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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability. 
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Executive Summary 

IoT (Internet of Things), which denotes connected devices and services, is on a rapid increase, 
leading to a constantly growing number of interconnected computing devices and as they are gaining 
wider and wider adoption in the security critical fields, it becomes more and more urgent to ensure 
the security of these devices. The VESSEDIA project aims to enhance the security of IoT devices 
by improving already existing software analysis tools to help the manufacturers to develop more 
secure devices. 

In order to evaluate the ability of the VESSEDIA tools to allow efficient security analysis of IoT 
software, the VESSEDIA project comprises several use-cases. One of these use-cases consists in 
verifying the Contiki operating system, a lightweight operating system for IoT. 

The goal of this document is to present the verification effort performed during the project on the 
Contiki operating system. This verification is mostly conducted using the Frama-C platform and the 
FlowGuard tool.
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Chapter 1 Introduction 

1.1 Goal of the document 

This report describes the work done in Task 5.1 of the VESSEDIA project, about the verification of 
the Contiki operating system. This task assesses the mechanisms developed in VESSEDIA on 
Contiki’s low-power IPv6 stack and OS primitives, mainly using static analysis. The level of these 
analyses being chosen depends on the criticality and the complexity of the modules to verify. This 
allows the evaluation of the usability and the effectiveness of VESSEDIA tools for analysis of actual 
IoT systems. In addition, parts of Contiki are annotated with "minimal contracts" as a fast alternative 
to value analysis. In this way, we gathered for Task 3.3 valuable experience on the trade-off between 
automated, but monolithic, abstract interpretation, and writing minimal contracts to be verified in 
parallel. 

During the period M7-M18, we have studied different parts of Contiki. Most of the work has been 
done in the core libraries of Contiki using deductive verification, even though some first experiments 
have also been conducted on the networking stack with abstract interpretation. During the period 
M18-M36, we continued the work on the core libraries, using new methods to make verification 
easier. Among this, we also conducted some experiments in order to enable runtime verification in 
Contiki. 

1.2 Structure of the document 

Chapter 2 recalls the target of evaluation and the related security objectives. Chapter 3 gives an 
overview of the different tools and methods used during the analysis of this use case. 3.2 presents 
the realization of the use case, comprising for each subpart how it has been prepared, the process 
of verification and the results we obtained. 4.6 provides some discussion, in particular the lessons 
learnt during the verification and Chapter 6 concludes this document. 

1.3 Related deliverables 

The deliverable D5.1 is a preliminary version of this deliverable and presented the work done until 
M18. Both these deliverables are related to the deliverable D1.2 about the security requirements of 
the WP5 use cases. During the verification of this use case, we used a verification methodology 
called minimal contracts which is described in deliverable D1.1. The work performed on this use-
case also helped to improve the VESSEDIA tools for the final release available in the deliverable 
D2.3. Deliverable D4.6 also describes Security Evaluation carried out on the Use Cases, including 
Contiki OS. 
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Chapter 2 Target of evaluation 

Contiki is an open-source operating system (OS) for the Internet of Things. It provides basic OS 
features on an event-based kernel, including the scheduler, a timer system, the networking stack, 
and a file system. Contiki focuses generally on low-power IPv6 connectivity, that is, it enables 
constrained devices to connect to the Internet with standard protocols. This guarantees 
interoperability between devices that come from different vendors, since Contiki runs on sensor and 
actuator devices covering a wide spectrum of hardware architectures. The target device typically has 
an 8, 16, or 32-bit MCU (little or big-endian), a low-power radio, some sensors and actuators, and is 
battery-operated. 

Some recent platforms might have a Memory Protection Unit (MPU), but Contiki is not yet able to 
make use of it. Consequently, the devices targeted by Contiki are generally platforms without 
Memory Management Unit (MMU), so there is no protection between different applications nor 
between applications and kernel. They have some access to the physical world, via sensors and 
actuators, while being connected to the Internet. Thus, Contiki mostly evolves at perception and 
network layers of an IoT architecture, as presented in D1.1. This makes such devices a target of 
choice for attackers. A misbehaving or compromised network node could be used as the source of 
DDoS attacks, leak sensitive data, or worse, trigger potentially life-threatening actuations. 

2.1 Description 

Contiki is released under a BSD license and is hosted on GitHub. The project started in 2003, and 
has now over 150 contributors and 2000 followers on GitHub. Contributors and users are from both 
industry and academia. It is written in portable C, in order to enable portability across the platforms. 
In the beginning of the project, Contiki 3 was the most recent version of Contiki, it has been forked 
to Contiki-NG1 recently. Contiki-NG being actively maintained and updated, we have decided to 
switch to this version, even if it has required some work to port previous verification effort. 

The development workflow is as follows: a firmware image consists in a Contiki configuration along 
with some application processes. The configuration dictates which modules of Contiki are to be 
included. When compiling the firmware, the user selects the target hardware platform. The cross-
compilation is then carried out, and only the relevant modules are linked in the final image. Note that, 
as a result, large portions of the kernel are unutilized in any given final image. For instance, an 
application that does not require the file system or IPv6 stack will be simply compiled without it. 

2.1.1 Considered code base 

The platform independent directory of Contiki is now “os” and is composed of a number of sub-
directories Table 1 summarizes the size of each module and discusses the priority of verifying them 
in VESSEDIA. The relevance is selected among: 

 NO: We chose not to verify this module in VESSEDIA, because it is deprecated or only used 
by a minority of applications. 

 LOW: The module is generally used, and it is worth verifying it. 

 MED:  Widely-used module, verification is important. 

 HIGH:  Critical component, verification is top-priority. 

 

                                                

1 https://github.com/contiki-ng/contiki-ng 

https://github.com/contiki-ng/contiki-ng
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Module kLOC Description Priority 

dev 1.3 Platform-independent parts of drivers. LOW 

lib 39.3 Different general purpose librairies  

|- lib/*.[ch] 2.1 Memory management, lists, crypto, etc. HIGH 

|- lib/dgb-io 0.7 Debugging tools using input/output MED 

|- lib/fs 35.8 File-system NO 

|- lib/json 0.7 JSON format handling NO 

net 36 Networking stack  

|- net/app-layer 7 Application layer protocols NO 

|- net/ipv6 11.9 IPv6 stack MED 

|- net/mac 8.2 MAC layers  

   |- net/mac/ble 0.5 Bluetooth low energy L2CAP implementation LOW 

   |- net/mac/csma 0.5 Standard CSMA MAC MED 

   |- net/mac/framer 1.3 Encoding and decoding of MAC frame headers MED 

   |- net/mac/tsch 5.7 Standard power-saving MAC LOW 

   |- net/mac/*.[ch] 0.2 MAC API MED 

|- net/routing 8 Currently RPL implementations MED 

|- net/*.[ch] 0.9 Neighbour tables, packet buffers etc. MED 

services 9.8 Application layer NO 

storage 6.3 Contiki File System, and related applications. NO 

sys 1.8 Core components: scheduler, timers, etc. HIGH 

Table 1 - The different modules of Contiki with respective sizes and verification priority 

 

To summarize, we identify a total of 7.5 kLOC low-priority codes, 23.5 kLOC medium-priority, 3.9 
kLOC high-priority. There is slightly more high and medium priority code than we presented in the 
deliverable D1.2 about Contiki 3. This is mainly due to the addition of some features. This increase 
is balanced by the fact that the majority of those features are currently not used intensively in the 
critical part of the system, this is for example the case for the different new variants of the linked lists. 
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2.2 Security objectives 

The security objectives of the Contiki OS can be enumerated from what is listed in the CC OS 
Protection Profile BSI-CC-PP-0067 [1]document. While, we have detailed the security objectives in 
the deliverable D1.2, we provide a reminder in this section. Some of the objectives like auditing are 
left out from this chapter because they are not applicable for the Contiki OS right now. It is not 
impossible to implement these objectives on the long run, but in the current status of the project 
conforming to the CC is not an issue right now. Some parts are nevertheless included, since they 
can be used as a recommendation in the future.  

Cryptographic services: The TSF must allow authorized users to remotely access the TOE using 
a cryptographically-protected network protocol that ensures integrity and confidentiality of the 
transported data and is able to authenticate the end points of the communication. Note that the same 
protocols may also be used in the case where the TSF is physically separated into multiple parts 
that must communicate securely with each other over untrusted network connections. The TSF must 
control access of subjects and/or users to named resources based on identity of the object. The TSF 
must allow authorized users to specify for each access mode which users/subjects are allowed to 
access a specific named object in that access mode. 

