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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability. 
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Executive Summary 

IoT (Internet of Things), which denotes connected devices and services, are on a rapid increase, 
and as they are gaining wider and wider adoption in the security critical fields, it becomes more and 
more urgent to ensure the security of these devices. The VESSEDIA project aims to enhance the 
security of IoT devices by improving already existing software analysis tools to help the 
manufacturers to develop more secure devices. 

In order to evaluate the ability of the VESSEDIA tools to allow efficient security analysis of IoT 
software, the VESSEDIA project comprises several use-cases. One of these use-cases consists in 
verifying the Contiki operating system, a lightweight operating system for IoT. 

The goal of this document is to present the verification effort performed during the period M7-M18 of 
the project on the Contiki operating system. This verification is conducted using the Frama-C 
platform.  

We present the changes that happened in Contiki since the beginning of the project, in particular the 
new version, as well as previous verification effort now ported on this new version, Contiki-NG. We 
also present the verification effort performed on a critical module of Contiki with Frama-C/WP, the 
linked list module, and the preliminary work to be able to use Frama-C/Eva on the complete operating 
system. This report also introduces ongoing and future tasks. 
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Chapter 1 Introduction 

1.1 Goal of this document 

This report describes the work done in Task 5.1 of the VESSEDIA project, about the verification of 
the Contiki operating system. This task assesses the mechanisms developed in VESSEDIA on 
Contiki’s low-power IPv6 stack and OS primitives, mainly using static analysis. The level of these 
analyses being chosen depending on the criticality and the complexity of the modules to verify. This 
will allow the evaluation of the usability and the effectiveness of VESSEDIA tools for analysis of 
actual IoT systems. In addition, parts of Contiki are annotated with "minimal contracts" and then 
analysed using the Frama-C WP plugin with the “verification-service” approach developed in Task 
3.3, as a fast alternative to value analysis. In this way, we will gather for Task 3.3 valuable experience 
on the trade-off between automated, but monolithic, abstract interpretation, and writing minimal 
contracts to be verified in parallel. 

During the period M7-M18, we have studied different parts of Contiki. Most of the work has been 
done in the core libraries of Contiki even if some first experiments have been also conducted on the 
networking stack. We describe this verification effort, as well as ongoing and future work planned for 
the verification of Contiki. 

 

1.2 Structure of the document 

After this introduction, Chapter 2 explains why we switched from Contiki 3 to Contiki-NG (Next 
Generation) and the differences that exist between those two versions of Contiki. It sums up the new 
organization of the project and updates the table of priority of verification that we had presented in 
deliverable D1.2. It also presents previous (or early) verification effort made on Contiki 3 and now 
integrated into Contiki-NG.  

Chapter 3 presents the functional verification of the linked list module of Contiki which is a critical 
module of Contiki that is intensively used in the core part of the operating system. After introducing 
the approach, we present the results, some discussion, and ongoing and future work on this module.  

Chapter 4 explains how we integrated the Frama-C analysis scripts to Contiki and the first results 
we get on this aspect of the verification. In particular, it describes a current problem we have to 
analyse complete instances of Contiki and the possibilities we have to tackle it.  

Chapter 5 describes the current status of the hardware application program interface (API) of Contiki 
and what we want to do with it in order to have platform independent analysis, and to provide the 
users with useful guidelines to adapt the verification environment to their own use-case.  

Finally, Chapter 6 sums up this document and concludes. 

 

1.3 Related deliverables 

This deliverable is related to deliverable D1.2 that provides the security requirements for the different 
use-cases of VESSEDIA including the Contiki OS. It will also influence the different deliverables of 
Work Package 3 that is related to the enhancement of the tools and methods used for verification. 
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Chapter 2 From Contiki 3 to Contiki-NG 

Recently, Contiki 3 has been forked to Contiki-NG1. Since then, Contiki 3 is not substantially updated, 
for example none of the bugs we have reported is fixed in Contiki 3. Contiki-NG being actively 
maintained and updated, we have decided to switch to this version, even if it has required some work 
to port previous verification effort. 

In this chapter, we detail what aspects of the operating system have changed in Contiki-NG, more 
particularly the differences that exist in terms of features and organization of the project, as well as 
the impact on the verification tasks we had planned in deliverable D1.2. We also detail some 
verification previously performed on Contiki 3, and that are now part of the verification of Contiki-NG. 

 

2.1 Added and removed features 

From Contiki 3 to Contiki-NG some features have been added, some existing features and examples 
have been removed. We list the essential features in this section. 

 

2.1.1 Core libraries 

In the core libraries, the GCR (Group Coded Recording) module and the Manchester encoding 
module have been removed. The verification effort with minimal contracts (see 2.3.3) that was 
invested on GCR is then not relevant for Contiki-NG. The managed memory module (MMem) has 
also been removed since it was not used a lot in practice.  

In Contiki 3, some high-level libraries, meant to be used by client code but not mandatory by most 
use cases of Contiki, were previously separated of the core part of Contiki. Since they are platform 
independent, they have been added to the core libraries of Contiki. However, we will not consider 
them for the verification since they are high level libraries that are not critical, nor used by any use 
case of the operating system. 

Different data-structures have been added: 

• Queues and stacks, 

• Double linked lists, 

• Circular lists (and doubly-linked version). 

The verification of queues and stacks will simply consist in the instantiation of the verification 
performed on the linked list module (queues and stacks functions are direct calls to the linked list 
module), that we present in Chapter 3, so the specification and verification should be easy. 

The double-linked lists module is more challenging, the verification could be inspired of the one 
performed on the linked list module but some memory separation properties could be hard to 
maintain with a double-linked data structure. The circular lists module requires a new formalization 
and thus a new verification, which cannot be directly derived from the verification of the linked list 
module. This verification will start after we complete our study of the linked list module and 
associated approaches. 

