return min + (random_rand() % (TRICKLE_TIME(i_min, d) - 1 - min));

}

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 15 of 29

TRICKLE_TIME(i_min, d)= 1 + min

 TRICKLE_TIME(i_min, d)= 1 + TRICKLE_TIME(i_min >> 1, d)

 i_min << d= 1+ ((i_min >>1) << d)

 i_min * 2^d=1+(i_min/2)^d

The above equation is verified when i_min==1 && d==0, i_min==2 && d==0, imin==3 &&

d==log2(2/3), i_min==4 && d== log2(1/3),etc.

Given that d is of type uint8_t, so only the first two cases (i_min==1 && d==0 and i_min==2

&& d==0) will generate a division by zero.

From the source code, it turns out that the value of d is set to the value of i_current parameter

of the structure trickle_param. This i_current parameter is set to zero each time the function

resest_trickle_timer () is called.

In addition, from the source code, it can be noticed that the value of i_min is configurable via the

macro ROLL_TM_IMIN and may take three possible recommended values 16, 32, or 64 (depending

on both the MPL forwarding strategy (aggressive vs conservative) and the choice RDC driver
(Contikimac vs. nullrdc)). For other/future RDC drivers other values of i_imin may be proposed.

From the above discussion, it turns out that it is not very likely to have one of the first two cases

(i_min==1 && d==0 and i_min==2 && d==0) in a real scenario. But, given that this probability

is not null, it is safer to avoid the risk of the division by zero by modifying the code as follows:

New code fragment:

3.1.3.2.2 double_interval () function

 20 alarms have been generated by the analysis:

 1 division by zero

 14 invalid memory accesses (out of bounds read)

 2 integer overflows

 3 invalid shifts

1) Division by zero

This alarm concerns the same line of code as the random_interval() function, because this

function is called by double_interval() function.

static clock_time_t

random_interval(clock_time_t i_min, uint8_t d)

{

 clock_time_t min = TRICKLE_TIME(i_min >> 1, d);

 VERBOSE_PRINTF("ROLL TM: Random [%lu, %lu)\n", (unsigned long)min,

 (unsigned long)(TRICKLE_TIME(i_min, d)));

 clock_time_t e_;

e_= (TRICKLE_TIME(i_min, d) - 1 - min);

if (e_!=0) return min + (random_rand() % e_);

// return min + (random_rand() % (TRICKLE_TIME(i_min, d) - 1 - min));

}

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 16 of 29

2) Invalid memory accesses (out of bounds read)
This is illustrated by the following warning

Where ‘xxx’ is a field of a structured called trickle_param, defined as follows:

This alarm is not effective because double_interval() is a callback function of Contiki OS’s

function ctimer_set(), which sets a callback timer for a time sometime in the future. param is

used by ctimer_set() function by supplying an opaque pointer param as an argument to the

callback function double_interval (). Therefore, the pointer param will be pointing an

effective structure when it is used by double_interval().

3) Integer overflow

This alarm is described as follows:

This integer overflow is not possible because of the following ‘’if’ condition preceding the ‘assertion.
if(param->i_current < param->i_max) {

 param->i_current++;

 }

Indeed, i_max parameter of the structure trickle_param may take two possible hard-coded

values (of type ROLL_TM_IMAX_##m, where m is a binary variable):

 ‘1’ (corresponding to Imax=250 seconds) and,

 ‘9’ (corresponding to Imax=500 seconds).

struct trickle_param {

 clock_time_t i_min; /* Clock ticks */

 clock_time_t t_start; /* Start of the interval (absolute

clock_time) */

 clock_time_t t_end; /* End of the interval (absolute

clock_time) */

 clock_time_t t_next; /* Clock ticks, randomised in [I/2, I) */

 clock_time_t t_last_trigger;

 struct ctimer ct;

 uint8_t i_current; /* Current doublings from i_min */

 uint8_t i_max; /* Max number of doublings */

 uint8_t k; /* Redundancy Constant */

 uint8_t t_active; /* Units of Imax */

 uint8_t t_dwell; /* Units of Imax */

 uint8_t c; /* Consistency Counter */

 uint8_t inconsistency;