Cryptographic functionality is a necessity for the overall security for the OS, but these functionalities 
are hard to verify with software verification. As we will detail later, we have verified some simple 
aspects of these modules in Contiki, namely the absence of runtime errors. 

Identification and authentication: The TOE must ensure that users have been successfully 
authenticated before allowing any action the TOE has defined to provide to authenticated users only. 
The Contiki OS uses Datagram Transport Layer Security (DTLS) for this purpose. 

Discretionary access control: The TSF must control access of subjects and/or users to named 
resources based on identity of the object. The TSF must allow authorized users to specify for each 
access mode which users/subjects are allowed to access a specific named object in that access 
mode, and thus prevent unauthorized read access, modification, deletion of the object, creation of 
new objects, and management of object attributes. 

Management of security mechanisms: The TSF must provide all the functions and facilities 
necessary to support the authorized users that are responsible for the management of TOE security 
mechanisms and must ensure that only authorized users are able to access such functionality. For 
Cyber-Physical Systems (CPS), there is a concern regarding the physical security of the product, 
and it is necessary to prevent the attacker from controlling the TOE. One way to achieve this is to 
protect the sensor data and the controlling functionalities from the attacker, so the Security 
Functional Requirements (SFRs) can be broadened with these functionalities. 

In the case of Contiki, the notion of user does not appear at the OS level and is most of the time 
expressed at the application level, thus the questions of identification, authentication and 
discretionary access control are not considered here. This is also the case for the management of 
security mechanisms that relies on the identification of some kind of “administrator”. 

Network information flow control: The TOE shall mediate communication between sets of TOE 
network interfaces, between a network interface and the TOE itself, and between subjects in the 
TOE and the TOE itself in accordance with its security policy. 

Subject communication: The TOE shall mediate communication between subjects acting with 
different subject security attributes in accordance with its security policy.  

Trusted channel: The TSF must be designed and implemented in a manner that allows for 
establishing a trusted channel between the TOE and a remote trusted IT system that protects the 
user data and TSF data transferred over this channel from disclosure and undetected modification, 
and prevents masquerading of the remote trusted IT system. 

At the OS level, we can only partially consider the two latter objectives since the subjects are 
generally defined at the application layer. Thus, to fulfil the objectives, we must rely on these 
definitions that are use-case specific. 
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On the overall, the security objectives that are listed by the OSPP are (purposely) specific. On the 
opposite on Contiki, we focused on more general aspects without which we cannot achieve these 
specific objectives. Namely, we verified critical components of the operating system that are used 
widely by the other modules (thus with a high impact in case of a problem), and we also worked on 
complete OS instances in order to provide some way to check the absence of runtime errors (that 
can impact any of the previous objectives). 
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Chapter 3 Overview of used tools and methods 

In this chapter, we present the methods and the tools that we have used to verify different aspects 
and parts of the system. We first present the tools we have used for the verification of functional 
properties, and then the tools used for verification of absence of runtime errors. 

3.1 Verification of functional properties 

The verification of functional properties consists in verifying that a module or a program does the job 
it is supposed to do. Most of the time this kind of verification is done by testing programs. For 
example, the Contiki project contains different tests to check that different protocols correctly work.  

During the VESSEDIA project, we mainly applied static analysis to check this kind of properties. We 
used the WP plugin of Frama-C which is a deductive verification plugin based on Dijkstra’s weakest 
precondition calculus. This plugin receives as an input a list of function annotated with their contract 
(that expresses what they are supposed to do) and other annotations to guide the proof process. 
From this input, the plugin generated what we call verification conditions, that are formulas that are 
then verified (or not) by SMT solvers. During our different experiments, we have used different SMT 
solvers, namely Alt-Ergo, CVC3, CVC4, Z3 and E-prover. 

This kind of verification is quite hard to perform. Meanwhile, as we will detail later, we have made 
some experiments in order to make it easier, and we also provided a way to check that client module 
respects their contracts at runtime using the E-ACSL plugin of Frama-C. From the annotations that 
are written in the code (or generated by Frama-C), E-ACSL can generate some C code that will 
check it at runtime. 

Summary of the tools: 

 Frama-C 

 WP plugin of Frama-C (deductive verification) 

 E-ACSL plugin Frama-C (runtime verification) 

 SMT solvers: 
o Alt-Ergo, 
o CVC3, 
o CVC4, 
o Z3, 
o E-prover 

3.2 Verification of absence of runtime errors 

In C, when some features are wrongly used, the ISO norm generally does not specify that some 
error will happen, most of the time they produce what is called an undefined behaviour. In such a 
case, the error is not guaranteed to be detected at runtime, thus they can for example corrupt silently 
the memory or open some security breaches. The detection of these problems is generally done at 
runtime using debuggers (and by compiling the program with some special parameters that makes 
verification easier), or using specific features of compilers called “sanitizers”. 

During the VESSEDIA project, we first focused on static analysis. First, we used the previously 
mentioned WP plugin, indeed, verifying functional properties also requires to verify the absence of 
runtime errors. Interestingly, it can be used to verify only the later. Basically, the idea is to provide in 
the contract of the functions only the properties that are needed to verify the absence of runtime 
errors, leading to simpler annotations (thus less work). This method called “minimal contracts” has 
been used as an alternative to the second method we have used: abstract interpretation using the 
EVA plugin of Frama-C. This is the most automated tool we have used during the project, while as 
we will explain later, preparing the project for this analysis is more complex and requires a good 
knowledge of the code base. Furthermore, we met some difficulties due to the features used in 
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Contiki and decided to also conduct some experiment for the verification of absence of runtime errors 
using runtime verification. 

For the verification at runtime, we again used the E-ACSL plugin of Frama-C, in combination with 
the RTE plugin of Frama-C that is used to insert some annotation for each operation that can cause 
a runtime error during execution.  

We also used the FlowGuard plugin to GCC. This plugin is used to instrument a program during 
compilation in order to check and enforce data-flow integrity at runtime. 

Summary of the tools: 

 Frama-C 

 WP plugin of Frama-C (with minimal contracts) 

 Alt-Ergo (SMT solver) 

 EVA plugin of Frama-C (abstract interpretation) 

 E-ACSL plugin Frama-C (runtime verification) 

 FlowGuard (dataflow integrity) 
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Chapter 4 Use case realization 

This chapter describes the verification done on different parts of the Contiki operating system. For 
each section, we give a description of the component or the goal of the corresponding verification, 
and then we explain the preparation of the component, the process of verification and expose the 
obtained results. Note that when the preparation or the process does not deserve an entire 
paragraph, it is eluded. 

Section 4.1 presents the use of minimal contracts to verify the absence of runtime errors in some 
low level modules of the OS. Then we present, the verification of absence of runtime errors in the 
AES-CCM module, first by using minimal contracts (Section 4.2) and then by abstract interpretation 
(Section 4.3). Then we consider the whole operating system, first with the use of abstract 
interpretation on a complete Contiki instance (Section 4.4), then using runtime verification with E-
ACSL (Section 4.5), and finally using FlowGuard for dataflow integrity (Section 4.6). In Section 4.7, 
we describe the different techniques we have used for the verification of functional properties on the 
linked list module of Contiki. Finally, we present the verification of the memory allocation module 
(Section 4.8). 

4.1 Absence of runtime errors in small modules (minimal contracts) 

Verifying the absence of runtime errors is a good way to guarantee the absence of some classes of 
security issues. While providing contracts for a full functional verification often requires an important 
effort, as well as the proof itself, it is often not necessary to have such complex contracts to guarantee 
the absence of runtime errors.  

Deliverable D1.1 reported on a first experiment of a feasibility for the verification of Contiki, using so-
called minimal contracts to perform the verification of absence of runtime errors of particular modules 
of Contiki using Frama-C and the WP plugin. The main advantage of this method is that verification 
with Frama-C and the WP plugin validates any correct use of the module. Whereas a verification 
using Frama-C and the EVA plugin on a complete program that uses the module only ensures the 
absence of runtime errors in the context of this program. The drawback is the fact that it is less 
automatic, since we have to write contracts and loop invariants in the source code. However, minimal 
contracts lead to simpler contracts than the ones required for the verification of functional properties. 

The modules verified for the Deliverable D1.1 are small modules (a few hundred lines of code) that 
are part of the core libraries of the operating system and the system part. 

