
D4.6

Evaluation using the VESSEDIA use cases
Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security critical

dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D4.6 / 1.1

Work package contributing to the

deliverable:
WP4

Due date: December 2019 – M36

Actual submission date: 3rd March 2020

Responsible organisation: SLAB

Editor: Balázs Berkes

Dissemination level: PU

Revision: V1.1

The project VESSEDIA has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731453.

Abstract:

This document contains the evaluation report of the
VESSEDIA use-cases using the proposed security
evaluation methodology for VESSEDIA project in
D4.2. During the evaluation VESSEDIA tools were
used besides common evaluation techniques.

Keywords:
Security, evaluation, IoT, certification, verification,

tools, tooling

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page I

Editor

Balázs BERKES (SLAB)

Contributors (ordered according to beneficiary numbers)

Gergely EBERHARDT (SLAB)

Balázs BERKES (SLAB)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page II

Executive Summary

The current deliverable describes the evaluation work carried out in the VESSEDIA use cases. The
evaluation followed the VESSEDIA evaluation methodology, which was described in D4.2 [8] and
used the Frama-C framework, the EVA plugin, WP plugin, Clang plugin, and the AFLSCA plugin
from the VESSEDIA tools.

The document contains the evaluation report of the following part of the VESSEDIA use-cases:

 MQTT client and CoAP server in the new generation Contiki-OS for Inria Use Case
described in D5.2 [13]

 MPL routing protocol used by the 6LoWPAN management protocol for CEA Use Case
described in D5.4 [15]

 Open source TCP Proxy implementation for DA Use Case described in D5.6 [17]

During our evaluation work, we also focused on how VESSEDIA tools can be used towards the
Objectives for WP4 set forth in DoA, namely to review how VESSEDIA results can be used to
improve evaluation results.

We have evaluated each use case against a Maximum Target Security Level pre-established.
The targets have reached the following Security Certification Levels according to the VESSEDIA
evaluation methodology:

Table 1: Security Certification Levels of targets

Target
Maximum Target

Level
Threats
found

SCL Level
(Result)

MQTT client and CoAP server (Chapter 2) SCL 6 3 SCL 4

MPL routing protocol (Chapter 3) SCL 4 1 SCL 4

Open source TCP Proxy (Chapter 4) SCL 4 0 inconclusive

Our work showed that while the tools still have some shortcomings, and compatibility can be
further developed, there are equally capable tools that an analyst can use as a basis of systematic
search for issues. Threats uncovered were useful in one of the use cases to pinpoint real issues
that would pull down the security of the developed component. We were able to provide specific
recommendations for the issues so that the Use Case developer would be able to correct the
security-related problems.

Due to the timing, we were not able to carry out review phase with the issues. Nevertheless, we
communicated the issues with the tool developers and Use Case owners, and we will verify the
resulting fixes after the submission of this report.

The evaluation of the MQTT protocol with Contiki OS in Chapter 2 resulted in an exploitable
vulnerability, which is also present in the latest public release of the Contiki-NG1. We contacted the
developers at 15 January 2020. The developers acknowledged the problem and reported that the
fix will be merged as soon as possible.

1 https://github.com/contiki-ng/contiki-ng/tree/release/v4.4

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page III

Contents

Chapter 1 Introduction .. 1

1.1 VESSEDIA motivation and background .. 1

1.2 Structure of the document ... 1

1.3 Related deliverables .. 1

Chapter 2 Contiki OS - Inria’s use case ... 2

2.1 Use case description (Applicability Field definition) ... 2

2.1.1 Target of Evaluation .. 2

2.1.2 Scope .. 2

2.1.3 Applicable requirements .. 2

2.1.4 Security objectives ... 3

2.1.5 Threat modelling .. 4

2.2 Evaluation Plan ... 4

2.2.1 Test environment ... 4

2.2.2 Version tested ... 4

2.2.3 Tools and test equipment .. 4

2.2.4 SCL Target .. 5

2.2.5 Test Plan ... 5

2.3 Test cases ... 5

2.3.1 Fuzz testing of CoAP server with AFLSCA .. 5

2.3.2 Fuzz testing of CoAP server with fuzzcoap .. 6

2.3.3 Source code analysis of the MQTT protocol .. 9

2.3.4 MQTT analysis with Frama-C EVA plugin .. 12

2.4 Findings and recommendations .. 16

2.4.1 Possible DoS attack in case of large MQTT messages .. 16

2.4.2 Multiple integer overflows cause functional problems .. 16

2.4.3 Publish handler may be called in case of other commands also 16

2.5 Risk analysis ... 17

2.5.1 SCL result .. 18

Chapter 3 CEA’s use case ... 19

3.1 Use case description (Applicability Field definition) ... 19

3.1.1 Target of Evaluation .. 19

3.1.2 Scope .. 19

3.1.3 Applicable requirements .. 19

3.1.4 Security objectives ... 20

3.1.5 Threat modelling .. 20

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page IV

3.2 Evaluation Plan ... 21

3.2.1 Test environment ... 21

3.2.2 Version tested ... 21

3.2.3 Tools and test equipment .. 21

3.2.4 SCL Target .. 21

3.2.5 Test Plan ... 22

3.3 Test cases ... 22

3.3.1 Evaluation with WP plugin ... 22

3.3.2 Evaluation with EVA plugin .. 23

3.4 Findings and recommendations .. 24

3.4.1 Sequence number was not checked in the ICMP message ... 24

3.5 Risk analysis ... 25

3.5.1 SCL result .. 26

Chapter 4 DA’s use case ... 27

4.1 Use case description (Applicability Field definition) ... 27

4.1.1 Target of Evaluation .. 27

4.1.2 Scope .. 28

4.1.3 Applicable requirements .. 28

4.1.4 Security objectives ... 29

4.1.5 Threat modelling .. 29

4.2 Evaluation Plan ... 29

4.2.1 Test environment ... 29

4.2.2 Version tested ... 30

4.2.3 Tools and test equipment .. 30

4.2.4 SCL Target .. 30

4.2.5 Test Plan ... 31

4.3 Test cases ... 31

4.3.1 Known vulnerabilities research .. 31

4.3.2 Evaluation with EVA plugin .. 32

4.3.3 Manual source code analysis ... 32

4.4 Findings and recommendations .. 33

4.5 Risk analysis ... 33

4.5.1 SCL result .. 33

Chapter 5 Summary and Conclusion ... 34

Chapter 6 List of Abbreviations .. 35

Chapter 7 Bibliography ... 36

Appendix A. C++ TCP Proxy server source ... 37

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page V

List of Figures

Figure 1 AFL execution on coap_parse_message function ... 6

Figure 2 Compiled empty for loop ... 10

Figure 3 mqtt-client in endless loop ... 10

Figure 4 Memory access alarm ... 12

Figure 5 Invalid signed overflow alarm .. 13

Figure 6 Remaining length calculation alarms ... 13

Figure 7 Remaining multiplier calculation alarms .. 13

Figure 8 Verification of last PUBLISH packet .. 14

Figure 9 Verification of packet end .. 14

Figure 10 Calculation of payload bytes count .. 14

Figure 11 Debug loop to print out payload bytes ... 14

Figure 12 Full buffer verification .. 15

Figure 13 Payload_left calculation .. 15

Figure 14 Remaining data verification ... 15

List of Tables

Table 1: Security Certification Levels of targets .. II

Table 2 Requirements applicable for Contiki OS (Inria Use Case) .. 2

Table 3 MQTT related findings by Frama-C EVA plugin .. 15

Table 4 Risk level calculation .. 17

Table 5 Risk analysis for Contiki OS (Inria Use Case) .. 18

Table 6 Applicable requirements for CEA Use Case ... 19

Table 7 - STRIDE threat modelling for the 6LowPAN Management Platform 20

Table 8 Frama-C alarms by WP plugin for CEA Use Case .. 22

Table 9 Findings by Frama-C EVA plugin for CEA Use Case.. 23

Table 10 Risk level calculation .. 25

Table 11 Risk analysis for CEA Use Case .. 25

Table 12 - Security objectives for the AMS, in the scope of VESSEDIA .. 29

Table 13 - Relevant STRIDE Threats and objectives for the AMS ... 29

Table 14 Vulnerabilities related to boost C++ library ... 31

Table 15: List of Abbreviations .. 35

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 1 of 42

Chapter 1 Introduction

1.1 VESSEDIA motivation and background

The VESSEDIA project aims to bring safety and security to the next generation of software
applications and Internet connected devices. In our rapidly changing world, the Internet has been
the source of many benefits for individuals and companies alike, transforming entire industries.
With this new technology, capable of connecting billions of devices and people together, new
threats have also appeared –VESSEDIA will help software developers to address these in order to
create connected applications that are safe and secure. VESSEDIA proposes to enhance and
scale up modern software analysis tools, in particular the mostly used open-source Frama-C
analysis platforms, to make them useful and accessible to a wider audience of developers of
connected applications. At the forefront of connected applications is the Internet of Things (or IoT
for short), which has undergone explosive growth and where security risks have become all too
real. VESSEDIA will focus on this domain to demonstrate the benefits our tools bring to the table
when developing connected applications. VESSEDIA will tackle this challenge by 1) developing a
methodology that makes it possible to adopt and use source code analysis tools as efficiently and
with similar benefits as it is already possible in the case of highly-critical applications, 2) enhancing
the Frama-C toolbox to enable efficient and fast implementation, 3) demonstrating the capabilities
of the new toolbox on typical IoT applications, including an IoT Operating System (Contiki), 4)
developing a standardisation plan for generalising the use of the toolbox, 5) contributing to the
Common Criteria certification process, and 6) defining a “Verified in Europe” label for validating
software products with European technologies such as Frama-C.