Finally, a module has been added to manage heap memory allocation. This last module seems to 
be particularly challenging. Indeed, it uses a double-linked list (and this kind of data structure is 
generally already hard to handle), but does not use the API provided by the double-linked list module 
to manage it (which means that we cannot directly reuse a verification results of this module, nor the 

                                                

1 Available on github : https://github.com/contiki-ng/contiki-ng 
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ACSL formalization). In the same time, we have to keep track, in the verification, of the different 
allocated and freed blocks, which is complex. 

 

2.1.2 System libraries 

The only feature that has been removed from the system libraries is the argument handling module 
that meant to ease the transmission of argument when creating processes and was not used in any 
example of Contiki instance. Some features related to concurrency have been added to the system 
libraries, more particularly mutexes and critical sections for multi-core processors. However, since 
Contiki mainly targets mono-core currently, it will not impact our verification. 

 

2.1.3 Netstack library 

The netstack library has mainly been reorganized. The most important change was that the IPv4 
features have been completely removed. Some non-standard MAC modules have also been 
removed, as well as the implementation of the RIME protocol. Again, some features that were 
previously considered as high level features have been moved into the netstack library. This is for 
example the case for different app-layer libraries such as HTTP or MQTT. 

Most of these features were not considered as critical in our previous analysis, and no verification 
was attempted on them. 

 

2.1.4 Other significant changes 

A lot of examples have been removed from Contiki. It does not impact the verification itself, but it 
was a good way to test our verification scripts on a lot of different examples. We will probably 
reintegrate some of them to Contiki-NG. 

While it is not relevant for our verification, it is worth noticing that many architectures have been 
completely removed from Contiki-NG. While Contiki 3 platform directory contained 37 platforms (or 
variations of platforms), Contiki-NG only has 9 of them. 

 

2.2 New structure of the project 

The platform independent directory of Contiki is now “os” and is composed of a number of sub-
directories Table 1 summarizes the size of each module and discusses the priority of verifying them 
in VESSEDIA. The relevance is selected among: 

• NO: We chose not to verify this module in VESSEDIA, because it is deprecated or only used 
by a minority of applications. 

• LOW: The module is generally used, and it is worth verifying it. 

• MED:  Widely-used module, verification is important. 

• HIGH:  Critical component, verification is top-priority. 
 

 

Module kLOC Description Priority 

dev 1.3 Platform-independent parts of drivers. LOW 

lib 39.3 Different general purpose librairies  
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Module kLOC Description Priority 

|- lib/*.[ch] 2.1 Memory management, lists, crypto, etc. HIGH 

|- lib/dgb-io 0.7 Debugging tools using input/output MED 

|- lib/fs 35.8 File-system NO 

|- lib/json 0.7 JSON format handling NO 

net 36 Networking stack  

|- net/app-layer 7 Application layer protocols NO 

|- net/ipv6 11.9 IPv6 stack MED 

|- net/mac 8.2 MAC layers  

   |- net/mac/ble 0.5 Bluetooth low energy L2CAP implementation LOW 

   |- net/mac/csma 0.5 Standard CSMA MAC MED 

   |- net/mac/framer 1.3 Encoding and decoding of MAC frame headers MED 

   |- net/mac/tsch 5.7 Standard power-saving MAC LOW 

   |- net/mac/*.[ch] 0.2 MAC API MED 

|- net/routing 8 Currently RPL implementations MED 

|- net/*.[ch] 0.9 Neighbour tables, packet buffers etc. MED 

services 9.8 Application layer NO 

storage 6.3 Contiki File System, and related applications. NO 

sys 1.8 Core components: scheduler, timers, etc. HIGH 

Table 1 - The different modules of Contiki with respective sizes and verification priority 

 

To summarize, we identify a total of 7.5 kLOC low-priority codes, 23.5 kLOC medium-priority, 3.9 
kLOC high-priority. There is slightly more high and medium priority code than we presented in the 
deliverable D1.2 about Contiki 3. This is mainly due to the addition of some features. This increase 
is balanced by the fact that the majority of those features are currently not used intensively in the 
critical part of the system, this is for example the case for the different new variants of the linked lists. 

 

2.3 Previous verification ported to Contiki-NG 

Some verification has been performed on Contiki 3 before and during the beginning of the 
VESSEDIA project. In this section, we present the different verification use-cases that are now 
integrated in the verification of Contiki-NG. 
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2.3.1 The MEMB module verification 

The MEMB module is a memory allocation module. It allows allocating and deallocating chunks of 
pre-allocated memory blocks. The idea is to first allocate a certain number of resources in a static C 
array and then to acquire and release them on demand. Basically, any module that needs to manage 
some memory resources relies on this module, making it critical. 

Frédéric Mangano verified this module during his internship at CEA [1]. This verification was a 
functional verification performed with the WP plugin of Frama-C, so it required annotating the 
program with an ACSL specification. The main challenge was to deal with the genericity of the 
module, since it allows managing any kind of C objects. While most interesting properties have been 
proved: 

• The module correctly keeps track of free and allocated blocks, 

• The different blocks of memory are spatially separated, 

• We cannot allocate more memory that we have. 

Some properties cannot currently be proved with Frama-C/WP due to unsupported ACSL features, 
namely the notion of fresh memory location, or the clause frees of a function contracts that allows to 
specify that a function makes previously allocated memory location allocable again. 

The verification of the 77 lines of code that compose the module required to write 150 lines of ACSL 
annotations, 115 of them being function contracts. Some test client functions were written to validate 
the specified behaviour. It allowed to check that correct caller functions were indeed proven correct, 
as well as to check that we were unable to prove incorrect function calls, which gives some 
confidence in the consistency of the specification. 

This work was easy into integrate in Contiki-NG. We only had to update the few proofs that are 
written in Coq [2], and that was due anyway to the new versions of Frama-C and not to Contiki. 