Among this, we also conducted a verification of a bigger module in the networking stack, namely the 
SICSLOWPAN module on which the Task 5.2 relies. This module is an implementation of the 
6LoWPAN [2] protocol produced by SICS for Contiki. This protocol provides a way to implement the 
IPv6 that is suitable for low power equipment, for example for the IoT devices that are targeted by 
Contiki. This protocol is often use to build Low-power Lossy Networks, like the ones targeted by the 
6LoWPAN Management Platform analysed in the CEA’s use case. The SICSLOWPAN module relies 
on the AES-CCM* module, that we will describe in Section 4.2, to ensure security and authentication. 

4.1.1 Preparation 

As mentioned before, the analysis was done during the first months of the project for the Deliverable 
D1.1 by FOKUS, this verification was done on the Contiki 3 version of the OS. The corresponding 
contracts have been integrated to our verification of Contiki-NG. 

Here, the goal was to provide some contracts to the considered function, but only the properties that 
are necessary to guarantee the absence of runtime errors. Most of the time, these contracts only 
contain assigns specification (the memory locations that are modified by the function), properties 
about pointers validity, as well as bounds on integers (in order to avoid bad memory accesses). 
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However, the exact process of specification is related to the process of verification that we detail in 
next section. 

4.1.2 Verification process 

In the minimal contracts approach, the verification process strongly influences the work of 
specification. The process of verification is carried out in a bottom-up approach, we start the 
verification with the lowest-level functions (that generally do not have any dependencies) and as we 
verify these functions, we can progressively start the verification of their callers and so on. 

The verification process is guided by the use of the RTE plugin of Frama-C (in another tool, it could 
be guided by any component whose role is to generate the conditions necessary for the absence of 
runtime errors in the program). The principle, for the verification of a function, is the following: 

 Generate the assertions necessary to prove the absence of runtime errors with RTE, 

 Write a contract which allows to verify these assertions, 

 Start a proof with the WP plugin. 

Of course, that also means that a contract written for a function is not necessarily the final contract 
of the function at some point, as some caller function might need more information from the called 
function to guarantee its own absence of runtime errors. As an illustration, let us consider the 
following example: 

 

While verifying the absence of runtime errors in the abs function only requires to be sure that the 

parameter of the function is greater than INT_MIN (because of the assertion generated by RTE on 

line 8), the verification of the function user_code requires more information from the abs function, 

namely that the output value is positive (as the square root function waits a positive value). 

We will not further detail the minimal contracts approach, for this one could consider the Deliverable 
D1.1 of the VESSEDIA project. 

4.1.3 Results 

The results of this verification are equivalent to what was done for the D1.1. Some modules have 
been removed from Contiki 3 to Contiki-NG so we do not list them here.  

 For the following files, we built minimal contracts and verified them:  

o os/lib/crc16.c 

/*@ 

  requires val > INT_MIN ; 

  assigns \nothing ; 

  // ensures val > 0 ; 

*/ 

int abs(int val){ 

  if(val < 0){ 

    //@ assert RTE: val-1 >= INT_MIN ; 

    return –val ; 

  } 

  return val ; 

} 

 

int user_code(int val){ 

  return sqrt(abs(val)) ; 

} 

Figure 1 - A simple example with minimal contracts 
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o os/lib/ifft.c 
o os/lib/ringbuf.c 
o os/lib/ringbufindex.c 

 Besides these files we found that some files were trivial to analyse. No manual annotations 
were needed for them in order to make Frama-C prove the absence of run-time exceptions. 
These were:  

o os/lib/assert.c 
o os/lib/random.c 
o os/sys/energest.c 

 On the other hand, some files were intractable, i.e. couldn't be handled with Frama-C/WP 
due to implementation restrictions. These were, grouped by intractability reason: 

 validity of unsized-array not implemented yet:  

o lib/sensors.c 
o sys/procinit.c 

 \valid_function not yet implemented:  

o lib/aes-128.c 
o lib/ccm-star.c 
o lib/trickle-timer.c 
o sys/process.c 
o sys/rtimer.c 

 calculus failed on strategy for XXX behaviour YYY, all properties, both assigns or not 
because unsupported non-natural loop(s): try [-wp-invariants] option (abort):  

o sys/ctimer.c 
o sys/etimer.c 

The SICSLOWPAN module was partially verified by Quentin Molle during his internship at CEA. 
However, the verification is not complete. Apparently, this module of the networking stack was 
remarkably harder to handle than the other modules we had verified so far, even using only minimal 
contracts. The main reason is that there is a lot of type casting and that some functions are really 
long. Consequently, performing the verification requires to add a lot of annotations to guide the 
provers. Further investigation is necessary to understand if it is possible to handle this kind of module 
using minimal contracts. 

4.2 Absence of runtime errors in the AES-CCM module (minimal 
contracts) 

Contiki implements the Advanced Encryption Standard (AES), a symmetric encryption algorithm.  
AES was designed to be efficient in both hardware and software implementations, and supports a 
block length of 128 bits and key lengths of 128, 192 and 256 bits. In Contiki, only 128-bit keys are 
supported. In order to secure arbitrarily long data chunks, the AES-CCM block cipher mode of 
operation is also implemented in Contiki. In term of security, data encryption (AES) and 
authentication (CCM) is a very important ingredient of wireless communication in a network. Thus, 
a flaw in this component would be critical, and we have to ensure its security. 

4.2.1 Preparation 

As mentioned in Section 4.1.3, the AES-CCM contains a language construct that is currently not 
handled by Frama-C and the WP plugin. Thus to perform the analysis using minimal contracts we 
had to slightly adapt the source code. 

The reason why the AES and CCM modules need function pointers is that they must give the ability 
to replace the implementation proposed by the operating system with the hardware implementation 
proposed by the targeted platform when such a function is available, for performance reasons. So, 
instead of directly calling the function provided by the implementation of the OS, the module uses 
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some function pointers that either point to this implementation or to the hardware function provided 
by the platform.  

In this verification, we want to be sure that the implementation provided by the operating system is 
runtime error free (we do not expect to verify the hardware platforms). Thus we simply replaced the 
calls that were using functions pointers with the corresponding actual implementation in the operating 
system. 

Furthermore, in order to ease some part of the verification, we replaced some calls to the memset 

C function with an inline code that does the same job. 

4.2.2 Verification process 

The verification process is the same as the one described in Section 4.1.2. One difference is the fact 
that we also verified some caller examples built from the examples provided by the IEEE standard 
corresponding to the AES-CCM protocol IEEE 802.15.4 [3]. 

4.2.3 Results 

This module was verified by Alexandre Peyrard [4]. The absence of runtime errors has been 
established using the WP plugin of Frama-C. The verification of the 255 lines of code that compose 
the module required to write 103 lines of ACSL annotations. Some tests that were written previously 
as unit-tests of the module have also been specified and verified with Frama-C and its WP plugin. 

4.3 Absence of runtime errors in the AES-CCM module (abstract 
interpretation) 

While we succeeded in verifying the absence of runtime errors with Frama-C and WP for the AES-
CCM module, we also experimented the verification of absence of runtime errors with the EVA plugin 
of Frama-C. 

4.3.1 Preparation 

We analysed the module in isolation from the rest of the operating system. For this, we took the 
source written for the verification of the AES-CCM module with minimal contracts. We then 
generalized the tests in order to get verification independent of any input data. 

For example, for the AES module alone, from the following test: 

We built the following generalized test: 

  uint8_t key[16] = { 0x00 , 0x01 , 0x02 , 0x03 , 

                      0x04 , 0x05 , 0x06 , 0x07 , 

                      0x08 , 0x09 , 0x0A , 0x0B , 

                      0x0C , 0x0D , 0x0E , 0x0F };  

  uint8_t data[16] = { 0x00 , 0x11 , 0x22 , 0x33 , 

                       0x44 , 0x55 , 0x66 , 0x77 , 

                       0x88 , 0x99 , 0xAA , 0xBB , 

                       0xCC , 0xDD , 0xEE , 0xFF }; 

  aes_128_set_key(key); 

  aes_128_encrypt(data); 

Figure 2 - The AES test proposed in IEEE 802.15.4 
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In this test, the content of the key and the data, while being initialized, can have any (valid) value. 
Thus, when we analyse this program we are sure that if the plugin answers that there is no runtime 
error in the module, it does not depend on the content of the considered data. 

4.3.2 Verification process 

The EVA plugin of Frama-C had a push button approach here: we parameterized the analysis with 
the advised level of precision of the analysis and ran the plugin. 