1.2 Structure of the document

The document can be divided into 3 major parts:

Chapter 2 contains the evaluation report of the Contiki OS use case by evaluating an MQTT client
and a CoAP server example application (Inria’s use case).

Chapter 3 contains the evaluation report of the MPL routing protocol used by the 6LoWPAN use
case (CEA’s use case).

Chapter 4 contains the evaluation report of the open source TCP proxy (DA’s use case).

1.3 Related deliverables

The evaluation methodology was described in D4.2 [8]. The security objectives and threat
modelling were derived from the general security objectives described in D1.1 [1], from the use
case specific security objectives in D1.2 [2], and from the use case final reports D5.2 [13], D5.3
[15] and D5.6 [17].

The tools used in the evaluation were described in several deliverables, FlowGuard and Frama-C
in D2.1 [3], Frama-Clang plugin in D2.3 [5] and AFLSCA in D2.2 [5] and D2.4 [6].

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 2 of 42

Chapter 2 Contiki OS - Inria’s use case

2.1 Use case description (Applicability Field definition)

2.1.1 Target of Evaluation

In the Security Evaluation of Inria’s use case, we selected representative example applications
which were included with the Contiki OS environment described in D5.2 [13] in detail.

2.1.2 Scope

In case of an operating system, the actually used parts and services highly depend on the
application and the used configuration settings. Because we had limited time for this evaluation, we
chose the following specific parts of the Contiki OS using simple example applications:

- CoAP protocol: a simple CoAP server application
- MQTT protocol: a simple MQTT client application

The used Contiki OS was integrated with FlowGuard as described in D5.2 [13].

2.1.3 Applicable requirements

In this section we collected requirements based on D1.2 [2], and evaluated their applicability in the
current scope.

Table 2 Requirements applicable for Contiki OS (Inria Use Case)

Functional Family Name Applicability

Cryptographic Key Management
(CKM)

No: The evaluated parts do not use cryptographic keys.

Cryptographic Operation (COP) No: The evaluated parts do not use cryptographic operations.

Access Control Policy (ACC) No: Evaluated protocols do not provide any access control
functionality.

Access Control Functions (ACF) No: Evaluated protocols do not provide any access control
functionality.

Information Flow Control Policy (IFC) No: No security policy was implemented in the evaluated
protocols.

Information Flow Control Functions
(IFF)

No: No security policy was implemented in the evaluated
protocols.

Import from outside TSF control (ITC) No: User data was imported without security attributes in the
evaluated protocols.

Residual Information Protection (RIP) Yes: Previous state or information from previous sessions
should not be disclosed by the evaluated protocols.

Authentication Failures (AFL) No: Evaluated protocols do not provide any access control
functionality.

User Attribute Definition (ATD) No: Evaluated protocols do not provide any access control
functionality.

Specification of Secrets (SOS) No: There were not secrets used during the evaluated protocols.

User Authentication (UAU) No: Evaluated protocols do not provide any access control

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 3 of 42

Functional Family Name Applicability

functionality.

User Identification (UID) No: Evaluated protocols do not provide any access control
functionality.

User-subject Binding (USB) No: Evaluated protocols do not provide any access control
functionality.

Management of Security Attributes
(MSA)

No: Evaluated protocols do not provide any access control
functionality.

Management of TSF Data (MTD) No: TSF data was not present in the evaluated protocols.

Revocation (REV) No: Evaluated protocols do not provide any access control
functionality.

Specification of Management
Functions (SMF)

No: Management functions were not defined for the evaluated
protocols.

Security Management Roles (SMR) No: Evaluated protocols do not provide any access control
functionality.

Time Stamps (STM) No: Time stamps were not used in the evaluated protocols.

Inter-TSF TSF Data Consistency
(TDC)

Yes: Data between client and server components should be
consistently interpreted.

Session Locking (SSL) No: User sessions were not involved in the evaluated protocols.

Inter-TSF Trusted Channel (ITC) No: Trusted channel was not required for the evaluated protocols.

2.1.4 Security objectives

In this section we collected the assets and security objectives based on D1.2 [2]. We collected the
specific assets for the example applications also.

 Data assets

 Software

 Hardware

 Cryptographic assets

From the above lists, hardware and cryptographic assets were not relevant for the CoAP and
MQTT examples evaluated, they were not included in the scope of this evaluation.

The following security objectives were listed for Contiki OS in D1.2 [2]:

 Cryptographic services

 Identification and authentication

 Discretionary access control

 Management of security mechanisms

 Network information flow control

 Subject communication

 Trusted channel

The evaluated parts provided communication protocol components, and as such, the objectives
are interpreted on other layers, as described in Section 2.3 in D1.2 [2]:

In the case of Contiki, the notion of user does not appear at the OS level and is most of the
time expressed at the application level, thus the questions of identification, authentication
and discretionary access control are not considered here. This is also the case for the
management of security mechanisms that relies on the identification of some kind of
“administrator”.

(…)

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 4 of 42

At the OS level, we can only partially consider the two latter objectives since the subjects
are generally defined at the application layer. Thus, to fulfil the objectives, we must rely on
these definitions that are use-case specific.

In this case, one can define plausible security objectives for the components in question based on
the security requirements found relevant in the previous chapter.

Residual Information Protection (RIP) and Inter-TSF TSF Data Consistency (TDC) would be
fulfilled by pertaining to the following objectives:

 Previous state or information from previous sessions should not be disclosed by the
evaluated protocols (protecting the confidentiality of data related to previous state and
sessions)

 Data between client and server components should be consistently interpreted (protecting
the integrity and availability of the data assets)

2.1.5 Threat modelling

The threat modelling was carried out for the use case in D1.2 [2] Section 2.4. Once again,
identified threats were only partially applicable while evaluating the COaP and MQTT
communication examples. The following security threats were plausible in the current case:

 Access user data: A threat agent might gain access to user data stored, processed or
transmitted by the TOE without being appropriately authorized according to the TOE
security policy.

 Restriction of net traffic: A threat agent might get access to information or transmit
information to other recipients via network communication channels without authorization
for this communication attempt by the information flow control policy.

We tested the ToEs against these threats.

2.2 Evaluation Plan

According to the Evaluation Methodology described earlier in D4.2 [8], we define the elements for
the evaluation plan in the following, and describe the test plan.

2.2.1 Test environment

The tests were performed in an Ubuntu Linux virtual machine running in Oracle VM VirtualBox. The
example applications were compiled to the native architecture (x86_64).

2.2.2 Version tested

The Contiki OS version string was Contiki-NG-EACSL, which was a fork from the Contiki-NG2 in
order to perform verification activities.

2.2.3 Tools and test equipment

We used the following tools and software versions during the evaluation:

 Frama-C 19.0 (Potassium)

 Ubuntu Linux, Linux 4.15.0-54-generic x86_64 x86_64 x86_64 GNU/Linux

 AFLSCA with AFL version 2.56b and StaDy v0.5.0

 fuzzcoap, https://github.com/bsmelo/fuzzcoap

2 https://github.com/contiki-ng/contiki-ng/releases

https://github.com/bsmelo/fuzzcoap
https://github.com/contiki-ng/contiki-ng/releases

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 5 of 42

 Ida PRO interactive disassembler (v6.4.130306)

2.2.4 SCL Target

According to the methodology described in D4.2 [8] section 2.5.1, we set a Maximum Target
Security Level, which defines the efforts allocated for the evaluation activities.

The use case targets defined by the use case (D5.2 [13]) aimed at more formal verification of the
target. In commercially realistic setups, such a high degree of security would necessitate a high
level of Maximum Target Security Level in order to provide useful results, such as SCL 9 or
above, with white-box approach.

However, in the scope of VESSEDIA project, we aimed at demonstrating more techniques with
more use cases, and selecting partial examples from the use cases of the partners. In the
evaluation of this use case, we used target level SCL 6. This level was defined as 10 Expert Days
of Evaluation, within 4 weeks of Execution time of Evaluation.

While SCL Level 6 was described as grey-box or black-box evaluation, we in fact received and
used the full source code for the ToEs. Our test plan thus includes evaluation activities, which is
normally part of the evaluation against higher Target levels only. We have also used tools included
in the VESSEDIA toolbox as defined in D4.2 [8] as well, in order to provide a use case study and
demonstration of the use of the technologies developed within the project.

At the end of evaluation, we calculate the SCL level reached in our final Risk Analysis in section
2.5.1.

2.2.5 Test Plan

Based on the above collected information, we devised a test plan that included manual and
automated testing using the tools also described.

The following tests were carried out against the ToE in this Evaluation:

 2.3.1 – Fuzz testing of CoAP server with AFLSCA

 2.3.2 – Fuzz testing of CoAP server with fuzzcoap

 2.3.3 – Source code analysis of the MQTT protocol

 2.3.4 – MQTT analysis with Frama-C EVA plugin

In the following chapters, we describe the test process and then, the test results.

2.3 Test cases

2.3.1 Fuzz testing of CoAP server with AFLSCA

In this test case we fuzzed the coap_parse_message function in the coap.c source file. The

coap_parse_message had the following declaration:

coap_status_t coap_parse_message(coap_message_t *coap_pkt, uint8_t *data,

uint16_t data_len)

The data_len contained the size of the data buffer and the coap_pkt contained the parsed

information after the execution of the function. Because the data_len was calculated correctly we

fuzzed only the data buffer with proper length information.