};

[eva:alarm] roll-tm.c:512: Warning: out of bounds read.

assert \valid_read(¶m->xxx);

[eva:alarm] roll-tm.c:516: Warning: signed overflow. assert -2147483648 ≤ (int)param-

>i_current + 1;

 [eva:alarm] roll-tm.c:516: Warning: signed overflow. assert (int)param->i_current +

1 ≤ 2147483647;

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 17 of 29

4) Invalid shifts

The alarms are associated to the 3 shifting operations of i_min parameter of the structure

trickle_param, and are illustrated hereafter.

The 3 shifting operations are:

i_min >> 1, i_min << d , and i_min << param->i_current.

The alarm of the first shift is not effective because shifting is done by 1 position, which is lower that

the width of the type of i_min (i.e., uint8_t).

For the two other shifting operations, the i_current value is bounded by i_max as follows:

Where i_max may take two possible values: 1 or 9.

Also, the value of d in the code is set to the value of i_current parameter. In view of that, if

i_max is set to 9, this may result in a shifting by a number larger than the width of the type of i_min,

whenever i_current value reaches i_max via the incrementation operation: param->i_current
++.

Further tests are needed to check this case.

3.1.3.2.3 icmp_input () function

11 alarms have been generated by the analysis:
1 division by zero
3 invalid memory accesses
7 others

1) Division by zero

This alarm concerns the same line of code as the random_interval() function, because this

function is called by double_interval() function. Therefore, this alarm is not effective.

2) invalid memory accesses (out of bounds read)
This type of alarms is illustrated hereafter:

 [eva:alarm] roll-tm.c:520: Warning:

 invalid RHS operand for shift. assert 0 ≤ (int)param->i_current < 32;

...

 [eva:alarm] roll-tm.c:492: Warning:

 invalid RHS operand for shift. assert 0 ≤ (int)d < 32;

...

 [eva:alarm] roll-tm.c:497: Warning:

 invalid RHS operand for shift. assert 0 ≤ (int)d < 32;

if (param->i_current < param->i_max)

param->i_current ++;

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 18 of 29

All the mentioned alarms are associated to the following code segment:

These alarms are being reviewed by checking ICMP format parsing.

3) Others
These alarms concern pointer castings, and are not effective.

3.1.3.3 Results of EVA verification for the 6LoWPAN gateway

3.1.3.3.1 Multicast_send() function

No alarm generated.

3.1.3.3.2 ipaddr_add () function

The analysis of this function generated 12 alarms:

2 invalid memory accesses (out of bound read)
6 accesses out of bounds index
4 integer overflows (signed overflow)

1) invalid memory accesses (out of bound read)
The associated alarms are shown hereafter:

These alarms cannot be effective because the associated code is within a loop, which exits when i

is equal to sizeof(uip_ipaddr_t) where uip_ipaddr_t is a union defined in

core/net/ip/uip.h as follows:
typedef union uip_ip6addr_t {

 uint8_t u8[16];

 uint16_t u16[8];

} uip_ip6addr_t;

[eva:alarm] border-router.c:189: Warning: out of bounds read. assert

\valid_read(&addr->u8[i]);

[eva:alarm] border-router.c:189: Warning: out of bounds read. assert

\valid_read(&addr->u8[(int)(i + 1)]);

[eva:alarm] roll-tm.c:1219: Warning: out of bounds read. assert

\valid_read(seq_ptr);

[eva:alarm] roll-tm.c:1172: Warning: out of bounds read. assert

\valid_read(&locslhptr->flags); [eva:alarm] roll-tm.c:1197: Warning: out of

bounds read. assert \valid_read(&locslhptr->seq_len);

#define UIP_ICMP_PAYLOAD ((unsigned char *)&uip_buf[uip_l2_l3_icmp_hdr_len])

..