4.3.3 Results 

The absence of runtime errors has also been proved using this method. While the minimal contracts 
where indeed (relatively) easy to write for this module, the EVA analysis remained more efficient 
here. We will further discuss this aspect in Chapter 5 about lessons learnt. 

4.4 Absence of runtime errors in the whole OS (abstract interpretation) 

The EVA plugin is meant to scale on large code bases. Thus we wanted to run this plugin on a 
complete Contiki instance in order to verify the absence of runtime errors on complete OS instances. 

An instance of Contiki is basically a configuration of the operating system, on a particular hardware 
platform, with some applications (defined as processes) on top of it. All these components are linked 
together during compilation. Thus, to analyse such an instance, we have to collect what is necessary 
to build it (which is indicated by the Makefile) and to give those files to Frama-C. 

4.4.1 Preparation 

4.4.1.1 Integration of the Frama-C analysis script 

The common way to verify real world software with Frama-C and the EVA plugin is to build a Makefile 
based on the one available in the corresponding project and to provide some rules for analysis. Here, 
we decided not to create a new Makefile but to directly integrate the Frama-C analysis scripts and 
Makefile rules to the original Makefile of Contiki to be more robust against the modification that could 
happen in Contiki. That happened to be efficient since porting this work from Contiki 3.0 to Contiki-
NG took less than a day, and we did not need to adapt our configuration due to the updates that 
have been done on Contiki since we ported the script. 

The Makefile provided in the folder analysis-scripts of Frama-C provides well configured rules 

for parsing, analysis with Frama-C and EVA, and some other plugins of Frama-C, as well as some 

predefined options that allow good results by default. Except for the clean rule that we modified to 

allow extension, we have not modified the existing rules of the Makefile. We only added new 
independent rules and pre-processor instruction that are specific to the Frama-C target. 

4.4.1.2 Selection of a platform and adaptation of the code 

  uint8_t key[16]; 

  uint8_t data[16]; 

  int i; 

  for(i=0; i<16; i++) { 

    key[i]=Frama_C_interval(0,255); 

    data[i]=Frama_C_interval(0,255); 

  } 

  aes_128_set_key(key); 

  aes_128_encrypt(data); 

Figure 3 - Generalized test for AES-CCM 
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As numerous platforms are available for Contiki, we started with the most popular one. For the 
analysis, we currently target the CC2538DK2 platform which is a common platform for the users of 
Contiki. The configuration of the platform is either the default one provided by Contiki or the one 
provided (if it is) by the configuration of the specific instance we are working on. 

Some special parameters are set to allow the parsing of Contiki by Frama-C. We added the path to 
the headers of the ARM-EABI distribution to the include path in order to avoid some type definition 
conflicts. We also forced the version of ARM to ARMv7 (which is the version supported by the 
Cortex-M3 on which CC2538DK is based). 

Second, we had to replace some hardware addresses in the source of Contiki when we analyse it 
with Frama-C. Indeed, the device drivers define a lot of physical addresses that allow interacting with 
the different devices of the platform. However, such physical addresses are considered as bad 
memory locations by default in Frama-C. An option of the kernel allows indicating to Frama-C that 
those are valid addresses. However, it is currently not precise enough (we can only give a single 
range of values, while we would like to have multiple ones). While Frama-C could be easily improved 
on this aspect, we decided, in a first time, to use volatile arrays to “simulate” those devices and to 
re-define the physical addresses as offsets in the array. 

4.4.1.3 Preparation of an instance 

Preparing an instance for analysis only requires the user to add a file analysis.mk in the folder of 

their project. Basically, this file is used to specify for each sub part of the project (if any), which files 
are necessary to compile it. For example, for the RPL-UDP example, two submodules exist: one for 
the server and one for the client. So the configuration file is as follows: 

ifeq ($(SUB), client) 

  FC_PROJECT_FILES=udp-client.c 

endif 

ifeq ($(SUB), server) 

  FC_PROJECT_FILES=udp-server.c 

endif 

We consider the above simple enough to be usable. Once configured, the analysis is run by using 
the following commands: 

$ make frama-c.parse TARGET=cc2538dk SUB=client (parsing) 

$ make frama-c.eva TARGET=cc2538dk SUB=client (Eva analysis) 

$ make frama-c.eva.gui TARGET=cc2538dk SUB=client (start Frama-C’s GUI) 

Note that it is necessary to indicate the platform for now even if it is only one that we support because 
we plan to provide similar way to configure the Makefile for other platforms. 

4.4.2 Results 

4.4.2.1 Analysis of alarms 

We were able to run Frama-C/EVA on the different examples available in the Contiki repository. 
However, we have not classified reported alarms as false or actual alarms, as we noticed that most 
of these alarms appear when the code uses the linked list and MEMB modules. Lists involve a lot of 
indirections since it is a linked data-structure and while it is better handled by Eva than by WP, it is 

still a complex analysis to perform. The MEMB module performs upcasts from void* to the types 

expected by the client modules, which tends to be complex to analyse in some situations (in 
particular in combination with lists). 

To get those results, we had to make sure that the debug mode was deactivated in Contiki, because 
part of the code, which was triggering some fatal warnings have prevented us to really analyse the 

                                                

2 http://www.ti.com/tool/CC2538DK 

http://www.ti.com/tool/CC2538DK
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actual features of Contiki. We did not get further on this aspect of the analysis as we detail in Section 
4.4.2.3. 

4.4.2.2 Dealing with recursion 

One blocking problem currently is the fact that the scheduler of Contiki is a recursive algorithm. 

Basically, the execution of a Contiki process is resumed using a function named call_process, if 

the corresponding process has to stop, exit_process is called which in turn can also use 

call_process on the other processes to make them react to the end of the first process. However, 

recursive calls are not yet supported by Frama-C/EVA, resulting in a degeneration of the analysis. 
We can force the analysis to continue, but the results are not sound. 

We identify two ways to deal with this part of the code. Either to use a new option of Frama-C called 
inline-call, or to rewrite this part of the code without recursion. 

The first option consists in syntactically inlining a call. For example, here, we would replace the calls 

to call_process with its code. That would not totally remove recursion, but since this recursion is 

finite, we could repeat the operation until we reach the end of the recursion because the number of 
processes is statically defined. If we cannot reach such an end, it probably means that something 
bad is happening in this part of the code or that our precision is not sufficient during the analysis. 

The second option is to rewrite this part of the code. However, it is a complex task that is in a highly 
critical part of Contiki. Moreover, we would have to compare the behaviours of the current and new 
code to ensure that they have the same behaviour, which is hard, due to the lack of unit-tests in the 
Contiki project. 

4.4.2.3 Difficulties with the configuration of the instances 

The building process of Contiki (and the different Makefiles that it involves) is more complex that it 
might appear at first sight. During the second part of the project (M18-M36), we worked on two new 
aspects, first precisely identifying the software/hardware interface of the operating system and 
second being sure that we were dealing with possible instances of the operating system. 

The hardware platform API is under-documented. In fact, even if in Contiki-NG some functions are 
now indicated to be necessary to implement in order to provide a particular hardware implementation 
that can run Contiki, for some specific tasks, it is not the case, mainly for tasks that require the 
operating system to communicate with drivers. In order to identify these interactions, we modified 
one of the scripts of the continuous integration of Contiki to catch the symbols that are associated to 
platform specific code or platform independent code. 

These steps helped us to reveal some subtle bugs and code smells in the operating system and to 
discover that some pre-processor directives were not correctly set in different parts of the operating 
system and could lead to incoherent instances. Thanks to these different experiments, we were able 
to correctly parse the operating system with Frama-C. However, due to the size of the code to 
analyse and maybe to other changes in the new versions of Frama-C and EVA, the analysis on this 
new instance become extremely long to execute. 

At this point, we decided not to invest more time in this analysis in order to experiment runtime 
verification and the ability of the VESSEDIA tools to instrument and execute instrumented instances 
of the operating system. 

4.5 Absence of runtime errors in the whole OS (runtime verification) 

In the Contiki code base, different tests are executed in simulation. The simulation can take two 
different forms: either the code is compiled to x86 machine code where the different input and output 
operations are bound to the libraries of the host system (and thus we basically execute Contiki as a 
“normal” program on top of Linux) or the code can be compiled for the Cooja simulator on which we 
can build networks of Contiki instances and simulate interactions between the different nodes. The 
latter is of course the most interesting as it allows executing a bigger part of the operating system. 
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In order to increase the level of confidence provided by these tests, a possibility is to add, using 
Frama-C and its RTE plugin, some annotations to check the different operations that can lead to a 
runtime error and to use the E-ACSL plugin of Frama-C to generate executable code from these 
annotations in order to check that everything is fine at runtime. 