 

2.3.2 The AES-CCM* module verification 

Contiki implements the Advanced Encryption Standard (AES), a symmetric encryption algorithm.  
AES was designed to be efficient in both hardware and software implementations, and supports a 
block length of 128 bits and key lengths of 128, 192 and 256 bits. In Contiki, only 128-bit keys are 
supported. In order to secure arbitrarily long data chunks, the AES-CCM block cipher mode of 
operation is also implemented in Contiki. In term of security, data encryption (AES) and 
authentication (CCM) is a very important ingredient of wireless communication in a network. Thus, 
a flaw in this component would be critical, and we have to ensure its security. 

This module was verified by Alexandre Peyrard [3]. This verification consisted mainly in the analysis 
of two modules: the AES module and the CCM module. The verified property is the absence of 
runtime errors and has been established using the WP plugin of Frama-C. This verification was done 
by using a notion of minimal-contracts, introduced in the deliverable D1.1, that is: we do not provide 
a full functional specification of the module, only what is necessary to ensure the absence of runtime 
errors. 

The verification of the 255 lines of code that compose the module required to write 103 lines of ACSL 
annotations. Some tests that were written previously as unit-tests of the module have also been 
specified and verified with Frama-C and its WP plugin. We also executed Frama-C/Eva on the 
corresponding test, that also validated the absence of runtime errors. 
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2.3.3 Minimal contracts for a subset of the core part of Contiki 

Verifying the absence of runtime errors is a good way to guarantee the absence of some classes of 
security issues. While providing contracts for a full functional verification often requires an important 
effort, as well as the proof itself, it is often not necessary to have such complex contracts to guarantee 
the absence of runtime errors. Deliverable D1.1 reported on a first experiment of a feasibility for the 
verification of Contiki, using so-called minimal contracts to perform the verification of absence of 
runtime errors of particular modules of Contiki using Frama-C/WP. The main advantage of this 
method is that a verification with Frama-C/WP validates any correct use of the module. Whereas a 
verification using Frama-C/Eva on a complete program that uses the module only ensures the 
absence of runtime errors in the context of this program. The drawback is the fact that it is less 
automatic, since we have to write contracts and loop invariants in the source code. However, minimal 
contracts lead to simpler contracts than the ones required for a full functional verification. 

The corresponding contracts have been integrated to our verification of Contiki-NG. 

 

2.3.4 Minimal contracts for the SICSLOWPAN module 

This module is an implementation of the 6LoWPAN [4] protocol produced by SICS for Contiki. This 
protocol provides a way to implement the IPv6 that is suitable for low power equipment, for example 
for the IoT devices that are targeted by Contiki. This protocol is often use to build Low-power Lossy 
Networks, like the ones targeted by the 6LoWPAN Management Platform analysed in the CEA’s use 
case. The SICSLOWPAN module relies on the AES-CCM* module, previously described, to ensure 
security and authentication. 

The module was partially verified by Quentin Molle during his internship at CEA. However, the 
verification is not complete. Apparently, this module of the networking stack was remarkably harder 
to handle than the other modules we had verified so far, even using only minimal contracts. The 
main reason is that there are a lot of type casting and that some functions are long, consequently, 
performing the verification requires to add a lot of annotations to guide the provers. Further 
investigation is ongoing to understand if it is possible to handle this kind of module using minimal 
contracts. 
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Chapter 3 Verification of the linked list module 

In this section, we present two published studies about the verification of the linked list module of 
Contiki as well as ongoing improvement to this verification. The first one is the use of a companion 
ghost array to model the linked list and the corresponding formal verification performed with Frama-
C/WP [5], and the second is the adaptation of the corresponding ACSL specification to make it 
executable using the E-ACSL plugin of Frama-C [6]. 

 

3.1 Overview of the linked list module 

The list module is required by 32 modules and invoked more than 250 times in the core of the OS. 
The linked list module is a crucial library in Contiki. Its verification is thus a key step for proving many 
other modules of the OS. 

 

 

Figure 1 - The linked-list API of Contiki 

 

The API of the module is given in Figure 1. Technically, it differs from many common linked list 
implementations in several regards. First, while in most implementations a function of the API 
receives a pointer to the first element of the list and returns the modified list, in Contiki the API 
receives a double pointer, that is a pointer to some handler (which is a pointer to the first element of 
the list) that identifies an existing linked list. Thus, rather than returning the new list after some 
modification, the function directly modifies the pointed handler. In Figure 2, the pointer that we give 
to the function is “pLst”, it points to the handler “root” that itself points to the first element of the list 
“A”. 

 

Figure 2 - Ghost model of the actual linked list 

 



D5.1 - Inria’s use case intermediate report   

VESSEDIA D5.1 Page 8 of 21 

Second, being implemented in C (that does not offer templates), Contiki uses a generic mechanism 
to create a linked list for specific field datatypes using dedicated macros. The pre-processor 
transforms such a macro into a new list datatype definition. To be applicable for various types, the 
common list API treats list elements via either void* pointers or pointers to a trivial linked list 

structure, and relies on (explicit and implicit) pointer casts. 

Third, Contiki does not provide dynamic memory allocation, which is replaced by attributing (or 
releasing) a block in a pre-allocated array. In particular, the size of a list is always bounded by the 
number of such blocks, and their manipulation does not invoke dynamic memory allocation functions.  

Fourth, adding an element at the start or at the end of a list is allowed even if this element is already 
in the list: in this case, it will first be removed from its previous position. Finally, the API is very rich: 
it can handle a list as a FIFO or a stack, and supports arbitrary removal/insertion and enumeration.  

For all these reasons, the linked list module of Contiki appears to be a necessary but challenging 
target for verification with Frama-C/WP. 

 

3.2 Formal verification using Frama-C/WP and ghost code 

In order to verify the linked list module, we need to formalize the behaviour of the module, thus to 
find a good representation to reason about the different elements of the list. Our verification relies 
on ghost code. Since reasoning about arrays is common and quite easy using Frama-C/WP, we 
model lists using companion ghost arrays that contain the elements in the list at any moment. 