The AFL started by the AFLSCA plugin was performed 2.72 million executions, but it was not found
any crashes.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 6 of 42

Figure 1 AFL execution on coap_parse_message function

2.3.2 Fuzz testing of CoAP server with fuzzcoap

Since AFL is a generic fuzzer, the achieved coverage was not sufficient even after 2.72 million
executions. So, we tried a CoAP specific fuzzer called fuzzcoap3, which uses the scapy to
generate CoAP messages using various fuzzing techniques, such as Random, Informed Random,
Mutational, Smart Mutational and Generational fuzzers. Although the fuzzcoap supported the
Contiki CoAP implementation, we had to perform some modifications in the downloaded source. In
the utils.py we changed the following lines:

TARGET_IPV6 = True

COAP_AUT_DEFAULT_DST_HOST = "fd00::302:304:506:708"

We performed the following commands from the fuzzcoap folder to start the fuzzing process:

sudo sysctl -w net.ipv6.conf.all.forwarding=1 && sudo ip tuntap add tap0 mode

tap user ${USER} && sudo ip link set tap0 up && sudo ip tuntap add tun0 mode

tun user ${USER} && sudo ip link set tun0 up && sudo ip address add

2001:db8:1::a/64 dev tap0 && sudo ip address add fd00::1/64 dev tun0 && sudo

service radvd restart

./run_monitor.sh contiki-native-erbium-plugtest

./run_fuzzer.sh -e s -t contiki-native-erbium-plugtest out-get/contiki3

The fuzzcoap found 2 crashes in the performed 22950 test cases and provided the following
summary:

Using 236 as seed

AUT-specific Strings (user-defined):

[]

Extracted Paths:

['test/push', '.well-known/core', 'test/sub', 'debug/mirror', 'test/separate',

'test/b1sepb2', 'test/chunks', 'test/hello']

Extracted Strings:

3 https://github.com/bsmelo/fuzzcoap

https://github.com/bsmelo/fuzzcoap

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 7 of 42

['rt="Text"', 'rt="Data"', 'title="Sub-resource demo"', 'title="Hello world:

?len=0.."', 'title="Blockwise demo"', 'ct=40', 'title="Block1 + Separate +

Block2 demo"', 'title="Periodic demo"', 'title="Separate demo"',

'title="Returns your decoded message"', 'rt="Debug"', 'obs']

 Option Name Templates/Generators Test Cases

 string 16 7600

 opaque 12 48

 uint 18 8226

 empty 14 28

 payload 14 994

 field 6 6054

 ====================== ====================== ======================

 Total 80 22950

Crashes for option string model StrEmpty: 0 (TCs Executed:475/475)

Crashes for option string model StrAddNonPrintable: 0 (TCs Executed:475/475)

Crashes for option string model StrOverflow: 0 (TCs Executed:475/475)

Crashes for option string model StrPredefined_ : 0 (TCs Executed:475/475)

Crashes for option string model StrPredefined_8: 0 (TCs Executed:475/475)

Crashes for option string model StrPredefined_#: 0 (TCs Executed:475/475)

Crashes for option string model StrPredefined_ðŸ˜•: 0 (TCs Executed:475/475)
Crashes for option string model StrPredefined_%: 0 (TCs Executed:475/475)

Crashes for option string model RandKTarget_StrEmpty: 0 (TCs Executed:475/475)

Crashes for option string model RandKTarget_StrAddNonPrintable: 0 (TCs

Executed:475/475)

Crashes for option string model RandKTarget_StrOverflow: 0 (TCs

Executed:475/475)

Crashes for option string model RandKTarget_StrPredefined_ : 0 (TCs

Executed:475/475)

Crashes for option string model RandKTarget_StrPredefined_8: 1 (TCs

Executed:475/475)

Crashes for option string model RandKTarget_StrPredefined_#: 0 (TCs

Executed:475/475)

Crashes for option string model RandKTarget_StrPredefined_ðŸ˜•: 0 (TCs
Executed:475/475)

Crashes for option string model RandKTarget_StrPredefined_%: 0 (TCs

Executed:475/475)

Crashes for option string: 1

Total time for option string: 335.89956s

Crashes for option opaque model OpaqueEmpty: 0 (TCs Executed:4/4)

Crashes for option opaque model OpaqueOverflow: 0 (TCs Executed:4/4)

Crashes for option opaque model OpaquePredefined_ : 0 (TCs Executed:4/4)

Crashes for option opaque model OpaquePredefined_ÿ: 0 (TCs Executed:4/4)

Crashes for option opaque model OpaquePredefined_ðŸ˜•: 0 (TCs Executed:4/4)
Crashes for option opaque model OpaquePredefined_%: 0 (TCs Executed:4/4)

Crashes for option opaque model RandKTarget_OpaqueEmpty: 0 (TCs Executed:4/4)

Crashes for option opaque model RandKTarget_OpaqueOverflow: 0 (TCs Executed:4/4)

Crashes for option opaque model RandKTarget_OpaquePredefined_ : 0 (TCs

Executed:4/4)

Crashes for option opaque model RandKTarget_OpaquePredefined_ÿ: 0 (TCs

Executed:4/4)

Crashes for option opaque model RandKTarget_OpaquePredefined_ðŸ˜•: 0 (TCs
Executed:4/4)

Crashes for option opaque model RandKTarget_OpaquePredefined_%: 0 (TCs

Executed:4/4)

Crashes for option opaque: 0

Total time for option opaque: 2.74745s

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 8 of 42

Crashes for option uint model UintNull: 0 (TCs Executed:457/457)

Crashes for option uint model UintAbsoluteMinusOne: 0 (TCs Executed:457/457)

Crashes for option uint model UintAbsoluteOne: 0 (TCs Executed:457/457)

Crashes for option uint model UintAbsoluteZero: 0 (TCs Executed:457/457)

Crashes for option uint model UintAddOne: 0 (TCs Executed:457/457)

Crashes for option uint model UintSubtractOne: 0 (TCs Executed:457/457)

Crashes for option uint model UintMaxRange: 0 (TCs Executed:457/457)

Crashes for option uint model UintMinRange: 0 (TCs Executed:457/457)

Crashes for option uint model UintMaxRangePlusOne: 0 (TCs Executed:457/457)

Crashes for option uint model RandKTarget_UintNull: 0 (TCs Executed:457/457)

Crashes for option uint model RandKTarget_UintAbsoluteMinusOne: 0 (TCs

Executed:457/457)

Crashes for option uint model RandKTarget_UintAbsoluteOne: 0 (TCs

Executed:457/457)

Crashes for option uint model RandKTarget_UintAbsoluteZero: 0 (TCs

Executed:457/457)

Crashes for option uint model RandKTarget_UintAddOne: 0 (TCs Executed:457/457)

Crashes for option uint model RandKTarget_UintSubtractOne: 0 (TCs

Executed:457/457)

Crashes for option uint model RandKTarget_UintMaxRange: 0 (TCs Executed:457/457)

Crashes for option uint model RandKTarget_UintMinRange: 0 (TCs Executed:457/457)

Crashes for option uint model RandKTarget_UintMaxRangePlusOne: 0 (TCs

Executed:457/457)

Crashes for option uint: 0

Total time for option uint: 331.75852s

Crashes for option empty model EmptyAbsoluteMinusOne: 0 (TCs Executed:2/2)

Crashes for option empty model EmptyAbsoluteOne: 0 (TCs Executed:2/2)

Crashes for option empty model EmptyAbsoluteZero: 0 (TCs Executed:2/2)

Crashes for option empty model EmptyPredefined_ÿ: 0 (TCs Executed:2/2)

Crashes for option empty model EmptyPredefined_#: 0 (TCs Executed:2/2)

Crashes for option empty model EmptyPredefined_ðŸ˜•: 0 (TCs Executed:2/2)
Crashes for option empty model EmptyPredefined_%: 0 (TCs Executed:2/2)

Crashes for option empty model RandKTarget_EmptyAbsoluteMinusOne: 0 (TCs

Executed:2/2)

Crashes for option empty model RandKTarget_EmptyAbsoluteOne: 0 (TCs

Executed:2/2)

Crashes for option empty model RandKTarget_EmptyAbsoluteZero: 0 (TCs

Executed:2/2)

Crashes for option empty model RandKTarget_EmptyPredefined_ÿ: 0 (TCs

Executed:2/2)

Crashes for option empty model RandKTarget_EmptyPredefined_#: 0 (TCs

Executed:2/2)

Crashes for option empty model RandKTarget_EmptyPredefined_ðŸ˜•: 0 (TCs
Executed:2/2)

Crashes for option empty model RandKTarget_EmptyPredefined_%: 0 (TCs

Executed:2/2)

Crashes for option empty: 0

Total time for option empty: 1.54114s

Crashes for option payload model PayloadEmpty: 0 (TCs Executed:71/71)

Crashes for option payload model PayloadAddNonPrintable: 0 (TCs Executed:71/71)

Crashes for option payload model PayloadPredefined_ : 0 (TCs Executed:71/71)

Crashes for option payload model PayloadPredefined_ÿ: 0 (TCs Executed:71/71)

Crashes for option payload model PayloadPredefined_#: 0 (TCs Executed:71/71)