In this section we report on the experimentation we have made in this direction and the limitation we 
have met in the case of the Cooja simulator. 

4.5.1 Preparation 

In order to instrument an instance of Contiki, we need to parse the corresponding source code using 
Frama-C, most of the work was already done for the work we presented in Section 4.4. From this 
source code, Frama-C can generate a single C file containing all the source code of the instance (as 
well as the annotations that could have been added by the different analysers). 

Once this standalone file is generated, it can be instrumented by the E-ACSL plugin. The 
configuration of the plugin is somewhat standard. The only little subtle was to use full memory model 
of E-ACSL, since optimizing the runtime checking in the case of Contiki is complex (Contiki does a 
lot of tricky operations with memory), thus optimization only costs time without bringing any 
advantage. 

Now, it is necessary to distinguish two cases: 

 Instrumentation for an execution on top of Linux, 

 Instrumentation for an execution on top of Cooja. 

The first case is mostly standard, in fact the only problems we had to face were due to the compilation 
process of Contiki that was including files during the compilation process that were not necessary. 
While the linker was able to remove the corresponding symbols, once instrumented it was not 
possible anymore and some other symbols (dependencies) that were not included were then not 
found during the link. 

The second case is more complex. In Cooja, the execution of the instances is done by loading the 
operating system as a shared library, the different high level functions of the operating system are 
then called from Cooja at each tick of the timer. Cooja is written in Java, while Contiki is written in C. 
Thus, a particular target of Contiki is dedicated to Cooja and includes Java Native Interface (JNI) 
functions that can be called from the Java code of Cooja. The instrumentation of libraries is not the 
most common use case of E-ACSL, so we had to explore how to do it correctly. 

We proceeded in two steps. First, we took back the work that was done to execute Contiki on top of 
Linux, and we slightly modified the example in order to build it as a library that we loaded and 
executed from a simple C code. And once this work was done, we started to adapt the Contiki Cooja 
target with the same method. 

To be able to perform the instrumentation of the memory and in particular to build the shadow 
memory, E-ACSL needs to know the location of different parts of the memory layout, namely the 
stack, the thread local storage and the global storage (in the case of Contiki, heap is not a concern 
since there is no dynamic allocation). Since we cannot directly obtain all information by looking at 
the variables of the program, we modified E-ACSL in order to load the locations of the different 

storages from the memory map of the executable as provided by the Linux /proc/PID/maps. 

Then, we tried to transpose this method to the Cooja simulator. That requires more configuration on 
the E-ACSL side. Indeed, we want to check the behaviour of the operating system. However, as we 
previously mentioned, the Cooja target adds some JNI functions that we do not want to instrument 
since they are not really part of the operating system itself. The E-ACSL plugin has thus been 
improved so that we can exclude some functions in the instrumentation process. Consequently, we 
were able to exclude the JNI functions. Finally, we met some blocking problems with this 
instrumentation that we will further detail it in Section 4.5.3. 
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4.5.2 Verification process 

The verification process is simple. In fact, it basically consists in executing the existing tests of Contiki 
except that now every runtime error whose detection is supported by E-ACSL is necessarily 
detected.  

4.5.3 Results 

4.5.3.1 Runnable Examples 

We were able to instrument three different examples from the Contiki code base to run them on top 
of Linux. These three examples are: 

 The Contiki hello-world (that comprises a pingable IPv6 stack), 

 The CoAP example server, 

 The MQTT client. 

Now these examples should be stress tested with the instrumentation to determine their robustness.  

4.5.3.2 Detected problems in Contiki and the E-ACSL plugin 

The parsing and building phase of the instrumented operating system allowed identifying different 
problems in both the operating system and the tool.  

In Contiki, this is mainly related to the building process of the operating system that compiles more 
code than needed because of some missing static configuration parameters. 

We also met some bugs during the generation of the E-ACSL instrumentation, which have now been 
fixed by the Frama-C team. 

4.5.3.3 Instrumentation of libraries with E-ACSL 

Instrumenting and loading libraries with E-ACSL allowed identifying new opportunities to improve 
the E-ACSL plugin, and more precisely the handling of shared libraries. Loading external libraries, 
either instrumented or not, makes the tracking of the memory more complex. In the case of Contiki 
for example, the original way of tracking the different memory storages was not compatible with the 
loading of the operating system as a library. 

Basically, it seems that some kind of introspection is necessary in order to have as precise memory 
locations as possible. 

4.5.3.4 Problems related to the loading of libraries from Cooja 

We were not able to execute an instrumented instance of Contiki in Cooja. In fact, as we mentioned 
before, we need some kind of introspection to be able to determine where the different storages are 
in memory. The basic version (without Cooja) uses the mapping provided by the host operating 
system for this purpose. However, such a method was finally inapplicable in the case of a loading 
from Java. 

Indeed, if we collect this information, we get the memory layout related to the Java Virtual Machine 
(JVM) and not the one related to the executed program. For this, the JVM creates some memory 
allocation in the heap and then manages the execution stack by itself (and there is probably an 
equivalent mechanism for the different other storages). The location of this allocation cannot be 
obtained from the JVM, and that would be considered as a security breach since one could probably 
attack a Java program thanks to this information. Knowing the location of the different storages of 
the library should however not be critical (note that it should be carefully checked) at least if this 
information remain in the memory of the shared library. 

Thus, E-ACSL probably needs to create a more integrated introspection that does not rely on the 
host program/operating system, in order to be as independent as possible from them. 
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4.5.3.5 General conclusion on runtime verification of the whole OS 

While we succeeded in executing the instrumented operating system on top of Linux, it did not allow 
identifying any critical bug. Indeed, most of these tests are not intensive enough to really stress test 
the system and visit a large part of the code of the operating system. 

It would have been more efficient to be able to run dozens of instances of Contiki to push the OS to 
visit different parts of the code, but the unexpected difficulties due to the JVM would require quite a 
lot of work to find a robust solution. 

4.6 Dataflow integrity 

4.6.1 Preparation 

Instead of directly instrumenting the Makefile of Contiki with the rules and options related to the 
Flowguard tool, we took advantage of what we had already done with Frama-C for the generation of 
instrumented files. That is to say: we used Frama-C to directly generate a standalone file containing 
the complete code of the operating system. 

Once this file is generated, the Makefile provided with Flowguard can be used directly. 

4.6.2 Results 

We were able to instrument the same examples mentioned in Section 4.5.3.1, again these examples 
should be stress-tested with this instrumentation. 

4.7 The linked list module (deductive and runtime verification) 

In this section, we present four published studies about the verification of the linked list module of 
Contiki. The first one is the use of a companion ghost array to model the linked list and the 
corresponding formal verification performed with Frama-C/WP [5], the second is the adaptation of 
the corresponding ACSL specification to make it executable using the E-ACSL plugin of Frama-C 
[6]. As this verification was hard to perform we tried to improve it through two different ways: we have 
made another proof with another approach using logic lists for modelling [7]and we have improved 
the ghost array version in order to remove the need for interactive proof [8]. 

4.7.1 Overview of the linked list module 

The list module is required by 32 modules and invoked more than 250 times in the core of the OS. 
The linked list module is a crucial library in Contiki. Its verification is thus a key step for proving many 
other modules of the OS. 

 

 

Figure 4 - The linked-list API of Contiki 
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The API of the module is given in Figure 4 - The linked-list API of Contiki. Technically, it differs from 
many common linked list implementations in several regards. On one hand, while in most 
implementations a function of the API receives a pointer to the first element of the list and returns 
the modified list, in Contiki the API receives a double pointer, which is a pointer to some handler 
(which is a pointer to the first element of the list) that identifies an existing linked list. Thus, rather 
than returning the new list after some modification, the function directly modifies the pointed handler. 

In Figure 5 - A linked list in Contiki, the pointer that we give to the function is pLst, it points to the 

handler root that itself points to the first element of the list A. 

 

Figure 5 - A linked list in Contiki 

On the second hand, being implemented in C (that does not offer templates), Contiki uses a generic 
mechanism to create a linked list for specific field datatypes using dedicated macros. The pre-
processor transforms such a macro into a new list datatype definition. To be applicable for various 

types, the common list API treats list elements via either void* pointers or pointers to a trivial linked 

list structure, and relies on (explicit and implicit) pointer casts. 