 

3.2.1 Ghost code 

Before we describe the approach we used for the verification, it seems to be important to introduce 
briefly what is ghost code. Ghost code is, in Frama-C (and ACSL)2, some regular source code that 
is introduced in the code we want to verify using ACSL annotations. The purpose of this type of 
annotations (that contain standard C code) is to ease the verification by saving some useful 
information that require computation in some variable, thus, transforming some implicit properties 
(that would require potentially a lot of reasoning) into explicit properties since they are directly 
modelled by variables. Thus, ghost code can observe the actual source code but must not modify its 
behaviour. 

A ghost variable can be modified and read in ghost code, it cannot be used (neither read nor written) 
in the actual code. An actual variable can be read (observed) in ghost code but cannot be written 
since it would mean that we are modifying the behaviour of the program from ghost code. 

For the verification, we use a ghost array to model the list we are considering in the different 
functions. Some ghost code is added to mirror the operations that are done in the actual code. 

 

3.2.2 Verification approach 

Reasoning about linked data-structures such as lists generally requires to reason by induction since 
we do not have, only knowing the C structure, a global view of the data structure. For example, with 
lists, the C structure only mentions the first element of a given list and then refers to the other 
elements using a pointer. So, we basically do not know how many of them exist. Thus, to state a 
property P about a list, we have to consider two cases: either the list is empty or the list contains an 
element. In the second case, we generally say that some property holds about the first element and 
then that P must hold on the remaining part of the list. 

                                                

2 Ghost code is a general notion in verification, and many tools propose such a feature, here we concentrate 
on how it is used in Frama-C 
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For verification, Frama-C/WP relies on Satisfiability Modulo Theories (SMT) solvers, in order to 
maximize automation. However, reasoning by induction is not possible for most of the SMT solvers, 
thus inductive properties are generally not handled very well. Here, we propose to define an 
equivalence between the list and an array. Defining this equivalence still requires writing an inductive 
predicate, but once it is done, most interesting properties can be expressed on the array without 
requiring induction. 

Figure 2 illustrates the idea of the equivalence we state. For a list starting with the cell A, and ending 
at an (excluded) bound, we determine a starting location in the companion ghost array that models 
it. Each consecutive elements of the list must be (contiguously) found in the companion array in the 
same order as we can find them in the actual list. 

Of course that means that any modification performed in the list must be reflected in the companion 
array. For example, an operation like list_push first ensures that the element in not in the list by 

removing it (if it is not inside, the operation keeps the list as it is) and then adds it at the beginning 
of the list. Thus we have to perform similar operations in the companion array. 

The verification mainly consists in proving that the equivalence is always maintained during the 
different operations on the list, that allow to derive the important properties of the list API: 

• Removal operations only removes the provided element, 

• Adding an element to the list ensures that the element is at the expected location, 

• Items unicity and validity is maintained. 

In order to ensure that the equivalence relation is maintained, we have to reason about an inductive 
property. To maximize automation, we have added 24 lemmas that are proved by induction 
interactively with the Coq proof assistant, allowing to avoid inductive reasoning for all the other 
proofs. 

More details can be found in the article accepted at NASA Formal Methods 2018 about this 
verification [5]. 

 

3.2.3 Verification results 

3.2.3.1 Functional verification of the module 

Except for the list insertion function, all the functions of the module have been verified to respect the 
functional specification we stated. In total, the module is composed of 176 lines of code (excluding 
macros). We have written 46 lines of ghost code, and about 1400 lines of annotations, including 
about 500 lines for contracts and 240 lines for logic definitions and lemmas. 

For this annotated version of the module, the verification using Frama-C/WP generates 798 goals.  
This number includes 108 goals for the verification of absence of runtime errors that are often 
responsible for security vulnerabilities and have also been carefully checked by Frama-C/WP. It also 
includes 24 auxiliary lemmas (that is, in total only about 3.3% of properties). The 24 lemmas are 
proved using Coq v.8.6.1. Out of the 774 remaining goals, almost all are automatically discharged 
by SMT solvers, except for 4 goals that are proved interactively. In this work, we used Frama-C v.16 
Sulfur and the solvers Alt-Ergo v.1.30 (with direct translation from WP and via Why3), as well as Z3 
v.4.5 and CVC3 v.2.4.1 (via Why3). 

 

3.2.3.2 Bug found in the list insertion function 

The verification helped to identify an inconsistency for the remaining function, list_insert, with 

respect to the assumptions of other functions. This function adds an element new_item to a list just 

after a given element prev_item. If the element prev_item is NULL, the function directly calls 

list_push, meaning that if the element is already there, it is removed and then added to the start. 

However, if prev_item is present in the list, the function directly adds new_item after prev_item 
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without removing a previous instance of new_item from the list (if any). It shows that the uniqueness 

property is in general not preserved by the function, but in some cases it is. Thus this function does 
not respect a contract consistent with the other functions. 

The issue can be found at on the github of Contiki-NG3. 

Moreover, in the entire code of Contiki, we have found only one call to list_insert and not a 

single one in the core part of the system. 

Unit tests may identify such a bug. However, one difficulty with functional tests (that is also the cause 
of many security bugs) is the fact that we tend to test valid scenarios rather than invalid ones. 

 

3.3 Making specification executable for E-ACSL 

3.3.1 Verification of client modules 

As we previously said, a lot of client modules use the linked list module of Contiki. However, we do 
not necessarily want to formally verify all of them using Frama-C/WP. Moreover, some other users 
of Contiki could be interested in validating their own code that use the linked list module only using 
dynamic verification.  

Now that we have a precise specification for the module, the checks to perform are well-defined. 
However, they are written in ACSL and still have to be translated to C code if we want to execute 
these checks at runtime. This is the purpose of the E-ACSL plugin of Frama-C which can 
automatically translate any specification written in E-ACSL (which is an executable subset of ACSL) 
into actual C code. 