locslhptr = (struct sequence_list_header *)UIP_ICMP_PAYLOAD; ...

seq_ptr = (uint16_t *)((uint8_t *)locslhptr

 + sizeof(struct sequence_list_header)); ...

 for(; seq_ptr < end_ptr; seq_ptr++) {

 /* Check for "They have new" */

 /* If an advertised seq. val is GT our upper bound */

 val = uip_htons(*seq_ptr);

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 19 of 29

 2) Accesses out of bounds index
These alarms are shown in what follows:

All these alarms are not effective because blen variable is used by the protothread (PT_THREAD(

)) of the gateway (the protothread is not analyzed by EVA) so that each time the ipaddr_add()

function is called within the protothread, the blen value is set/reset to zero, as shown hereafter.

3) Integer overflows (signed overflow)

The associated alarms relate to blen variable. These alarms are not effective, because blen

variable is set/reset in the protothread (PT_THREAD()) of the gateway. The protothread is not

accessed by EVA.

3.2 Analysis of the C source part – Firmware Management on the
6LoWPAN node

3.2.1 Preparation

In order to use the Frama-C EVA plugin for the firmware management code analysis, the MPL code’s
EVA script has been modified to take into account the openmote-CC2538 HW platform’s Flash. The
new EVA script has then been applied to the different functions of the firmware management code.

PT_THREAD(generate_routes(structhttpd_state *s))

{

 blen = 0;

 ADD("Neighbors<pre>");

 for(nbr = nbr_table_head(ds6_neighbors); nb r != NULL; nbr =

nbr_table_next(ds6_neighbors, nbr))

{

 ipaddr_add(&nbr->ipaddr);

 …

 if(blen > sizeof(buf) - 45) {

 ..

 blen = 0;

 }

 }

..

 [eva:alarm] border-router.c:192: Warning: accessing out of bounds index.

assert 0 ≤ tmp; (tmp from blen++)

[eva:alarm] border-router.c:192: Warning: accessing out of bounds index. assert

tmp < 128; (tmp from blen++)

…

 [eva:alarm] border-router.c:199: Warning:

 accessing out of bounds index. assert tmp_2 < 128; (tmp_2 from blen++)

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 20 of 29

Figure 9: Fragment of EVA script for firmware management code analysis (case of FlashGet() function)

3.2.2 Verification process

For the firmware management code, the following table shows the set of functions that have been
verified with EVA plugin. The verification of each MPL code function lasts about 2 to 3 seconds.

Function Description

void tcpip_handler(void) Write/read firmware data in/from the Flash
memory, enable/disable interruptions, check
firmware file integrity (CRC),

static uip_ds6_maddr_t

join_mcast_group(void)

Configure the network interface for firmware data
reception

void

firmware_handling_process(void)

Manage the Flash vector table (erase/set/update),
enable/disable interruptions, and call the reboot the
system

FlashGet(uint32_t) Return a 4-Byte value located in a given Flash
memory address

Table 4: list of firmware management code functions verified with EVA plugin

frama-c -eva-slevel 100 -eva -main firmware_handling_process

wiseprom_node.c \

 -cpp-extra-args=" -DCONTIKI=1"\

" -DCONTIKI_TARGET_OPENMOTE_CC2538=1"\

" -DNETSTACK_CONF_WITH_IPV6=1"\

.

." -I../../core/net/llsec/noncoresec"\

" -I../../platform/openmote-cc2538/"\

" -I../.."

#" -DCONTIKI_VERSION_STRING=\"Contiki-3.x-3214-gedb3046\""

 \

 "$@"

exit

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 21 of 29

3.2.3 Results

The results of EVA analysis for the firmware management code are summarized in the following
table.

Function Results

void tcpip_handler(void) out of bounds read (1)

static uip_ds6_maddr_t

join_mcast_group(void)

No warning

void

firmware_handling_process(void)

out of bounds read (1)

FlashGet(uint32_t) out of bounds read (1)

Table 5: list of alarms for the firmware management code based on EVA analysis

3.2.3.1 FlashGet () function

The associated alarm (out of bound read) is not effective because the associate line of code (return

(HWREG(ui32Addr)) relates to Texas Instrument’s macro HWREG () pointing to the address value

indicated by ui32Addr.This address value is hard-coded in the 6LoWPAN node’s firmware

management code.