Third, Contiki does not provide dynamic memory allocation, which is replaced by attributing (or 
releasing) a block in a pre-allocated array. In particular, the size of a list is always bounded by the 
number of such blocks, and their manipulation does not invoke dynamic memory allocation functions.  

Fourth, adding an element at the start or at the end of a list is allowed even if this element is already 
in the list: in this case, it will first be removed from its previous position. Finally, the API is very rich: 
it can handle a list as a FIFO or a stack, and supports arbitrary removal/insertion and enumeration.  

For all these reasons, the linked list module of Contiki appears to be a necessary but challenging 
target for verification with Frama-C/WP. 

4.7.2 Preparation 

Here, we are interested in the verification about functional properties of the linked list module, thus 
we need to provide contracts and invariant written in ACSL to specify the behaviour of each function. 
However, finding the good representation to reason about the different elements of a linked list is 
not this trivial as linked data-structures are known to be hard to handle. We experimented two 
different ways to model the lists. The first one relies on ghost code, the second on ACSL logic lists.  

4.7.2.1 Using ghost arrays 

Ghost Code 

Before we describe the approach we used for the verification, it seems to be important to introduce 
briefly what is ghost code. Ghost code is, in Frama-C (and ACSL)3, some regular source code that 
is introduced in the code we want to verify using ACSL annotations. The purpose of this type of 
annotations (that contain standard C code) is to ease the verification by saving some useful 
information that require computation in some variable, thus, transforming some implicit properties 
(that would require potentially a lot of reasoning) into explicit properties since they are directly 
modelled by variables. Thus, ghost code can observe the actual source code but must not modify its 
behaviour. 

                                                

3 Ghost code is a general notion in verification, and many tools propose such a feature, here we concentrate 
on how it is used in Frama-C 
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A ghost variable can be modified and read in ghost code, it cannot be used (neither read nor written) 
in the actual code. An actual variable can be read (observed) in ghost code but cannot be written 
since it would mean that we are modifying the behaviour of the program from ghost code. 

For the verification, we use a ghost array to model the list we are considering in the different 
functions. Some ghost code is added to mirror the operations that are done in the actual code. 

Ghost Arrays to model linked lists 

Since reasoning about arrays is common and quite easy using Frama-C/WP, an appealing idea is 
to model lists using companion ghost arrays that contain the elements in the list at any moment. 

Reasoning about linked data-structures such as lists generally requires to reason by induction since 
we, only knowing the C structure, do not have a global view of the data structure. For example, with 
lists, the C structure only mentions the first element of a given list and then refers to the other 
elements using a pointer. So, we basically do not know how many of them exist. Thus, to state a 
property P about a list, we have to consider two cases: either the list is empty or the list contains an 
element. In the second case, we generally say that some property holds about the first element and 
then that P must hold on the remaining part of the list. 

For verification, Frama-C/WP relies on Satisfiability Modulo Theories (SMT) solvers, in order to 
maximize automation. However, reasoning by induction is not possible for most of the SMT solvers, 
thus inductive properties are generally not handled very well. Here, we propose to define equivalence 
between the list and an array. Defining this equivalence still requires writing an inductive predicate, 
but once it is done, most interesting properties can be expressed on the array without requiring 
induction. 

Figure 6 - A linked list modelled with a ghost array illustrates the idea of the equivalence we state. 
For a list starting with the cell A, and ending at an (excluded) bound, we determine a starting location 
in the companion ghost array that models it. Each consecutive elements of the list must be 
(contiguously) found in the companion array in the same order as we can find them in the actual list.  

 

Figure 6 - A linked list modelled with a ghost array 

Of course that means that any modification performed in the list must be reflected in the companion 

array. For example, an operation like list_push first ensures that the element in not in the list by 

removing it (if it is not inside, the operation keeps the list as it is) and then adds it at the beginning 
of the list. Thus we have to perform similar operations in the companion array. 

The verification mainly consists in proving that the equivalence is always maintained during the 
different operations on the list, which allow deriving the important properties of the list API: 

 Removal operations only removes the provided element, 

 Adding an element to the list ensures that the element is at the expected location, 

 Items unicity and validity is maintained. 

In order to ensure that the equivalence relation is maintained, we have to reason about an inductive 
property. To maximize automation, we have added 24 lemmas that are proved by induction 
interactively with the Coq proof assistant, allowing avoiding inductive reasoning for all the other 
proofs. 

More details can be found in the article accepted at NASA Formal Methods 2018 about this 
verification [5]. 
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While verifying the module with the ghost arrays approach allowed us to verify most functions of the 
module (see details in Section 4.7.4), dealing with separation was a hard task. The reason is mainly 
that ghost arrays are not differentiated of the actual memory of the program, thus requiring from us 
to write a lot of guiding annotations to guide the proof. Thus a more abstract model of the list could 
be considered. 

4.7.2.2 Using logic lists 

Since modelling linked lists with arrays produced a too concrete model (thus hard to differentiate 
from the actual data-structures for the verifier), one could use a more mathematical view. Recently, 
the support of ACSL lists has been greatly improved in the WP plugin of Frama-C, thus we tried to 
perform a similar verification using this logic type. 

ACSL logic lists 

This datatype, denoted by \list<type>, is parameterized by type, the type of a list element. It 

has two usual constructors: \Nil (also written []), the empty list, and \Cons(type, 

\list<type>), that builds a new list \Cons(e, l) , also denoted by e::l, from a given list l 

and an element e added at the beginning. Instead of \Cons(item, \Nil), a singleton list can be 

written [|item|]. It also provides some other features, for example concatenation (denoted by l1 

^ l2), length, nth element, etc. In our case, we use logic lists of type \list<struct list*>, that 

will contain the addresses of elements of the linked list. 

Logic lists have the advantages to make specification more concise (often avoiding to create 
universally quantified variables) and to be natively handled by most SMT solvers thus leading to 
efficient automatic proof. 

Logic lists to model linked lists 

Again because of the recursive nature of the C data-structure, we need to state the equivalence 
between the C structure and the logic list that models it using an inductive definition. Figure 7 - A 
linked list modelled with a logic list gives again the general idea of the equivalence which is quite 
similar the ghost array version. The two main differences are first the fact that we do not have to 
consider any index and second, of course, that we use here a logic type and not an actual C type. 

 

 

Figure 7 - A linked list modelled with a logic list 

On the aspect of the specification, this method has one small drawback. While with the ghost 
approach it was easy to bind the linked list to its modelling value through ghost variables, we do not 
have this possibility with ACSL logic lists. Most specification languages allow to quantify variables 
on a complete contract for this purpose, this is however not the case of ACSL. Thus, we created a 
logic function that can build, from a C linked list, the corresponding logic list. While writing this 
function is quite easy (and is in fact close to the inductive equivalence predicate), it forced us to write 
more lemmas to help the verification as we will detail in Section 4.7.3.1 and further in Section 4.7.4.2. 

More details can be found in the article accepted at the 34th Symposium on Applied Computing (SAC 
2019) [7]. 

4.7.3 Verification process 

In this section, we detail some aspect of the verification process. The Section 4.7.3.1 does not aim 
at being complete. We detail some aspects of the methodology that are necessary to understand 
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the results exposed in Section 4.7.4. The two remaining sections gives however some more details 
about two methods that have been developed during the verification of the module. 

4.7.3.1 General remarks 

When verifying such a module that requires inductive predicates it is common to use lemmas to help 
verifiers. Indeed, reasoning about these predicates generally requires to reason carefully by 
induction, and SMT solvers are bad at this work. 

Thus, a common way to proceed, in order to maximize automation is to state some lemmas that 
allows to directly deduce properties from the inductive predicates. These lemmas can be directly 
instantiated without requiring reasoning by induction (thus they can be used efficiently by SMT 
solvers), while the proof of these lemmas (requiring reasoning by induction) are done using a proof 
assistant like Coq [9]. The idea is then to declare the minimal set of lemmas that are sufficient to 
complete the rest of the proof automatically, as writing an interactive proof is time consuming task. 

4.7.3.2 Auto-active proof 

As interactive proof is a time consuming task, we want to get rid of it. A way to do that is to use what 
is called “auto-active proof”. In fact, auto-active proof is already the method that is classically used 
to prove programs with Frama-C and WP, as it consists in providing additional annotations (and note 
only function contracts) to guide the verifier. However, most of the time, only assertions and loop 
invariant are used in the case of Frama-C and WP. But, one can go further with auto-active proof by 
using more ghost code in order to provide for example induction schemes to prove inductive 
properties. A classic example used in other tools is to create what we call “lemma functions” that are 
basically ghost functions that act as lemmas that we can call at the right place to ease the proof 
process. 