However, the specification is not in the executable fragment of ACSL. Indeed, it uses an inductive 
predicate and an axiomatically defined function. While those two features were convenient to reason 
using WP and the Coq proof assistant (for example providing the right induction principle), they are 
not in the E-ACSL fragment of ACSL and are not planned to be added. So we have to express these 
properties with other features, namely recursive predicates and functions. While this kind of 
properties is currently not implemented, it is planned to be. But, we do not want to lose the verification 
effort invested in the linked list module, so we use an approach inspired by the verification by code 
transformation. 

 

3.3.2 Approach to enable E-ACSL 

Instead of providing a way to generate an executable code from inductive and axiomatically defined 
properties, we propose to define a new version of the specification that is executable and to prove 
its equivalence with the previous one. In the original specification, two properties were defined using 
ACSL constructs that are not supported by E-ACSL: the equivalence between the list and its 
companion array (using an inductive predicate), and a function that specifies the index of a particular 
element in the list (using an axiomatically defined function). 

For both of these properties, we define: 

• A new predicate/function expected to be equivalent to the one used for the proof, 

• A lemma that states the equivalence between the non-executable and executable version for 
any input. 

The corresponding lemma is interactively proved using the Coq proof assistant. We then build a new 
specification for the linked list module which is the same as the previous one except that we have 
replaced each occurrence of the features that cannot be translated by the equivalent executable 

                                                

3 : https://github.com/contiki-ng/contiki-ng/issues/254  

https://github.com/contiki-ng/contiki-ng/issues/254
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versions. As a result, we obtain an executable specification without breaking the previous proof 
results. For example, starting from the inductive predicate linked_n that inductively defines the 

equivalence between a list and its companion array, we created a new version linked_n_exec, 

which is proved to be equivalent. In the specification, each use of the linked_n predicate is 

replaced by a use of the linked_n_exec predicate. 

Note however that this approach is currently not directly supported by E-ACSL. Our proposal in [6] 
is to provide a way in E-ACSL to specify that we need an equivalent version of some property in 
order to let the tool generate the required lemmas and to automatically replace occurrences of the 
property in the specification during the generation of the executable version of the specification. 

 

3.4 Improving the verification 

Some aspects of the verification can be improved. Most of them are related to the efficiency of the 
proof. While possible, the proof was hard to handle with Frama-C and WP so we experiment other 
ways to perform this proof. At the same time, some parts of the specification are not totally 
satisfactory since they make the proof of client modules complex. This section is essentially a work 
in progress. 

 

3.4.1 Assigns specification 

In ACSL, a function contract comprises a specific part that is dedicated to the specification of the 
side effects that are produced during the execution of the function. It allows from the caller 
perspective to determine what remains unchanged in the memory after a call to the function. This 
information is provided using the assigns clause in ACSL, that lists the different memory locations 

that can be modified by the function. 

However, in our case, this specification is imprecise. Let us illustrate this by an example. The function 
list_remove allows removing an element from a linked list. To perform this operation in the middle 

of the list, we have to modify the previous element to make its next field point to the element that 

follows the element to remove. So we basically have to specify in the assign clause, considering that 
the element to remove is the ith one, that the (i-1)th element can be modified by the function. However, 
when the element to remove is the first one, this element does not exist. 

While in ACSL, we can use the notion of behaviour to specify assigns clauses for different subcases 
of the allowed input (here: there is no element in the list, the element is the first one in the list, the 
element is not in the list, the element is in the list but is not the first one), WP currently does not 
consider these subcases from the caller point of view for side-effects, if multiple assigns clauses are 
specified in different behaviours, they are merged into a single one, so it is hard to deduce what part 
of the list has not been modified. 

Improving this part of the verification thus requires to improve the WP plugin of Frama-C. 

 

3.4.2 Handling of ghost separation 

Most of the annotations we had to write to guide the proof were due to memory separation (as 
opposed to VeriFast, Frama-C/WP does not use separation logic). While a part of these required 
annotations were expected to be necessary, namely the separation between the different elements 
of the list, some of them were unexpected and unnecessarily complex to handle. Indeed, we often 
had to state that the ghost memory (that represents the list) and the elements of the list are 
separated. 

While for verification, this need is inconvenient, from the current Frama-C’s implementation of ACSL, 
it is necessary. Indeed, ghost code must not interfere with the actual code, but this fact is not checked 
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by Frama-C. Thus, a tool that has to deal with ghost cannot just assume that the separation exists: 
this has to be checked. 

What we propose is a refinement of the notion of ghost in Frama-C. Instead of indicated that some 
variable is ghost or not, we would be able to define more precisely what belong to ghost or not even 
in a single variable, essentially in the same way we can use the keyword const in C. 

For example, in: 

//@ int * ghost p1 ; 

//@ int ghost * ghost p2 ; 

The pointer p1 is a ghost pointer to a memory location that is not ghost. So in a ghost code, p1 can 

be modified but the pointed memory location *p1 cannot. On the opposite, p2 is a ghost pointer that 

points to a ghost memory location so both p2 and *p2 are mutable in ghost code. 

We are producing a plugin that is able to verify this kind of property using typing, so the plugin 
ensures that the ghost does not interfere with the actual code by a first analysis. And then, we can 
use the fact that we know that the property is ensured and provides more assumptions to the plugin 
that further analyses the source code. For example, we could add an assumption in WP that states 
the fact that ghost and actual memory areas are separated. 

 

3.4.3 Using ACSL logic lists 

Generally, formal proof engineers tend to prefer a more abstract view of an API for verification than 
what we get by using ghost arrays. A good way to model lists is for example to use logic lists. The 
support of ACSL logic lists has been recently added to WP. It leads to a more abstract view of the 
module, and the absence of ghost data structure could ease the verification of the memory 
separation. However, the gap between a specification using logic lists and an executable 
specification will probably be harder to bridge. We are currently performing a new proof of the linked 
list module with this approach to compare it with the approach of the ghost companion. 