3.2.3.2 Firmware_handling_process () function

The associated alarm relates to the call of function FlashGet (). This alarm is not effective, for

the same reason as that mentioned in section 3.2.3.1.

3.2.3.3 join_mcast_group () function

No alarm raised by EVA.

3.2.3.4 tcpip_handler () function

The associated alarm relates to the call of function FlashGet (). This alarm is not effective, for

the same reason as that mentioned in section 3.2.3.1.

3.3 Analysis of the Java source part – 6LoWPAN management server

3.3.1 Preparation

As mentioned in section 2.1.2, code analysis on the network manger’s Java source code has
targeted all the Activity templates, with the focus on detecting race conditions (e.g., variable sharing
in a multi-threading scenario). A preliminary verification phase of the whole Java source code, in
collaboration with KUL, led to identify the “Alarm.java” source file (cf. Figure 3 of section 2.1.2), as a
potential source of possible race conditions.

This java source file implements a particular activity (to be understood in terms of “android concept”)
that is in charge of notifying alarm events issued from the 6LoWPAN node.

From the server perspective, alarms are notified under the form of incoming UDP packets. When the
“Alarm” activity is shown, a listening thread is started to monitor incoming UDP packet on a specific
UDP port.

This thread is created in the “public void onCreate(Bundle savedInstanceState)”

function, and terminated in the “protected void onDestroy()” function. Both functions are

defined in the “Activity” class of the Android API, and may be overridden in the inheriting classes.

The best way to terminate the thread is to let the thread terminate itself when “protected void

onDestroy()” function is called. For this purpose, a global boolean variable named “goon” has

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 22 of 29

been defined. This variable is permanently checked in the thread. goon variable is set to false in

the “protected void onDestroy()” so that once onDestroy is called, the previously created

thread should gracefully terminate. The listening thread cannot block when receiving a UDP
datagram, because a timeout value has been set on the UDP socket. This timeout guarantees that

the change in the “goon” global variable will be captured in the thread shortly after the “protected

void onDestroy()” function has been called.

The Alarm.java source file has been fully annotated so that VeriFast analysis can be performed to
detect any malfunctioning such as resource leakage or race conditions. The following extracts from
the annotated Alarm.java file gives some hints about the Alarm activity structure and annotations.

public final class Alarm extends Activity implements Runnable

{

 Other globalvariable definitions removed

 boolean goon;

 Other global variable definitions removed

 public Alarm()

 //@ requires true;

 //@ ensures raw_state();

 {

 }

 /*@

 predicate raw_state() = this.raw_state(Activity.class)() &*& rxport |-> _ &*& goon

|-> _ &*& myHandler |-> _ &*& mp |-> _ &*& alarmView |-> _;

 predicate state() =

 this.state(Activity.class)() &*& [_]goon |-> ?goon;

 @*/

 public void onCreate(Bundle savedInstanceState)

 //@ requires LooperThread(currentThread, nil) &*& raw_state();

 //@ ensures LooperThread(currentThread,

 {this}) &*& state() &*& [_]LooperObject(currentThread, this,

activity_state(this));

 {

 implementation removed

 goon=true;

 //@ leak goon |-> _;

 Thread thread= new Thread(this);

 thread.start();

 //@ close state();

 }

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 23 of 29

 //@ predicate pre() = rxport |-> _ &*& [_]goon |-> ?goon &*& [_]myHandler |->

 ?myHandler_ &*& myHandler_ != null;

 //@ predicate post() = true;

 public void run()

 //@ requires pre();

 //@ ensures post();

 {

 implementation removed

 if (!goon)

 {

 implementation removed

 }

 implementation removed

 }

 protected void onDestroy()