By using this method, we were able to perform the entire proof performed with the ghost arrays 
without writing any Coq proof, thus maximizing the automation of the proof process. We also 
succeeded in doing it for the MEMB module (presented in Section 4.8) and the book ACSL by 
Example [10]. 

For more details about this work, please refer to [8]. 

4.7.3.3 Runtime verification 

While the formal verification of the module was necessary, verifying completely client modules with 
WP might be too hard, or unnecessary. For this one could rely on runtime verification. However, 
some constructs used in the specification (namely inductive predicates and axiomatic definitions) 
are not currently handled by the E-ACSL plugin of Frama-C. For them, we need to find a solution to 
get an executable code. 

Instead of providing a way to generate an executable code from inductive and axiomatically defined 
properties, we propose to define a new version of the specification that is executable and to prove 
its equivalence with the previous one. In the original specification, two properties were defined using 
ACSL constructs that are not supported by E-ACSL: the equivalence between the list and its 
companion array (using an inductive predicate), and a function that specifies the index of a particular 
element in the list (using an axiomatically defined function). 

For both of these properties, we define: 

 A new predicate/function expected to be equivalent to the one used for the proof, 

 A lemma that states the equivalence between the non-executable and executable version for 
any input. 

The corresponding lemma is interactively proved using the Coq proof assistant. We then build a new 
specification for the linked list module which is the same as the previous one except that we have 
replaced each occurrence of the features that cannot be translated by the equivalent executable 
versions. As a result, we obtain an executable specification without breaking the previous proof 

results. For example, starting from the inductive predicate linked_n that inductively defines the 

equivalence between a list and its companion array, we created a new version linked_n_exec, 
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which is proved to be equivalent. In the specification, each use of the linked_n predicate is 

replaced by a use of the linked_n_exec predicate. 

Note however that this approach is currently not directly supported by E-ACSL. Our proposal in [6] 
is to provide a way in E-ACSL to specify that we need an equivalent version of some property in 
order to let the tool generate the required lemmas and to automatically replace occurrences of the 
property in the specification during the generation of the executable version of the specification. 

4.7.4 Results 

4.7.4.1 Bug found and fixed in list_insert 

The verification helped to identify an inconsistency in the function list_insert, with respect to the 

assumptions of other functions. This function adds an element new_item to a list just after a given 

element prev_item. If the element prev_item is NULL, the function directly calls list_push, 

meaning that if the element is already there, it is removed and then added to the start. However, if 

prev_item is present in the list, the function directly adds new_item after prev_item without 

removing a previous instance of new_item from the list (if any). It shows that the uniqueness 

property is in general not preserved by the function, but in some cases it is. Thus this function does 
not respect a contract consistent with the other functions. 

The issue can be found on the GitHub of Contiki-NG4. 

In the entire code of Contiki, we have found only one call to list_insert and not a single one in 

the core part of the system. 

Unit tests may identify such a bug. However, one difficulty with functional tests (that is also the cause 
of many security bugs) is the fact that we tend to test valid scenarios rather than invalid ones. 

4.7.4.2 Comparison of the methods 

Proved functions 

Table 2 - Summary of proved functions with each method 

Function Ghost arrays Ghost arrays AA* Logic lists 

array_pop Proved Proved Unnecessary 

array_push Proved Proved Unnecessary 

array_find Proved Proved Unnecessary 

list_add Proved Proved Proved 

list_chop Proved Proved Proved 

list_copy Proved Proved Proved 

list_head Proved Proved Proved 

list_init Proved Proved Proved 

list_insert Not proved Not Proved Proved 

list_item_next Proved Proved Proved 

list_length Proved Proved Proved 

list_pop Proved Proved Proved 

                                                

4 : https://github.com/contiki-ng/contiki-ng/issues/254  

https://github.com/contiki-ng/contiki-ng/issues/254
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Function Ghost arrays Ghost arrays AA* Logic lists 

list_push Proved Proved Proved 

list_remove Proved Proved Proved 

* AA: auto-active. 

It is important to notice that “array_*” function do not need to be proved for the logic lists version, 

indeed as we do not use ghost variables we do not have to update them and consequently no 
function is needed for that. 

Furthermore, while it was expected that list_insert would be too hard to prove with ghost arrays 

because of memory separation, we succeeded in proving it using the ACSL logic lists. 

Proof efficiency 

Table 3 - Summary of proof figures (excluding the list_insert function) 

 Ghost arrays Ghost arrays AA Logic lists 

Generated goals 805 1631 503 

Interactive proofs 24 1 33 

Automatic proofs 781 1630 470 

% of automation 97 100 (*) 93 

Total time 24 min 21 min 5 min 30 

Time per goal 1.8 s 0.77 s 0.7 s 

To measure proof efficiency, we exclude the list_insert function that was not proved with the 

versions with ghost arrays. For the ghost arrays + auto-active version, we consider a hundred 
percent proof automation. Indeed, while one interactive proof appears, the corresponding proof is in 
fact a Coq “one-liner” that relies on the structure of inductive predicate, that is to say: it is based on 
an axiom. Thus, such a proof should be done for free by WP since it is trivial to generate. 

Discussion 

The proof with logic lists was the most efficient. Indeed, this verification generates the less proof 
obligations and at the same time, the automation remains quite good and the automatic proofs are 
fast. It is coherent with the fact that this proof requires less guiding annotations and the fact that the 
logic lists are natively handled by SMT solvers, making their job easier. However, this method is also 
the one that requires the most interactive proofs and these proofs were harder to perform than the 
ones we had to do for the proof with ghost arrays without the full auto-active methodology. 

Auto-active proof allowed us to reach a full automation of the proof. However, this version is also the 
one that requires the most guiding annotations. Note that while the figures seems to indicates that it 
doubles this work compared to the base version, it is in fact not the case, for more details we refer 
to the corresponding article [8].  

Determining if the ghost arrays with full auto-active proof or the logic lists version is the more suitable 
for an analysis, that is to say: concrete model or mathematical model, is a matter of skills available 
in the verification team. Basically, in a team where nobody masters a proof assistant, the concrete 
approach is probably the most suitable as it allows to reach a complete automation without requiring 
to learn the use of another tool in addition to Frama-C and WP. In a team where an expert of Coq or 
Isabelle is available the mathematical view would probably allow to get faster results, and simpler 
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specification. Furthermore, some proofs that are today extremely hard with ghost arrays (in our case, 

the list_insert function) were realized quite easily with the logic lists approach. 

4.7.4.3 Ghosts and separation 

Most of the annotations we had to write to guide the proof were due to memory separation (as 
opposed to VeriFast, Frama-C/WP does not use separation logic). While a part of these required 
annotations, namely the separation between the different elements of the list, were expected to be 
necessary, some of them were unexpected and unnecessarily complex to handle. Indeed, we often 
had to state that the ghost memory (that represents the list) and the elements of the list are 
separated. 

While for verification, this need is inconvenient, from the current Frama-C’s implementation of ACSL, 
it is necessary. Indeed, ghost code must not interfere with the actual code, but this fact is not checked 
by Frama-C. Thus, a tool that has to deal with ghost cannot just assume that the separation exists: 
this has to be checked explicitly. 

What we propose is a refinement of the notion of ghost in Frama-C. Instead of indicating that some 
variable is ghost or not, we would be able to define more precisely what belong to ghost or not even 

in a single variable, essentially in the same way we can use the keyword const in C. 

For example, in: 

//@ int * ghost p1 ; 

//@ int ghost * ghost p2 ; 

The pointer p1 is a ghost pointer to a memory location that is not ghost. So in a ghost code, p1 can 

be modified but the pointed memory location *p1 cannot. On the opposite, p2 is a ghost pointer that 

points to a ghost memory location so both p2 and *p2 are mutable in ghost code. 

A plugin has been developed (and is part of deliverable D2.3) and is able to verify this kind of property 
using typing. The plugin ensures that the ghost does not interfere with the actual code by a first 
analysis. And then, we can use the fact that we know that the property is ensured and provides more 
assumptions to the plugin that further analyses the source code. For example, we could add an 
assumption in WP that states the fact that ghost and actual memory areas are separated. 

4.7.4.4 Logic lists and auto-active proof 

It could be appealing to join the best of the three methods that we have used so far, that is to say: 
using a full auto-active proof approach with logic lists. However, with the current state of Frama-C, 
this is impossible. Indeed, to be able to perform such a proof, it is necessary to have the possibility 
to use variables with logic types in annotation, which is currently not possible.  