Crashes for option payload model PayloadPredefined_ðŸ˜•: 0 (TCs Executed:71/71)
Crashes for option payload model PayloadPredefined_%: 0 (TCs Executed:71/71)

Crashes for option payload model RandKTarget_PayloadEmpty: 0 (TCs

Executed:71/71)

Crashes for option payload model RandKTarget_PayloadAddNonPrintable: 0 (TCs

Executed:71/71)

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 9 of 42

Crashes for option payload model RandKTarget_PayloadPredefined_ : 0 (TCs

Executed:71/71)

Crashes for option payload model RandKTarget_PayloadPredefined_ÿ: 0 (TCs

Executed:71/71)

Crashes for option payload model RandKTarget_PayloadPredefined_#: 0 (TCs

Executed:71/71)

Crashes for option payload model RandKTarget_PayloadPredefined_ðŸ˜•: 0 (TCs
Executed:71/71)

Crashes for option payload model RandKTarget_PayloadPredefined_%: 0 (TCs

Executed:71/71)

Crashes for option payload: 0

Total time for option payload: 56.20460s

Crashes for option field model FieldNull: 0 (TCs Executed:1009/1009)

Crashes for option field model FieldRemove: 0 (TCs Executed:1009/1009)

Crashes for option field model FieldDuplicate: 0 (TCs Executed:1009/1009)

Crashes for option field model RandKTarget_FieldNull: 0 (TCs Executed:1009/1009)

Crashes for option field model RandKTarget_FieldRemove: 1 (TCs

Executed:1009/1009)

Crashes for option field model RandKTarget_FieldDuplicate: 0 (TCs

Executed:1009/1009)

Crashes for option field: 1

Total time for option field: 300.90116s

Total Time: 1029.05417s

According to the packets.log, the crashes were caused by the following packets:

TC: 6089

0000 48016937BA7B0756A86AD6CDBB2E7765 H.i7.{.V.j....we

0010 6C6C2D6B6E6F776E04636F7265447274 ll-known.coreDrt

0020 3D2A8172 =*.r

TC: 21472

0000 4802037D91EFF77FD74F258EB4746573 H..}.....O%..tes

0010 740568656C6C6F10B1E2 t.hello...

To test the crashes, we sent these packets again to the CoAP server, but during this execution, the
crashes did not happen, so these crashes were false positives.

2.3.3 Source code analysis of the MQTT protocol

Every incoming control packet was parsed by the tcp_input function. This function called the

various handler functions after the packet was received. First, it parsed the fixed header, which
contains the header byte and the payload length.

After the payload length was calculated, the tcp_input function copied data from the TCP buffer

to the payload buffer. The size of the copied data was correctly limited to the maximum size of the
payload buffer. However, the code contained a debug snippet, which printed out the copied bytes
using the following code:

 uint8_t i;

 DBG("MQTT - Copied bytes: \n");

 for(i = 0; i < copy_bytes; i++) {

 DBG("%02X ", conn->in_packet.payload[i]);

 }

 DBG("\n");

Because the i was defined as uint8, if the copy_bytes value is larger than 255 the i will be

overflow and the for loop won’t be finished.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 10 of 42

Depending on the used optimizations, an empty for loop will be compiled into the binary even if

the DBG function is switched off.

Figure 2 Compiled empty for loop

As a result, the mqtt-client will be stuck in an endless loop in case a large packet was sent by

the server.

Figure 3 mqtt-client in endless loop

After the payload bytes were copied, the tcp_input function has been checked to see whether

the payload buffer was filled up. This would happen in case of PUBLISH MQTT message when the

size of the message payload is larger than 512 bytes. If the buffer was filled up, the

handle_publish was called without checking the actual message type. To protect the client

against calling handle_publish incorrectly, the size of the packet was checked before the

payload was copied using the following code:

 if((conn->in_packet.remaining_length > MQTT_INPUT_BUFF_SIZE) &&

 (conn->in_packet.fhdr & 0xF0) != MQTT_FHDR_MSG_TYPE_PUBLISH) {

According to this code, the remaining length could be larger than the MQTT_INPUT_BUFF_SIZE

(512) only if the packet type was PUBLISH. But, the check before calling handle_publish

verified whether the payload buffer was filled up using the following code:

if(MQTT_INPUT_BUFF_SIZE - conn->in_packet.payload_pos == 0) {

So, if the remaining length contained exactly the MQTT_INPUT_BUFF_SIZE, the first check would

be met, and thus the full payload buffer would be read. To verify this problem we constructed a

PUBACK MQTT packet with 512 bytes length and 512 bytes ‘a’ in the payload and we fixed the

endless loop problem described above.

After sending the modified PUBACK packet, the client logged the following:

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 11 of 42

MQTT - Read VHDR '40'

MQTT - Read Remaining Length byte

MQTT - Read Remaining Length byte

MQTT - Finished reading remaining length byte 512

MQTT - Input data len: 512

MQTT - Pos: 3

MQTT - MQTT_INPUT_BUFF_SIZE: 512

MQTT - payload_pos: 0

MQTT - byte_counter: 3

- Copied 509 payload bytes

MQTT - Payload pos before: 0

MQTT - Payload pos: 253

MQTT - Copied bytes:

61

61 61 61 61 61 61 61 61 ...

As it is seen from the log, the client received the PUBACK header (VHDR=0x40), read the

remaining byte, which was 512 and copied 509 bytes (remaining length was decreased with the
header size) to the payload buffer. Since the payload buffer was not full at this step, it did not call
the handler function. As it was showed before, the status of the payload buffer was checked by the

payload_pos field in the packet. According to the client log, the payload_pos was 253 after

copying 509 bytes. Since it should be 509, we checked the payload_pos modification in more

depth and it turned out that it was declared in the mqtt_in_packet structure as uint8, so the

position of the payload data was overflowed (509-256=253).

struct mqtt_in_packet {

 /* Used by the list interface, must be first in the struct. */

 struct mqtt_connection *next;

 /* Total bytes read so far. Compared to the remaining length to to decide when

 * we've read the payload. */

 uint32_t byte_counter;

 uint8_t packet_received;

Finally, the uint8 declaration made impossible to call handle_publish function in case of other

message types than PUBLISH, but it also caused incorrect functionality.

During our tests, we found another way to bypass the length verification for the size remaining. If
we specified the remaining length as a small value (e.g. 4), but sent a large packet, the copied

bytes and the payload_pos was calculated based on the received bytes and not the remaining

length.

MQTT - Read VHDR '40'

MQTT - Read Remaining Length byte

MQTT - Finished reading remaining length byte 4

MQTT - Input data len: 512

MQTT - Pos: 2

MQTT - MQTT_INPUT_BUFF_SIZE: 512

MQTT - payload_pos: 0

MQTT - byte_counter: 2

- Copied 510 payload bytes

MQTT - Payload pos before: 0

MQTT - Payload pos: 254

MQTT - Copied bytes:

61

61 61 61

An MQTT client has to handle the following control packet types received from the server:

- PUBLISH: Publish message

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 12 of 42

- PUBREC: Publish received (not supported)

- PUBREL: Publish release (not supported)

- PUBCOMP: Publish complete (not supported)

- PINGRESP: Ping response

And the following acknowledgment control packets:

- CONNACK: Connection acknowledgment

- PUBACK: Publish acknowledgment

- SUBACK: Subscribe acknowledgment

- UNSUBACK: Unsubscribe acknowledgment

Acknowledgement control packets have a very simple and fixed format, which was parsed by the

handle_connack, the handle_suback, the handle_unsuback and the handle_puback

functions.

Since only the PUBLISH and PINGRESP were supported, except from the acknowledgment

packets, we focused the handling of these control packet types.

The PINGRESP was parsed by the handle_pingresp function, which was only logged that the

PINGRESP was received.

The PUBLISH was parsed by the handle_publish function and only called the PUBLISH event

and reset the incoming packet.

2.3.4 MQTT analysis with Frama-C EVA plugin

Since the tcp_input was the main function of the MQTT message parsing, we analysed this

function using Frama-C EVA plugin. Without annotating the function, the Frama-C generated 63
yellow alarms on the 253 lines long function. From the 63 alarms 41 were memory access
problems, which were caused that there was not any assumption about the incoming buffers. For
example the following memory access can be invalid if the received connection pointer (ptr function
parameter) was not initialized correctly by the caller:

Figure 4 Memory access alarm

Because we assumed that the caller initialized the pointers and structures correctly we focused on
the remaining 22 alarms.

The following two signed overflow alarms were generated because the

remaining_length_bytes was declared as uint8 (unsigned char) and may be overflowed

after reading more than 255 remaining bytes.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 13 of 42

Figure 5 Invalid signed overflow alarm

However, this overflow cannot happen because the next line verified that the byte_counter of

the packet is larger than 5, which means that 4 remaining byte values have been read. So the
signed overflow alerts were false positives.

The remaining length calculation generated 4 signed overflow alarms, because the

remaining_length was declared as unsigned short and it can be overflow easily. The MQTT

standard [19] allows remaining length value up to 268435455 bytes, which will not fit into the

remaining_length variable. So, the alarms were valid, but because of other verifications (see

above) it could cause only functional issues as the MQTT client will not be able to handle large
PUBLISH messages correctly.

Figure 6 Remaining length calculation alarms

The remaining_multiplier had the same problem as the remaining_length. It was

declared as unsigned char, which overflowed after the second remaining byte. The

remaining_multiplier was used to calculate the remaining_length value, so it could

cause functional problem only.