Currently, all functions that do not involve mutation have been proven with this other approach, and 
we are working on the mutating algorithms (list_remove, or list_add for example). These first 

experiments tend to show that we need more lemmas (thus, more interactive proofs) while automatic 
proofs are significantly more efficient in the verification of the function of the API. These experiments 
also helped to identify some bugs in WP with the treatment of the logic functions that allows to 
describe logic lists in ACSL. 

 

3.4.4 Using partial contiguous functions 

Another way to get a more abstract view of a sequence of values than the ghost array is to use the 
notion of contiguous partial functions. Instead of building a list, or an array that represents the actual 
list that is currently manipulated by some function, we define a function that associates to each valid 
index, the element that can find at this location in the list. 

This solution could combine both the advantages of the abstract list and the ghost view. Indeed, 
while the view is extremely abstract, allowing an efficient proof with automatic solvers if the suitable 
lemmas are provided, it does not require complex data structure, thus the specification currently 
seems to be easy to transform into an executable specification. However, we have not currently tried 
to prove mutating algorithms with this approach, so this is still a work in progress. 
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Chapter 4 Integration of the Frama-C analysis scripts 

The previous chapter focused on the functional verification of a particular module. We also started 
to analyse Contiki in order to show the absence of runtime errors on complete instances of the 
operating system. 

An instance of Contiki is basically a configuration of the operating system, on a particular hardware 
platform, with some applications (defined as processes) on top of it. All these components are linked 
together during compilation. Thus, to analyse such an instance, we have to collect what is necessary 
to build it (which is indicated by the Makefile) and to give those files to Frama-C. 

 

4.1 Analysis target added to the Makefile of Contiki 

The common way to verify a real world software with Frama-C Eva is to build a Makefile based on 
the one available in the corresponding project and to provide some rules for analysis. Here, we 
decided not to create a new Makefile but to directly integrate the Frama-C analysis scripts and 
Makefile rules to the original Makefile of Contiki to be more robust against the modification that could 
happen in Contiki. That happened to be efficient since porting this work from Contiki 3.0 to Contiki-
NG took less than a day, and we did not need to adapt our configuration due to the updates that 
have been done on Contiki since we ported the script. 

The Makefile provided in the folder analysis-scripts of Frama-C provides well configured rules 

for parsing, analysis with Frama-C/Eva, and some other plugins of Frama-C, as well as some 
predefined options that allow good results by default. Except for the clean rule that we modified to 

allow extension, we have not modified the existing rules of the Makefile. We only added new 
independent rules and pre-processor instruction that are specific to the Frama-C target. 

 

4.1.1 Considered platform and configuration 

For the analysis, we currently target the CC2538DK4 platform which is a common platform for the 
users of Contiki. The configuration of the platform is either the default one provided by Contiki or the 
one provided (if it is) by the configuration of the specific instance we are working on. 

Some special parameters are set to allow the parsing of Contiki by Frama-C. We added the path to 
the headers of the ARM-EABI distribution to the include path in order to avoid some type definition 
conflicts. We also forced the version of ARM to ARMv7 (which is the version supported by the 
Cortex-M3 on which CC2538DK is based). 

Second, we had to replace some hardware addresses in the source of Contiki when we analyse it 
with Frama-C. Indeed, the device drivers define a lot of physical addresses that allow interacting with 
the different devices of the platform. However, such physical addresses are considered as bad 
memory locations by default in Frama-C. An option of the kernel allows indicating to Frama-C that 
those are valid addresses. However, it is currently not precise enough (we can only give a single 
range of values, while we would like to have multiple ones). While Frama-C could be easily improved 
on this aspect, we decided, in a first time, to use volatile arrays to “simulate” those devices and to 
re-define the physical addresses as offsets in the array. 

  

                                                

4 http://www.ti.com/tool/CC2538DK 

http://www.ti.com/tool/CC2538DK
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4.1.2 Preparation of an instance and execution of the analysis 

Preparing an instance for analysis only requires the user to add a file analysis.mk in the folder of 

their project. Basically, this file is used to specify for each sub part of the project (if any), which files 
are necessary to compile it. For example, for the RPL-UDP example, two submodules exist: one for 
the server and one for the client. So the configuration file is as follows: 

ifeq ($(SUB), client) 

  FC_PROJECT_FILES=udp-client.c 

endif 

ifeq ($(SUB), server) 

  FC_PROJECT_FILES=udp-server.c 

endif 

Which we consider simple enough to be usable. Once configured, the analysis is run by using the 
following commands: 

$ make frama-c.parse TARGET=cc2538dk SUB=client (parsing) 

$ make frama-c.eva TARGET=cc2538dk SUB=client (Eva analysis) 

$ make frama-c.eva.gui TARGET=cc2538dk SUB=client (start Frama-C’s GUI) 

Note that it is necessary to indicate the platform for now even if it is only one that we support because 
we plan to provide similar way to configure the Makefile for other platforms. 

 

4.2 Whole OS verification, first results 

4.2.1 Analysis of alarms 

We were able to run Frama-C/Eva on the different examples available in the Contiki repository. While 
we have not classified reported alarms as false or actual alarms, we noticed that most of these 
alarms appear when the code uses the linked list and MEMB modules. Lists involve a lot of 
indirections since it is a linked data-structure and while it is better handled by Eva than by WP, it is 
still a complex analysis to perform. The MEMB module performs upcasts from void* to the types 

expected by the client modules, which tends to be complex to analyse in some situations (in 
particular in combination with lists). 

To get those results, we had to assure that the debug mode was deactivated in Contiki, because 
part of the code, which was triggering some fatal warnings have prevented us to really analyse the 
actual functionalities of Contiki. We still have to determine if those warnings are actual errors or due 
to the imprecision of the analysis. 