 //@ requires Activity_onDestroy_called(currentThread, this, false)

 &*& LooperThread(currentThread, {this}) &*& state();

 //@ ensures Activity_onDestroy_called(currentThread, this, true)

 &*& LooperThread(currentThread, {this}) &*& state();

 {

 implementation removed

 goon = false;

 implementation removed

 }

}

final class MyHandler extends Handler

{

 implementation and annotations removed

}

3.3.2 Verification process

For the verification process of the “Alarm.java” source file, the following command has been used:

vfide -disable_overflow_check dsensors.jarsrc -runtime ../rt/rt.jarspec

where “dsensors.jarsrc” list all java and jar files needed for running verification and

rt.jarspec points to a set of “javaspec” files that have been properly annotated to allow the

verification process to deal with parts of the Android API . The verification lasted about 2 seconds
and has been performed on an Intel Core i3 CPU m370 2.4 GHz processor.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 24 of 29

3.3.3 Results

The result shown in figure 10 represents the graphical version of VeriFast (vfide) pointing to a race

condition issue in the code, with the specific error message “No matching heap chunks:

com.example.dsensors.Alarm_goon(this, _)“.

Figure 10: verification of the Alarm.java source file with the graphical version of VeriFast

This outcome identifies a race condition in the source code that is due to the use of the global goon

variable in the contexts of 2 different thread:

 an android thread in the set of threads use to manage the android User Interface

 the UDP listening thread.

Though malfunctioning had not been experienced in the practical tests of the application, a
malfunctioning risk exists.

The source file has been modified in order to replace the global goon variable of type boolean with

a variable with the same name goon but of type AtomicBoolean.

The AtomicBoolean java class has precisely been proposed to circumvent race condition risks.

This modified version of “Alarm.java” has been re-annotated and re-verified with VeriFast software.

Figure 11 shows the graphical version of VeriFast (vfide) that is used to verify this modified version
of Alarm.java. No error is detected in this case.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 25 of 29

Figure 11 second run of Alarm.java verification, after modification of the source

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 26 of 29

Chapter 4 Lessons Learnt

4.1 Training phase

The training phase on the software verification tools has taken an important part of the work effort in
the analysis process of the 6LoWPAN management platform, since platform developers are not
expert in formal methods. In particular, the annotation of the source code required several rounds of
work, which was quite non-exhaustive, especially during the preliminary annotation phases.

4.2 ACSL/WP for Code analysis

The work on the ACSL/WP annotations for the MPL code has followed several rounds in order to
improve the accuracy of the annotations and get effective analysis results. An example of difficulty
in the annotation exercise lied in adapting simple ACSL examples of annotations [3][4], to the case
of MPL code, where the code structure includes different types of data structures; many pointers,
nested conditional segments, and loop iterations based on pointers. Tthe ACSL annotation work was
typically non-exhaustive in the initial phase. It then followed an iterative/empirical approach
(annotate, verify, re-annotate) to improve the accuracy of the annotations.

4.3 EVA for Code analysis

EVA analysis tool was very useful for detecting runtime errors when there are too many lines of
codes (even with a few hundreds of lines), especially that some of those runtime errors may be due
to very simple bugs like the one mentioned in section 3.1.3.2.

4.4 VeriFast for Java code analysis

Software verification with VeriFast allowed to identify risks that practical tests have not identified.
Though more extensive practical tests would probably have revealed the risk, exhaustive tests are
not achievable in practice. Software verification turned to be very useful for establishing the absence
of malfunctioning risks, when combined with practical tests.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 27 of 29

Chapter 5 Summary and Conclusion

This document discussed the different results of the source analysis associated to a number of
critical functionalities of the CEA use case. This document also highlighted the lessons learnt from
the use of different software verification tools (Frama-C WP, Frama-C EVA, and VeriFast).

WP plugin has been used for a particular part of the C code: MPL routing code to verify a number of
code-specific properties, whereas EVA plugin has been used to identify potential runtime errors over
the whole C code of the 6LoWPAN management platform.