Figure 7 Remaining multiplier calculation alarms

The following alarm was caused by a possible integer overflow in the verification of last PUBLISH

packet. Although the alarm was correct, it was not possible, because the remaining_length

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 14 of 42

cannot be larger than 268,435,455 according to the specification and 65,535 according to the

remaining_length declaration.

Figure 8 Verification of last PUBLISH packet

Exactly the same problem was found at the start of the payload copy loop, where the packet end
was checked.

Figure 9 Verification of packet end

The calculation of the payload bytes count was also alerted because of possible integer overflow.

However, it was not possible, because the payload_pos cannot be larger than 512. It was

guaranteed by additional checks and the fact that the payload_pos was declared as uint8

(unsigned char).

Figure 10 Calculation of payload bytes count

Since the DBG was not defined, the for loop, which printed out the copied payload, was an empty

loop. Although the casting was correctly identified during the preprocessing step, the EVA plugin
did not raise any alert for the integer overflow.

Figure 11 Debug loop to print out payload bytes

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 15 of 42

The payload_pos was also marked as possible integer overflow in case of the verification of

whether the payload buffer was filled up fully. Similarly to the previous cases, the alert was not

valid, because the payload_pos cannot be larger than 512.

Figure 12 Full buffer verification

The payload_left variable was filled up by the variable header parser of the PUBLISH

message. Since it received the value of the remaining_length at initialization, this branch could

be executed only if the remaining_length was larger than 512 bytes. In this case the

payload_left would not be overflowed.

Figure 13 Payload_left calculation

The following alert was also a false positive, because the remaining_length cannot be overflow

after casting to integer, since its value cannot be larger than 512.

Figure 14 Remaining data verification

In the following table, we collected the MQTT related findings in the tcp_input function:

Table 3 MQTT related findings by Frama-C EVA plugin

Description of finding/alarm
Line

number
Found by
Frama-C

Valid
Security
problem

Integer overflow in the remaining_length_bytes

calculation.
963 Yes No No

Integer overflow in the remaining_length_bytes

calculation.
972 Yes Yes No

Integer overflow in the remaining_multiplier calculation. 974 Yes Yes No

Integer overflow in the remaining_length calculation. 993 Yes Yes No

Integer overflow in the remaining_length calculation. 1006 Yes Yes No

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 16 of 42

Description of finding/alarm
Line

number
Found by
Frama-C

Valid
Security
problem

Integer overflow in the copy_bytes calculation. 1015 Yes No No

Integer overflow in the payload_pos calculation. 1022 No Yes No

Integer overflow in the copied bytes print out loop. 1027 No Yes Yes

Integer overflow in the buffer verification. 1033 Yes No No

Integer overflow in the payload_left calculation. 1036 Yes No No

Integer overflow in the remaining data verification. 1045 Yes No No

During the evaluation of the client-side MQTT protocol implementation, we found one integer
overflow vulnerability, which caused Denial of Service against the client process. We also found 5
other integer overflow vulnerabilities, which caused functional problems.

2.4 Findings and recommendations

2.4.1 Possible DoS attack in case of large MQTT messages

In case of a large MQTT message payload, if the payload size is larger than 255 bytes, the index
variable in debug print out function overflowed and the print out was never stopped, which caused
a Denial-of-Service type attack against the MQTT client application. An attacker might use this
vulnerability to block user data.

Recommendation

Change the declaration of the i variable at line mqtt.c:1114 from

uint8_t i;

to

uint32_t i;

2.4.2 Multiple integer overflows cause functional problems

During the analysis we found integer overflow in the remaining_length_bytes calculation, in

the remaining_multiplier calculation, in the remaining_length calculation and in the

payload_pos calculation, which caused incorrect handling of large MQTT payloads.

Recommendation

Check variable declarations in the MQTT related structures and use proper variable types, which
can handle the maximum values correctly.

2.4.3 Publish handler may be called in case of other commands also

In case the payload buffer is full, the registered publish handler is called with the partial payload
data. Since the verification was based on the size of the payload, we found multiple ways to
bypass this check, which would cause incorrect calls of the publish handler. Because of the
multiple integer overflows in the code, vulnerable cases actually never happen.

Recommendation

Check the command type, before the publish handler would be called at line mqtt.c:1127.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 17 of 42

2.5 Risk analysis

In this section we enumerate the findings that we introduced in 2.4, and analyse their risk by
examining the severity and likelihood of their occurrence. The severity level corresponds to the
items mentioned below:

 Low: Vulnerabilities that cannot be exploited or can only result in unexpected (functional)
errors. Minor data leakage, user misleads or transient denial-of-service type attack.

 Medium: Leakage of confidential information or unwarranted access to system resources.
Denial-of-service that affects multiple users.

 High: Subversion of system components or code execution. Permanent denial-of-service
type attacks.

We categorized the likelihood with the following levels:

 Very low (VL): Infeasible attack scenarios or very rare events, which require using zero-day
vulnerabilities or weaknesses of trusted components.

 Low (L): Rare events. The attacker needs detailed knowledge about the system, or needs
special equipment. Some of these events may only be performed with the help of an
insider.

 Medium (M): The event may happen. The attacker only needs normal knowledge about the
system and the attack can be performed with normally available equipment.

 High (H): The event occurs quite often. The attacker only needs minor knowledge about the
system and does not need any additional equipment. The event can occur due to wrong or
careless usage.

Finally, we calculated the risk of each threat using the standard likelihood  severity risk calculation
using the table below.

Table 4 Risk level calculation

Likelihood /
Severity

Very Low Low Medium High

Low Very Low Low Medium High

Medium Low Medium High Very High

High Medium High Very High Catastrophic

The risk value of each threat can take the following levels:

 Very Low (VL): The threat has a very minor effect on the security of the asset.

 Low (L): The threat has a minor effect on the security of the asset.

 Medium (M): The threat has a noticeable effect on the security of the asset.

 High (H): The threat significantly endangers the asset.

 Very high (VH): The threat significantly endangers the asset or the system as a whole

 Catastrophic (C): The threat presents a critical risk to the system as a whole; if not
mitigated, its effects could put the entire business process at risk.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 18 of 42

In the table below we represented the severity, likelihood and risk values of each threat associated
with our findings. We highlighted threats with Very High or Catastrophic risk.

Table 5 Risk analysis for Contiki OS (Inria Use Case)

Threat S L R

2.4.1 – Possible DoS attack in case of large MQTT messages M H VH

2.4.2 – Multiple integer overflows cause functional problems L M M

2.4.3 – Publish handler may be called in case of other commands also L - -

2.5.1 SCL result

Based on the assigned risk values for the threats identified, we can calculate the Security
Certification level assigned as a result for this evaluation. We based our calculation on D4.2 [8]
section 2.5.2.

𝑅𝐴 = ∑ 𝑀(𝑅𝑣)

𝑁

𝑣=1

= 𝑀(𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ) + 𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = 1 + 0.25 = 1.25

𝐷𝐴 = 𝐸𝐴 𝑚𝑎𝑥(1, 0.5 + R𝐴)⁄ = 10/max(1,1.75) = 5.714

𝑆𝐶𝐿𝐴 ≤ 2 ∗ 𝑙𝑛(1.67 ∗ 𝐷𝐴) = 4.512

Based on these calculations, we assign the SCL value of 4 (the floor of the above SCLA value) to
the target in the scope of this security evaluation.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 19 of 42

Chapter 3 CEA’s use case

3.1 Use case description (Applicability Field definition)

3.1.1 Target of Evaluation

In the Security Evaluation of CEA’s use case, we selected representative example application
which was included with the Contiki OS environment described in D5.4 [15] in detail. The Contiki
OS version used was 3.14. For confidentiality reasons, the source code of the firmware
management on the 6LoWPAN node could not be provided to this Security Evaluation.

From the whole CEA use-case, the MPL routing was chosen for the evaluation. The MPL routing
was defined in RFC 77315. The routing algorithm was implemented in

core/net/ipv6/multicast/roll-tm.c file and for the evaluation, CEA provided an

annotated version of this implementation called roll-tm_wp.c.

3.1.2 Scope

During the evaluation, we analysed the MPL routing protocol without other parts of the use case.
To perform requests using MPL routing we used the ipv6/multicast example included with the
Contiki OS distribution, by sending simple data over the network.

The Contiki OS version in use by this use case was slightly different from the one used in the first
Use case in Chapter 2. We did not include analysis of Contiki OS environment core services in the
scope of this check.

3.1.3 Applicable requirements

In this section we collected requirements based on D1.2 [2], and evaluated their applicability in the
current scope.

Table 6 Applicable requirements for CEA Use Case

Functional
component

Critical functionality Security requirement Applicability

Application
server

Transmission of firmware
packets to the gateway

Authentication, data
integrity and
confidentiality

Yes: MPL service employs
link-layer security according
to IEEE802.15.4 [21]

 CRC value generation (over
the firmware file) and
transmission to the gateway

Authentication and data
integrity

Yes: MPL service employs
link-layer security according
to IEEE802.15.4 [21]

Gateway Firmware packet forwarding to
LLN node

Authentication, data
integrity and
confidentiality

Yes: MPL service employs
link-layer security according
to IEEE802.15.4 [21]

LLN node Notification of end of firmware
update. The notification is sent
to the application server via
the gateway

Authentication and data
integrity

Yes: MPL service employs
link-layer security according
to IEEE802.15.4 [21]

4 https://github.com/contiki-os/contiki/tree/release-3-1
5 https://tools.ietf.org/html/rfc7731

https://github.com/contiki-os/contiki/tree/release-3-1
https://tools.ietf.org/html/rfc7731

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 20 of 42

Functional
component

Critical functionality Security requirement Applicability

 Read/write/delete operations
on the flash

User access control No: Application layer
functionality was not provided

 Cryptographic key storage and
management

Hardware security
module

No: Application layer
functionality was not provided

3.1.4 Security objectives

In this section we collected the assets and security objectives based on D1.2 [2]. We collected the
specific assets for the example applications as well.