 

4.2.2 Dealing with recursion 

One blocking problem currently is the fact that the scheduler of Contiki is a recursive algorithm. 
Basically, the execution of a Contiki process is resumed using a function named call_process, if 

the corresponding process has to stop, exit_process is called which in turn can also use 

call_process on the other processes to make them react to the end of the first process. However, 

recursive calls are not yet supported by Frama-C/Eva, resulting in a degeneration of the analysis. 
We can force the analysis to continue, however, results are not sound. 

We identify two ways to deal with this part of the code. Either to use a new option of Frama-C called 
inline-call, or to rewrite this part of the code without recursion. 

The first option consists in syntactically inlining a call. For example, here, we would replace the calls 
to call_process with its code. That would not totally remove recursion, however, provided that 

this recursion is finite, we could repeat the operation until we reach the end of the recursion because 
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the number of processes is statically defined. If we cannot reach such an end, it probably means 
that something bad is happening in this part of the code or that our precision is not sufficient during 
the analysis. 

The second option is to rewrite this part of the code. However, it is a complex task that is in a highly 
critical part of Contiki. Moreover, we would have to compare the behaviours of the current and new 
code to ensure that they have the same behaviour, which is hard, due to the lack of unit-tests in the 
Contiki project. 
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Chapter 5 Identification of the platform API 

Currently, the verification of Contiki with Frama-C/Eva is enabled for a particular hardware platform: 
CC2538DK. However, it is not completely satisfying for two main reasons. First, we want our current 
verification task to be useful for any user of Contiki, that is: getting confidence in the platform 
independent part of Contiki. Today, such a verification would not achieve this goal: 

• Having the hardware platform during the verification increases the risk of imprecision, 

• Many configurations are set and the verification could be invalidated with other ones. 

The second aspect that we would like to improve before going further in the verification would be to 
ease the configuration of Frama-C for any hardware platform by giving the ability to the user to 
validate the instance of Contiki for their own instance of Contiki. 

 

5.1 Hardware platform API and verification 

The hardware platform API is under-documented. In fact, even if in Contiki-NG some functions are 
now indicated to be necessary to implement in order to provide a particular hardware implementation 
that can run Contiki, for some specific tasks, it is not the case, mainly for tasks that require the 
operating system to communicate with drivers.  

In the same time, some tasks are directly implemented in the hardware drivers while one would 
expect them to be implemented in the platform independent part of the OS, calling specific driver 
operations. This is for example the case for some networking tasks in the CC2538DK that are 
implemented as a particular thread that directly accesses buffers in the networking stack, while we 
would expect the networking stack to call the networking driver when needed. 

We would like to simplify this view of the operating system to make the verification easier and future 
use of Contiki simpler. 

 

5.1.1 Approach to make a platform agnostic verification 

To make the verification independent of any hardware platform, we want to develop some abstract 
platform. That is, a platform that would not be an actual implementation of the needed hardware API 
but only a skeleton: a set of functions that are required by Contiki to work correctly. Basically, we 
would remove all the code from the hardware platform, leaving the functions completely empty. By 
doing this, we would be sure that we do not deal with bugs inside the platform implementation. 

However, the absence of code would not allow a precise model of the behaviour of a platform. On 
this aspect, we plan to explore two approaches:  

• Specifying the behaviour of each function using ACSL, 

• Writing a simple simulation code. 

While the first option is probably the more elegant one, some properties could be hard to model, in 
particular if we need some temporal properties. Moreover, Frama-C/Eva does not support a lot of 
complex ACSL constructs. However, it would allow a precise specification of what is expected of 
each functionality which would be interesting not only for verification but also for platform developers. 

The second option would allow modelling some behaviours more precisely, however there is a risk 
to write buggy code or to get a code that is finally more complex than the one we had for a particular 
platform. 

Finally, a lot of numerical constants are provided using macros, which means that these values are 
statically defined for each instance of Contiki, and thus the verification is made for a particular set of 
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values. This aspect could be improved with a support of “static const” variables in Frama-C, that 
would allow to reason about these variables without concrete values, thus making the verification 
correct for any value. 

 

5.1.2 Provide guidelines to platform developers 

Among what we already mentioned about the need of a clear documentation and specification of 
what is required for a platform API to implement for Contiki, formal verification is still a challenge for 
most users. 

While Frama-C/Eva is close to a “push-button” approach, getting the right configuration to make the 
verification meaningful is still hard. On this aspect, we want to provide two different benefits for the 
user. First, by restricting our verification to the core part of Contiki, we can already produce a good 
set of options and configurations for Contiki in order to limit the amount of alarms, and classify the 
remaining alarms (including actual bugs that would be signalled to the Contiki team). Second, by 
also analysing Contiki for some actual hardware platforms, we can determine which options are 
useful to modify depending on the features that are provided by the platform. 

 

5.2 Approach and results 

5.2.1 Selection of a bunch of examples 

The continuous integration for Contiki-NG is provided by Travis-CI. The minimum for a (non trivial) 
“Pull-Request” to be reviewed (and eventually accepted) is to pass all the regression tests running 
in a minimal Ubuntu Docker image. These tests are automatically launched by the Travis-CI plugin 
on Github and consist in the compilations and the runs of a selection of examples. 

As we would like to define a suitable hardware API, we choose to define a minimal abstract hardware 
platform for Contiki-NG to validate it. As previously mentioned in 5.1.1 we need to identify the 
mandatory C functions allowing the compilation for all the examples or at least the not too platform-
specific ones. For now, we do not give them a precise behaviour: we only provide an empty 
implementation. 

There is a specific script, namely tests/compile-all/build.sh which compiles more 

examples but neither performs the runs, nor the cooja simulations. We modified it and also the 
Makefiles to catch the symbols defined in the object files coming from the arch/ directory and called 

by the object files coming from the os/ directory. This script is not used by the Travis-CI, so running 

it and simultaneously using more recent compilers with more restrictive compilation flags than those 
of the Docker image already revealed some coding errors (for example a structure initialized with 
the wrong number of arguments).  