The training phase on the software verification tools has taken an important part of the work effort in
the analysis process of the 6LoWPAN management platform.

In addition, the work on the ACSL/WP annotations for the MPL code has followed several rounds in
order to improve the accuracy of the annotations and get effective analysis results, whereas EVA
analysis tool was very useful for detecting potential runtime errors. Also, Java source code
verification with VeriFast allowed to identify risks that practical tests have not identified.

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 28 of 29

Chapter 6 List of Abbreviations

Abbreviation Translation

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

EVA Evolved Value Analysis

GW Gateway

IoT Internet of Things

LLN Low power and Lossy channel Network

MPL Multicast routing Protocol for Low power and lossy channel networks

WP Weakest Precondition

D5.4 - CEA’s use case final report

VESSEDIA D5.4 Page 29 of 29

Chapter 7 Bibliography

[1] J. Hui et al., "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based

Networks”, IETF standard, RFC 6282, September 2011.

[2] J. Hui et al., “Multicast Protocol for Low-Power and Lossy Networks (MPL)”, Internet

Standard, RFC 7731, February 2016.

[3] FRAMA-C WP, https://frama-c.com/wp.html

[4] Patrick Baudin et al., “WP Tutorial”, Online Book, 2012, http://frama-c.com/download/frama-

c-wp-tutorial.pdf

[5] Allan Blanchard, “Introduction to C program proof with Frama-C and its WP plugin”, Online

Book, June 2019, https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

[6] FRAMA-C EVA, https://frama-c.com/value.html

[7] VeriFast, https://github.com/verifast/verifast

https://frama-c.com/wp.html
http://frama-c.com/download/frama-c-wp-tutorial.pdf
http://frama-c.com/download/frama-c-wp-tutorial.pdf
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf
https://frama-c.com/value.html
https://github.com/verifast/verifast

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Goal of the Document
	1.2 Structure of the Document
	1.3 Related deliverables

	Chapter 2 Target of Evaluation
	2.1 Description
	2.1.1 Choice of the C code to be analysed
	2.1.2 Choice of the Java code to be analysed

	2.2 Security objectives
	2.2.1 Choice of the verification tools for the C code
	2.2.1.1 Use of WP plugin
	2.2.1.2 Use of EVA plugin

	2.2.2 Choice of the verification tool for the Java code

	Chapter 3 Use case realization
	3.1 Analysis of the C source part – Firmware image transmission code
	3.1.1 Preparation
	3.1.1.1 Preparation for code verification with WP
	3.1.1.2 Preparation for code verification with EVA

	3.1.2 Verification process
	3.1.2.1 Verification with WP
	3.1.2.2 Verification with EVA

	3.1.3 Results
	3.1.3.1 Results of WP verification
	3.1.3.2 Results of EVA verification for 6LoWPAN node
	3.1.3.2.1 random_interval () function
	3.1.3.2.2 double_interval () function
	3.1.3.2.3 icmp_input () function

	3.1.3.3 Results of EVA verification for the 6LoWPAN gateway
	3.1.3.3.1 Multicast_send() function
	3.1.3.3.2 ipaddr_add () function

	3.2 Analysis of the C source part – Firmware Management on the 6LoWPAN node
	3.2.1 Preparation
	3.2.2 Verification process
	3.2.3 Results
	3.2.3.1 FlashGet () function
	3.2.3.2 Firmware_handling_process () function
	3.2.3.3 join_mcast_group () function
	3.2.3.4 tcpip_handler () function

	3.3 Analysis of the Java source part – 6LoWPAN management server
	3.3.1 Preparation
	3.3.2 Verification process
	3.3.3 Results

	Chapter 4 Lessons Learnt
	4.1 Training phase
	4.2 ACSL/WP for Code analysis
	4.3 EVA for Code analysis
	4.4 VeriFast for Java code analysis

	Chapter 5 Summary and Conclusion
	Chapter 6 List of Abbreviations
	Chapter 7 Bibliography