The following security objectives were listed for 6LowPAN Management platform:

 Data origin authentication and integrity: to prevent source impersonation and data
forging during both firmware transfer and associated exchanges of control messages
between concerned the GW and LLN nodes.

 Data confidentiality: in order to prevent eavesdropping and reverse engineering on the
firmware image, data confidentiality needs to be enforced though data encryption.

 Service availability: firmware update is a critical phase that needs to be protected against
DoS attacks to ensure complete firmware transmission and successful loading of the new
firmware.

 Data access control: only authorized LLN nodes will get (and have access to) the
firmware data.

 Network access control: only authorized LLN nodes can connect to the routing
infrastructure.

3.1.5 Threat modelling

Threat modelling was carried out for the Use Case in D1.2 [2] Section 3.3.

The STRIDE threat modelling table is repeated here, with the threats applicable to our ToE and
scope marked as X, and other identified threats marked as N/A.

(S: Spoofing of user identity. T: Tampering. R: Repudiation. I: Information disclosure. D: Denial of
service. E: Elevation of privilege) [22].

Table 7 - STRIDE threat modelling for the 6LowPAN Management Platform

Threat description S T R I D E

Reverse engineering of the firmware binary image into assembly or a
higher level engineering language to analyze its functionality and
contents.

 N/A N/A

Product cloning where a firmware image from the product
manufacturer is loaded onto a device that is not authorized.

 N/A N/A

Alteration of the firmware distributed by the product manufacturer. X X

Loading an unauthorized firmware image onto the device, which may
correspond to an older firmware version from the product manufacturer
with known bugs or code created by an unauthorized party, or firmware
not intended for the specific device (firmware downgrading).

 N/A N/A

Transmitting fake image to the LLN nodes. X X X

Transmitting fake notification of end of firmware transmission X X X

Transmitting fake reboot command to LLN nodes X X X

Unauthorized initialization/write operations on the flash memory N/A N/A

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 21 of 42

The analysis identified the following misuse cases:

 Transmission error: this could occurs for instance when some bits are flipped during
transmission.

 Transmission failure: a typical example of such an event is when losing device power or
losing connection with host during the firmware update process. This would lead to
transmission failure.

 Information loss: because of the unreliable nature of LLN networks, parts of the data may
be lost during firmware update process.

We based our analysis on assessing the possibility of the threats marked above, in relation to the
use case example of MPL routing example.

3.2 Evaluation Plan

According to the Evaluation Methodology described earlier in D4.2 [8], we define the elements for
the evaluation plan in the following, and describe the test plan.

3.2.1 Test environment

The tests were performed in an Ubuntu Linux virtual machine running in Oracle VM VirtualBox. The
example applications were compiled to the native architecture (x86_64).

3.2.2 Version tested

The Contiki OS version was 3.16 with the annotated roll-tm.c file.

3.2.3 Tools and test equipment

We used the following tools and software versions during the evaluation:

 Frama-C 19.0 (Potassium)

 Ubuntu Linux, Linux 4.15.0-64-generic x86_64 x86_64 x86_64 GNU/Linux

3.2.4 SCL Target

According to the methodology described in D4.2 [8] section 2.5.1, we set a Maximum Target
Security Level, which defines the efforts allocated for the evaluation activities.

The use case targets defined by the use case (D5.4 [15]) aimed at more formal verification of the
target. In commercially realistic setups, such a high degree of security would necessitate a high
level of Maximum Target Security Level in order to provide useful results, such as SCL 9 or
above, with white-box approach.

However, in the scope of VESSEDIA project, we aimed at demonstrating more techniques with
more use cases, and selecting partial examples from the use cases of the partners. In the
evaluation of this use case, we used target level SCL 4. This level was defined as 5 Expert Days
of Evaluation, within 3 weeks of Execution time of Evaluation.

While SCL Level 4 was described as black-box evaluation, we in fact received and used the full
source code for the ToEs. Our test plan thus includes evaluation activities, which are normally part
of the evaluation against higher Target levels only. We have also used tools included in the
VESSEDIA toolbox as defined in D4.2 [8] as well, in order to provide a use case study and
demonstration of the use of the technologies developed within the project.

6 https://github.com/contiki-os/contiki/tree/release-3-1

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 22 of 42

At the end of evaluation, we calculate the SCL level reached in our final Risk Analysis in section
3.5.1.

3.2.5 Test Plan

Based on the above collected information, we devised a test plan that included manual and
automated testing using the tools also described.

The following tests were carried out against the ToE in this Evaluation:

 3.3.1 – Evaluation with WP plugin

 3.3.2 – Evaluation with EVA plugin

In the following chapters, we describe the test process and then, the test results.

3.3 Test cases

The TOE was the implementation of a network protocol and its design was evaluated already in
Chapter 12 in RFC 7731, so we focused on the implementation problems.

3.3.1 Evaluation with WP plugin

The main source component of the routing protocol implementation (roll-tm.c) was partially

annotated by CEA, so we were able to use the WP plugin during the evaluation. After executing

the WP analysis with the received fr_wp_mpl script, the kernel generated 12 alarms with the

following message:

Neither code nor specification for function clock_time, generating default

assigns from the prototype

The WP plugin generated 77 further alarms in the following categories:

Table 8 Frama-C alarms by WP plugin for CEA Use Case

Alarm category
No. of
alarms

Description

Missing RTE guards 1

Cast with incompatible pointers types

62

Most of these warnings were
raised by a cast to void* from a
struct or a cast to struct from a
buffer.

Struct to void* casts were used in

memset and memcpy functions,

where the length was correctly
set.

Buffer to struct casts were used to
parse the IP header. The size of
the buffer was pre-allocated and it
was filled by the IP and IPv6
protocol stack.

Missing assigns clause (assigns 'everything'
instead) 6

Over-approximation by the WP
plugin, because of a missing
assign.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 23 of 42

Alarm category
No. of
alarms

Description

Logic cast to sized integer (int) from (…) not
implemented yet 5

The used Frama-C version (v19)
did not support all of the
annotations.

Allocation, initialization and danglingness not yet
implemented 3

The used Frama-C version (v19)
did not support all of the
annotations.

At the end of the WP analysis 55 goals out of the 154 goals were proved.

3.3.2 Evaluation with EVA plugin

Since the MPL routing parts of the Contiki OS was called at specific events, the EVA analysis
could not be executed from the main of the example code. Instead of this, we executed EVA
analysis to some function in the MPL routing code, which were responsible for handling the main
functionality.

Table 9 Findings by Frama-C EVA plugin for CEA Use Case

Alarm message
Source:line number /

function
Description

division by zero.

assert

(unsigned long)((unsigned
long)((unsigned long)(i_min << (int)d) - 1)
- min)

≢ 0; roll-tm_wp.c:497 /
random_interval

According to the EVA plugin
the calculation of the random
interval may result in a division
by zero. By analysing the
alerted function, we concluded
that the division by zero can

happen if the i_min parameter

is small enough (0,1 or 2).

However, the i_min was set to

32 or 64 only, which
guaranteed that division by
zero cannot be possible in
practice. This analysis is
extended in D5.4 [15] section
3.1.3.2.1.

pointer comparison.

assert

\pointer_comparable((void *)iterswptr,

 (void *)((struct sliding_window
*)windows));

roll-tm_wp.c:1310 /
icmp_input

roll-tm_wp.c:1317 /
icmp_input

roll-tm_wp.c:1327 /
icmp_input

In several places pointers were
compared to check the start or
the end of a buffer. In every
checked place, these pointers
were compared correctly.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 24 of 42

Alarm message
Source:line number /

function
Description

out of bounds read. assert
\valid_read(&locslhptr->flags);

roll-tm_wp.c:1332 /
icmp_input

The locslhptr pointer was

initialized with

UIP_ICMP_PAYLOAD, which

was a pointer to the ui_buf.

The ui_buf was a pre-

allocated buffer. So, even if it
was not filled correctly for some
reason, out of bounds read was
not possible.

out of bounds read. assert
\valid_read(&locslhptr->seq_len);

roll-tm_wp.c:1357 /
icmp_input

Similarly to the previous assert,
the out of bounds read was not
possible.

out of bounds read. assert
\valid_read(seq_ptr);

roll-tm_wp.c:1379 /
icmp_input

The seq_ptr was iterated

over the sequence values
received in the ICMP message.
The message was stored in the

pre-allocated ui_buf. The

buffer size was 2042. Since the
sequence length was defined
as uint8, its maximum value is

255, so, the icmp_input

function will read 510 bytes

maximum from the ui_buf.

So, out of bounds read will not
happen, but because it was not
verified whether the ICMP
message contained so much
sequence values than it was
claimed, the function may read
invalid data left other function in
the buffer.

During our analysis we verified the in, the out, the init, the icmp_input, the icmp_output

and the handle_timer functions.