ACSL is supposed to authorize that but currently the kernel of Frama-C (and the abstract syntax 
tree) cannot accept such annotations. 

4.7.4.5 Logic lists and runtime verification 

While, thanks to recent improvement of the platform, it is almost directly possible to generate 
executable code from the specification using ghost arrays with the E-ACSL plugin of Frama-C, it is 
currently unclear whether it could be done with logic lists as the plugin currently does not support 
this data-structure. 

4.7.4.6 Observation function 

Finally, let us elaborate on another modelling possibility. It could be possible to use observation 
functions to model the content of the list. Instead of building a list, or an array that represents the 
actual list that is currently manipulated by some function, we define a function that associates to 
each valid index, the element that can find at this location in the list. 

This solution could combine both the advantages of the abstract list and the ghost view. Indeed, 
while the view is extremely abstract, allowing an efficient proof with automatic solvers if the suitable 
lemmas are provided, it does not require a complex data structure, thus the specification currently 
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seems to be easy to transform into an executable specification. However, we have not currently tried 
to prove mutating algorithms with this approach, so this is still a work in progress. 

4.8 The memory allocation module (deductive verification) 

The MEMB module is a memory allocation module. It allows allocating and deallocating chunks of 
pre-allocated memory blocks. The idea is to first allocate a certain number of resources in a static C 
array and then to acquire and release them on demand. Basically, any module that needs to manage 
some memory resources relies on this module, making it critical. 

4.8.1 Preparation 

Frédéric Mangano verified this module during his internship at CEA [11]. This verification was a 
functional verification performed with the WP plugin of Frama-C, so it required annotating the 
program with an ACSL specification. The main challenge was to deal with the genericity of the 
module, since it allows managing any kind of C objects.  

The verification of the 77 lines of code that compose the module required to write 150 lines of ACSL 
annotations, 115 of them being function contracts. Some test client functions were written to validate 
the specified behaviour. It allowed to check that correct caller functions were indeed proven correct, 
as well as to check that we were unable to prove incorrect function calls, which gives some 
confidence in the consistency of the specification. 

4.8.2 Results 

While most interesting properties have been proved: 

 The module correctly keeps track of free and allocated blocks, 

 The different blocks of memory are spatially separated, 

 We cannot allocate more memory than what we have. 

Some properties cannot currently be proved with Frama-C and the WP plugin due to unsupported 
ACSL features, namely the notion of fresh memory location, or the clause frees of a function 
contracts that allows specifying that a function makes previously allocated memory location allocable 
again. 

This work was easy to integrate into Contiki-NG. We only had to update the few proofs that are 
written in Coq, and that was due anyway to the new versions of Frama-C and not to Contiki. 
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Chapter 5 Lessons Learnt 

5.1 Global analysis of a configurable system 

Analysing a highly configurable system is a hard task. And most of the difficulties we had to face for 
the parts of the use case presented in Sections 4.4, 4.5 and 4.6, as well as some of the remaining 
aspects that we present in Section 5.4, are due to configuration problems and the extreme 
complexity of the building process of such a system. While the absence of unit tests on the platform 
is certainly also a big problem when starting formal analysis of such a system, we strongly believe 
that an important research topic is the verification of configurable system. Such problems are 
currently not addressed by the VESSEDIA tools. 

5.2 On the aspect of runtime verification and libraries 

Our experiment on the runtime verification of the operating system (presented in Section 4.5) allowed 
identifying some conditions that a runtime verification tool should satisfy when instrumenting a 
system, and in particular when such a system is, or uses, a library. 

It seems to be important that the instrumentation should be local to the verified system as much as 
possible and that some kind of introspection is necessary to be able to get all required information 
about the execution without relying on an external tool, or at least not more than the compiler used 
to build it. Maybe a good solution in the case of E-ACSL, for example, should be to add information 
using a dedicated plugin to the compiler. 

However, remaining local is maybe not so trivial. We build system using libraries in order to interact 
with them and thus, we have to deal with these interactions that may for example make the frontier 
(in memory) between those components not as impermeable as we would like.  

5.3 The difficulty of deductive verification 

While deductive verification remains difficult, we strongly believe that it becomes more and more 
affordable. SMT solvers are powerful tool and for task that they are usually bad at, either some 
experimental tools start to provide new solutions (for example new SMT solvers able to perform 
simple inductive proofs) or the verifiers that rely on them can be used efficiently as powerful 
workarounds. 

The auto-active approach that we have experimented with, while perfectible, seems to be a very 
promising way of doing deductive proof. Indeed, one of the hardest part with tools like the WP plugin 
is the fact that the SMT solvers on which they rely are highly heuristics, thus making maintenance 
sometimes hard when new versions of the tools are published. Auto-active proofs make all of this 
more predictable since the different steps of the proof becomes explicit in the annotations thus less 
dependent to the heuristics and easier to read for a verification engineer, without reaching the degree 
of complexity of an interactive proof. 

5.4 Remaining aspects 

Some aspects that were originally targeted for this project have finally not been treated.  

First, we wanted to provide a generic abstract physical platform corresponding to Contiki on which 
users could rely for the verification of their client code. This would have been the result of the work 
presented in both Sections 4.4 and 4.5. However, the difficulties related to the configuration and the 
build process of the operating system made this task intractable during the time available for this 
project. Furthermore, we strongly believe that one of the reasons why it is so difficult is the lack of 
documentation available about these aspects of the code base and that writing this kind of 
documentation is not the scope of the VESSEDIA project. 
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Second, protothread have finally not been analysed during the project. Such a verification would 
have been done with both the creation of a new plugin of Frama-C and the WP plugin, that is to say 
using deductive verification (as the absence of runtime errors is not necessarily a big deal because 
of a how short is the protothread module). While this kind of analysis is still extremely appealing, we 
decided during the project that comparing different proof methods for the verification of a linked data-
structure was a more important contribution for VESSEDIA. Indeed, protothreads are extremely 
specific to the Contiki operating system, thus this result would have been useful only for it and not 
for a more global audience. 
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Chapter 6 Summary and Conclusion 

In this deliverable, we have reported on the realization of the use case of the Contiki operating 
system which is an operating system for the internet of things. This operating system supports a lot 
of platform with important resource constraints, thus resulting in a highly configurable, highly 
optimized source code. 

We have treated different aspects related to safety and security objectives, from verification of the 
absence of runtime errors to the functional correctness of different modules. Namely, we have 
proved the absence of runtime errors in small modules of the core of the operating system, as well 
as in the AES-CCM cryptography module.  

An important work has been performed on the complete operating system to check whether the tools 
scale on such a piece of software. On this aspect, the success is partial. We were able to analyse 
representative instances of Contiki. But not to use the results to detect bugs due to the too large 
amount of alarms for the static analysis and due to the fact that we could not cover a large part of 
the OS for runtime verification during the execution. While the tools could be improved (handling of 
libraries for E-ACSL, handling of recursive functions for EVA), the main problems do not seem to be 
related to the used plugins of Frama-C themselves but to the fact that no plugins or tool is currently 
able to deal with the question of the configuration, this could be a major concern in the future. 

We have proved the functional correctness of the MEMB module and the linked list module using 
different proof techniques. We think that the results we have obtained for these modules (and the 
future and ongoing work about other techniques) will help future verification and allow verification 
engineers to choose the best option when starting the verification of a complex module depending 
of the skills available in their team. 
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Chapter 7 List of Abbreviations  

Abbreviation Translation 

6LoWPAN IPv6 Low-power Wireless Personal Area Networks 

ACSL ANSI C Specification Language 

AES Advanced Encryption System 

AES-CCM Implementation of CCM that uses AES for security 

API Application Program Interface 

CBC-MAC Cipher Block Chaining Message Authentication Code 

CCM Counter with CBC-MAC 

CPS Cyber Physical System 

DDoS Distributed Denial of Service 

DTLS Datagram Transport Layer Security 

E-ACSL Executable ACSL 

GCC GNU Compiler Collection 

IoT Internet of Things 

IPv6 Internet Protocol version 6 

JNI Java Native Interface 

JVM Java Virtual Machine 

MCU Micro Controller Unit 

MPU Memory Protecttion Unit 

MMU Memory Management Unit 

OS Operating System 

SFR Security Functional Requirement 

SMT Satisfiability Modulo Theories 

TOE Target of Evaluation 

TSF TOE Security Functions, typically cryptographic functionality 
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