Indeed, compiling on 64 bits instead of the 32 bits Docker image revealed a subtle bug in the 
implementation of the neighbour discovery protocol cause by the different possible implementations 
of the memcmp function (note that memcmp is in the libc, but can sometimes also be provided directly 

by the compiler). So, we would like to use even more conservative flags of compilation, as this 
problem could have been easily detected with the -Wconversion flag. 

One of the difficulty is that all platforms are either using the --gc-sections linker flag and/or build 

an archive with the GNU ar tool. By default, the GCC pull only the needed symbols from an archive 

(unless it is used with the --whole-archive flag). So all the unused code is currently removed 

automatically at the linking phase. If we remove the --gc-sections flag, some examples do not 

compile because of the non-coherent and/or non-systematic use of some macros (the so-called 
#define symbols) in the netstack os/net/ipv6 and in few other places. For example, #ifdef 

UIP_TCP should probably be used in os/net/ipv6/tcp-socket.c. 
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5.2.2 A first shot for an abstract platform 

Looking at the undefined symbols when we removed the --gc-sections linker flag and parsing 

the symbols in the map file (created by GCC thanks to the flags -Wl,-Map=example.map,--cref 

forwarded to the linker), we defined a minimal abstract platform with one default board with its buttons 
and sensors : 

arch/platform/abstract/contiki-conf.h 

arch/platform/abstract/platform.c 

arch/platform/abstract/dev/board.h 

arch/platform/abstract/dev/board-buttons.c 

arch/platform/abstract/dev/board-sensors.c 

and incorporating what is needed by the abstract CPU and GPIOs: 

arch/cpu/abstract/clock.c 

arch/cpu/abstract/dbg.c 

arch/cpu/abstract/int-master.c (interruptions) 

arch/cpu/abstract/low-level-stubs.c (place here compiler specific code) 

arch/cpu/abstract/rtimer-arch.c 

arch/cpu/abstract/rtimer-arch.h 

arch/cpu/abstract/slip-arch.c 

arch/cpu/abstract/watchdog.c 

arch/cpu/abstract/dev/gpio-hal-arch.c 

arch/cpu/abstract/dev/spi-arch.c 

This organization is not definitive. It is only a first shot of a platform that can be compiled for all the 
examples called by tests/compile-all/build.sh. This approach adds more symbols than the 

obvious ones we can meet in os/contiki-main.c (and implemented in clock.c, watchdog.c 

and rtimer-arch.c). Note that some of the examples are skipped thanks to some Makefile 

variables (namely PLATFORM_EXCLUDE, PLATFORM_ONLY, PLATFORM_ACTION). 

We are also working on an abstract radio driver:  

arch/cpu/abstract/abstract-def.h 

arch/cpu/abstract/dev/abstract-rf.c 

arch/cpu/abstract/dev/abstract-rf.h 

but it turned out, as mentioned in 5.1 that no symbols in arch/ related to the network stack are 

currently called from os/. The platform-specific code can be very intricate with the non-specific one, 

there is here a substantial task of reorganization to do. For example, we could determine what are 
the functions called from arch/ in os/ as, for example, some features are directly defined in 

platform specific code using protothreads (that is somewhat an inversion of the dependency 
expected between os/ and arch/). 

One of the advantages of this abstract platform for future analyses with Frama-C is that it is 
stand-alone: contrary to the native platform we do not use any Linux headers, so for example, the 
parsing phase will be easier.  

In future work we plan to validate our hardware API. More examples should be able to compile with 
our abstract platform, even the ones that were removed during the transition from Contiki 3.x to 
Contiki-NG. 

Currently some of the combination of platform, examples and user Makefile variables are not 
coherent. We have to provide a tool that makes the configuration easier with all the dependencies 
taken in account. 
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Chapter 6 Summary and Conclusion 

We presented the work done during the period M7-M18 of the VESSEDIA project for the Task 5.1 of 
the Work Package 5, about the verification of the Contiki Operating System.  

We described the differences between the previous version of Contiki and the one we target right 
now: Contiki-NG. Contiki-NG is the recent fork of Contiki 3 and the only one to be currently 
maintained and updated. The port of the previous verification effort has been done and required a 
very moderate effort. This comprises: 

• The functional verification of the MEMB module with Frama-C/WP 

• The verification of absence of runtime-errors of the AES-CCM module with Frama-C/WP 

• The verification of absence of runtime-errors of multiple small modules with Frama-C/WP 

We detailed the functional verification performed on the linked list module of Contiki, that lead to two 
publications [5] and [6]. This verification relies on an approach that uses ghost arrays to model the 
lists. The verification has been done with Frama-C/WP and the Coq proof assistant. We also 
proposed an executable version of the specification of the list that is close to be handled by the 
E-ACSL plugin of Frama-C. 

We presented two aspects of the verification of entire operating system instances using 
Frama-C/Eva. This includes the work done on the configuration of Frama-C for Contiki, that allowed 
to identify some blocking problems and possible solutions, and what we plan to build for Contiki: an 
abstract hardware API on which we can reason without platform dependent details. 

To conclude, the work on the verification of Contiki is globally on track, even if enabling the 
verification with Frama-C/Eva will require more work than expected. We already have interesting 
ideas to improve Frama-C and its tools, for example a better handling of ghost annotations that is a 
work in progress. 



D5.1 - Inria’s use case intermediate report   

VESSEDIA D5.1 Page 20 of 21 

Chapter 7 List of Abbreviations  

Abbreviation Translation 

6LoWPAN IPv6 Low-power Wireless Personal Area Networks 

ACSL ANSI C Specification Language 

AES Advanced Encryption System 

AES-CCM Implementation of CCM that uses AES for security 

API Application Program Interface 

CBC-MAC Cipher Block Chaining Message Authentication Code 

CCM Counter with CBC-MAC 

E-ACSL Executable ACSL 

GCC GNU Compiler Collection 

IoT Internet of Things 

IPv6 Internet Protocol version 6 

OS Operating System 

SMT Satisfiability Modulo Theories 
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