3.4 Findings and recommendations

3.4.1 Sequence number was not checked in the ICMP message

We found that the sequence number was not properly checked before the sequence values would
be iterated in the ICMP message. Because of the used buffer size, this could not cause out of
bounds read or any security problem.

Recommendation

Perform sequence number verification.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 25 of 42

3.5 Risk analysis

In this section we enumerate the findings that we introduced in 2.4, and analyse their risk by
examining the severity and likelihood of their occurrence. The severity level corresponds to the
items mentioned below:

 Low: Vulnerabilities that cannot be exploited or can only result in unexpected (functional)
errors. Minor data leakage, user misleads or transient denial-of-service type attack.

 Medium: Leakage of confidential information or unwarranted access to system resources.
Denial-of-service that affects multiple users.

 High: Subversion of system components or code execution. Permanent denial-of-service
type attacks.

We categorized the likelihood with the following levels:

 Very low (VL): Infeasible attack scenarios or very rare events, which require using zero-day
vulnerabilities or weaknesses of trusted components.

 Low (L): Rare events. The attacker needs detailed knowledge about the system, or needs
special equipment. Some of these events may only be performed with the help of an
insider.

 Medium (M): The event may happen. The attacker only needs normal knowledge about the
system and the attack can be performed with normally available equipment.

 High (H): The event occurs quite often. The attacker only needs minor knowledge about the
system and does not need any additional equipment. The event can occur due to wrong or
careless usage.

Finally, we calculated the risk of each threat using the standard likelihood  severity risk calculation
using the table below.

Table 10 Risk level calculation

Likelihood /
Severity

Very Low Low Medium High

Low Very Low Low Medium High

Medium Low Medium High Very High

High Medium High Very High Catastrophic

The risk value of each threat can take the following levels:

 Very Low (VL): The threat has a very minor effect on the security of the asset.

 Low (L): The threat has a minor effect on the security of the asset.

 Medium (M): The threat has a noticeable effect on the security of the asset.

 High (H): The threat significantly endangers the asset.

 Very high (VH): The threat significantly endangers the asset or the system as a whole

 Catastrophic (C): The threat presents a critical risk to the system as a whole; if not
mitigated, its effects could put the entire business process at risk.

In the table below we represented the severity, likelihood and risk values of each threat associated
with our findings. We highlighted threats with Very High or Catastrophic risk.

Table 11 Risk analysis for CEA Use Case

Threat S L R

3.4.1 – Sequence number was not checked in the ICMP message L - -

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 26 of 42

3.5.1 SCL result

Based on the assigned risk values for the threats identified, we can calculate the Security
Certification level assigned as a result for this evaluation. We based our calculation on D4.2 [8]
section 2.5.2.

𝑅𝐴 = ∑ 𝑀(𝑅𝑣)

𝑁

𝑣=1

= 0 (𝑎𝑠 𝑛𝑜 𝑡ℎ𝑟𝑒𝑎𝑡𝑠 𝑤𝑒𝑟𝑒 𝑓𝑜𝑢𝑛𝑑 𝑤𝑖𝑡ℎ 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒 𝑟𝑖𝑠𝑘)

𝐷𝐴 = 𝐸𝐴 𝑚𝑎𝑥(1, 0.5 + R𝐴)⁄ = 5/max(1,0.5) = 5.000

𝑆𝐶𝐿𝐴 ≤ 2 ∗ 𝑙𝑛(1.67 ∗ 𝐷𝐴) = 4.245

Based on these calculations, we assign the SCL value of 4 (the floor of the above SCLA value) to
the target in the scope of this security evaluation.

Here, evaluation effort was more limited than in Inria Use Case, where the result was also SCL 4 –
see section 2.5.1. In that use case, more vulnerabilities found limited the level for the SCL Target 6
down to SCL 4. In this case, the Target level was reached, since no actual threats with assignable
risk value were found. This also means that the confidence of this SCL level is slightly lower, than
in the first use case, due to more effort spent in that use case.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 27 of 42

Chapter 4 DA’s use case

4.1 Use case description (Applicability Field definition)

4.1.1 Target of Evaluation

In the Security Evaluation of DA’s use case, we received a representative example application to
be tested instead of the original confidential source, upon which the original Use Case described in
D5.6 was based. For confidentiality reasons, the original source code could not be provided to this
Security Evaluation. DA provided the following representative component, which was used as a
stand-in instead of DA’s original source.

The target we received was a pre-processed and headerless source version of tcp_proxy open-
source component. It consisted of parts from the sources described below.

Tcp_proxy_preprocessed.cpp was a 6.5MB, 195031-line source file. It was based on the following
C++ TCP Proxy Server: http://www.partow.net/programming/tcpproxy/index.html.

The main source itself was a 331-line CPP file, as can be found in:

https://github.com/ArashPartow/proxy/blob/29d09e6bcef563b2e03a4100346c055e9a4128f6/tcppro
xy_server.cpp

Committed by ArashPartow on Jan 1, 2017 (http://www.partow.net) .

It included the following components:

#include <cstdlib>

#include <cstddef>

#include <iostream>

#include <string>

#include <boost/shared_ptr.hpp>

#include <boost/enable_shared_from_this.hpp>

#include <boost/bind.hpp>

#include <boost/asio.hpp>

#include <boost/thread/mutex.hpp>

The preprocessing took place under Linux 4.15.0-45-generic x86_64 (Ubuntu 18.04.2 LTS)
version7.

The libraries used in the preprocessing step were:

 gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)
 GCC v7.4 Dec 6, 20188

 libboost-all-dev/bionic 1.65.1.0ubuntu1 amd64
 boost v1.65.1 September 7th, 2017 17:31 GMT9

The standard libraries preprocessed into the ToE were part of GCC, compliant to ISO/IEC
14882:201710, and they were similar to this version:

cstdlib - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00242_source.html

7 http://old-releases.ubuntu.com/releases/18.04.2/
8 https://gcc.gnu.org/gcc-7/
9 https://www.boost.org/users/history/version_1_65_1.html
10 https://www.iso.org/standard/68564.html

http://www.partow.net/programming/tcpproxy/index.html
https://github.com/ArashPartow/proxy/blob/29d09e6bcef563b2e03a4100346c055e9a4128f6/tcpproxy_server.cpp
https://github.com/ArashPartow/proxy/blob/29d09e6bcef563b2e03a4100346c055e9a4128f6/tcpproxy_server.cpp
http://www.partow.net/
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00242_source.html
http://old-releases.ubuntu.com/releases/18.04.2/
https://gcc.gnu.org/gcc-7/
https://www.boost.org/users/history/version_1_65_1.html
https://www.iso.org/standard/68564.html

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 28 of 42

cstddef - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00233_source.html

iostream - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00086_source.html

string - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00152_source.html

The boost library preprocessed into the ToE was version 1.65.1.

The preprocessing was done using Make with a makefile similar to the following, and using the
preprocessed .ii file retained due to the -save-temps option:

#--

COMPILER = -c++

OPTIMIZATION_OPT = -O3

#OPTIONS = -pedantic -ansi -Wall -Werror $(OPTIMIZATION_OPT) -o

OPTIONS = -c -save-temps -o

PTHREAD =

#-lpthread

LINKER_OPT =

#-L/usr/lib -lstdc++ $(PTHREAD) -lboost_thread -lboost_system

BUILD_LIST+=tcpproxy_server

all: $(BUILD_LIST)

tcpproxy_server: tcpproxy_server.cpp

 $(COMPILER) $(OPTIONS) tcpproxy_server tcpproxy_server.cpp $(LINKER_OPT)

strip_bin :

 strip -s tcpproxy

clean:

 rm -f core *.o *.bak *~ *stackdump *#

#--

$ > make clean ; make

4.1.2 Scope

In case of this example, a large amount of compile-time libraries were included in the source, but
we focused our efforts on the operational security of the main source (tcpproxy_server.cpp).

The exact definition of scope would also be influenced by the choice of an SCL level according to
our Security Certification Levels scheme described in D4.2. In the case of formally verified code a
higher level such as SCL 8 or above would be practical, together with analysis of the environment.
Due to the limited timeframe within this project (and considering evaluation of multiple targets
described in this report), we aimed at a lower level, and thus excluded evaluation of common
runtime libraries, but researched known problems regarding them.

4.1.3 Applicable requirements

In D1.2, DA detailed the requirements to be applied against their use case. However, those were
described as not feasible to be tested in the scope of the VESSEDIA project, and general
requirements from D1.1 are prioritized.

However, the generic requirements collected for IoT in D1.1 are not applicable to a TCP proxy,
which operates on the network layer, above or below the features described in Section 4.3.2 of
D1.1. Keeping this discrepancy in mind, we proceed with collecting the relevant objectives and
threats, and devised test cases applicable to the functionality offered by the device class under
test.

https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00233_source.html
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00086_source.html
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00152_source.html

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 29 of 42

4.1.4 Security objectives

In this section we collected the assets and security objectives based on D1.2 [2].

In the scope of VESSEDIA, the following security objectives were found relevant for DA’s Aircraft
Maintenance System, AMS.

Table 12 - Security objectives for the AMS, in the scope of VESSEDIA

Objective Description Applicability
in evaluation

privacy or
confidentiality

Only DL users are authorized to send/receive data. N/A

data integrity Unauthorized users cannot alter data. Yes

functional logic
integrity

Data sent over the DL cannot alter the behaviour of the drone in an unexpected
way (this objective acts as a safety goal for security purpose).

Yes

We found these requirements partially relevant in the case of the tcp proxy tested as well: this layer
of functionality needs to provide functional logic integrity, and should not introduce data integrity
errors, but confidentiality, integrity, and privacy of the sent or received data would be checked on
higher layers of the protocol stack.

4.1.5 Threat modelling

Extensive threat modelling has been carried out for DA’s use case components in D1.2 [2], Section
4.2.

In evaluating only an example of the functionality, we were able to identify only a small subset of
relevant threats in the scope of the current evaluation.

Table 13 - Relevant STRIDE Threats and objectives for the AMS

Threats (STRIDE) Related objectives Applicability
in evaluation

Spoofing identity of user
or server

The TOE shall enforce

Confidentiality of identity of user or server (to prevent theft of identity)

Authenticity of identity of user or server (to prevent usage of stolen
identity or Man-in-The-Middle attack)

N/A

Tampering with data The TOE shall enforce Integrity of data Yes

Repudiation of the action The TOE shall enforce Accountability of action N/A

Information disclosure The TOE shall enforce Confidentiality of information N/A

Denial of service The TOE shall enforce Availability of service Yes

Elevation of privilege The TOE shall enforce Authentication and Authorization N/A

4.2 Evaluation Plan

According to the Evaluation Methodology described earlier in D4.2, we here define the elements
for the evaluation plan as per D1.2 [2].

4.2.1 Test environment

The tests were performed in an Ubuntu Linux virtual machine running in Oracle VM VirtualBox. The
example applications were compiled to the native architecture (x86_64).

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 30 of 42

4.2.2 Version tested

The version of the main target was:

https://github.com/ArashPartow/proxy/blob/29d09e6bcef563b2e03a4100346c055e9a4128f6/tcppro
xy_server.cpp

Committed by ArashPartow on Jan 1, 2017 (http://www.partow.net) .

The libraries used in the preprocessing step were:

 gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)
 GCC v7.4 Dec 6, 201811

 libboost-all-dev/bionic 1.65.1.0ubuntu1 amd64
 boost v1.65.1 September 7th, 2017 17:31 GMT12

The standard libraries preprocessed into the ToE were part of GCC, compliant to ISO/IEC
14882:201713, and they were similar to this version:

cstdlib - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00242_source.html

cstddef - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00233_source.html

iostream - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00086_source.html

string - https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00152_source.html

The boost library preprocessed into the ToE was version 1.65.1.

4.2.3 Tools and test equipment

We used the following tools and software versions during the evaluation:

 Frama-C 19.1 (Chlorine)14

 StaDy for Frama-C Chlorine15

 Linux 4.15.0-45-generic x86_64 (Ubuntu 18.04.2 LTS) version16

 Frama-clang 0.0.717

4.2.4 SCL Target

According to the methodology described in D4.2 [8] section 2.5.1, we set a Maximum Target
Security Level, which defines the efforts allocated for the evaluation activities.

The use case targets defined by the use case (D5.6 [17]) aimed at more formal verification of the
original, confidential target. In commercially realistic setups, such a high degree of security would
necessitate a high level of Maximum Target Security Level in order to provide useful results,
such as SCL 9 or above, with white-box approach.

However, in the scope of VESSEDIA project, we aimed at demonstrating more techniques with
more use cases, and selecting partial examples from the use cases of the partners. In the
evaluation of this use case, we used target level SCL 4. This level was defined as 5 Expert Days
of Evaluation, within 3 weeks of Execution time of Evaluation.

11 https://gcc.gnu.org/gcc-7/
12 https://www.boost.org/users/history/version_1_65_1.html
13 https://www.iso.org/standard/68564.html
14 https://github.com/Frama-C/Frama-C-snapshot/commit/4e9997291935652e7688328922bb1ffa0ae0dfba
15 https://github.com/gpetiot/Frama-C-StaDy/tree/chlorine
16 http://old-releases.ubuntu.com/releases/18.04.2/
17 https://frama-c.com/frama-clang.html

https://github.com/ArashPartow/proxy/blob/29d09e6bcef563b2e03a4100346c055e9a4128f6/tcpproxy_server.cpp
https://github.com/ArashPartow/proxy/blob/29d09e6bcef563b2e03a4100346c055e9a4128f6/tcpproxy_server.cpp
http://www.partow.net/
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00242_source.html
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00233_source.html
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00086_source.html
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00152_source.html
https://gcc.gnu.org/gcc-7/
https://www.boost.org/users/history/version_1_65_1.html
https://www.iso.org/standard/68564.html
https://github.com/Frama-C/Frama-C-snapshot/commit/4e9997291935652e7688328922bb1ffa0ae0dfba
https://github.com/gpetiot/Frama-C-StaDy/tree/chlorine
http://old-releases.ubuntu.com/releases/18.04.2/
https://frama-c.com/frama-clang.html

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 31 of 42

While SCL Level 4 was described as black-box evaluation, we in fact received and used the full
source code for the ToE, which was not identical to the ToE in the Use Case for confidentiality
reasons (see D5.6 [17]). Our test plan thus includes evaluation activities, which are normally part of
the evaluation against higher Target levels only. We have also used tools included in the
VESSEDIA toolbox as defined in D4.2 [8] as well, in order to provide a use case study and
demonstration of the use of the technologies developed within the project.

At the end of evaluation, we calculate the SCL level reached in our final Risk Analysis in section
4.5.1.

4.2.5 Test Plan

Based on the above collected information, we devised a test plan that included manual and
automated testing using the tools also described.

The following tests were carried out against the ToE in this Evaluation:

 4.3.1 Known vulnerabilities research

 4.3.2 Evaluation with EVA plugin

 4.3.3 Manual source code analysis

In the following chapters, we describe the test process and then the test results.

4.3 Test cases

4.3.1 Known vulnerabilities research

Since a large part of the functionality was based on the standard libraries of GCC / C++17 and
boost, we also evaluated the potentially known vulnerabilities for the libraries in use.

We used the CVE vulnerability data from NVD database via the CVE Details18 page, where search
for affected versions is possible. Based on this search, we identified the following vulnerabilities
related to the components.

Table 14 Vulnerabilities related to boost C++ library

CVE ID CWE ID Vulnerability
Type(s)

Publish
Date

Update Date Score

1 CVE-2013-0252 20 Bypass 2013-03-12 2013-12-05 5.0

boost::locale::utf::utf_traits in the Boost.Locale library in Boost 1.48 through 1.52 does not properly
detect certain invalid UTF-8 sequences, which might allow remote attackers to bypass input
validation protection mechanisms via crafted trailing bytes.

2 CVE-2008-0172 20 DoS 2008-01-17 2018-10-15 5.0

The get_repeat_type function in basic_regex_creator.hpp in the Boost regex library (aka
Boost.Regex) in Boost 1.33 and 1.34 allows context-dependent attackers to cause a denial of
service (NULL dereference and crash) via an invalid regular expression.

3 CVE-2008-0171 20 DoS 2008-01-17 2018-10-15 5.0

regex/v4/perl_matcher_non_recursive.hpp in the Boost regex library (aka Boost.Regex) in Boost
1.33 and 1.34 allows context-dependent attackers to cause a denial of service (failed assertion and
crash) via an invalid regular expression.

18 https://www.cvedetails.com

https://www.cvedetails.com/

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 32 of 42

None of the above vulnerabilities were relevant to the boost version v1.65.1, neither to the
functionalities being used from boost by the proxy.

We briefly checked the boost version history at https://www.boost.org/users/history/, and identified no
issues applicable to the used functionality in the release notes of newer versions (up to version 1.72.0,
which was the latest version before the closing of this evaluation).

Vulnerabilities related to C++ cstdlib library:

CVE id CVE-2019-1627719 related to cstdlib were related to PicoC 2.1, and not related to our
ToE.

C++ cstddef library:

 No vulnerability found

C++ iostream library:

 No vulnerability found

C++ string library

 No vulnerability found

We briefly checked the GNU GCC 7 Release Series information at https://gcc.gnu.org/gcc-7/. Namely,
there was one newer GCC version 7.5 issued, and known changes were listed at
https://gcc.gnu.org/gcc-7/changes.html and under
https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=7
.5, where several corrected compiler issues were listed. We did not find issues that should be
considered relev

Conclusion:

Our vulnerability research did not find any known or existing vulnerability related to the
components used by the ToE in the scope of the current evaluation.

4.3.2 Evaluation with EVA plugin

We installed the components required by Frama-C in order to carry out fuzz testing of the C++
TCP Proxy server. The test case differed from the earlier execution in 2.3.1 since the target used
modern C++ - it was preprocessed with C++17. The Frama-Clang plugin (v0.0.7, see also 4.2.3)
available was prepared to handle C++11. Thus, we were not able to carry out or analysis.

We have experimented with re-running make described in section 4.1.1, using C++11 libraries, but
due to numerous dependency issues this test could not be concluded.

4.3.3 Manual source code analysis

Due to the analysis tools failing with the preprocessed source, we did manual source code analysis
on the TCP Proxy source (attached in Appendix A).

The source code was well-structured C++ code using modern constructs of C++17 and also the
boost library, which abstracted away a large portion of underlying functionality, like with the
boost::asio::io_service used. In general, the data transfer services implemented relied on
boost::asio, using it for buffering and socket implementation. Multithreading and mutexes were also
in use from boost::mutex.

After the analysis of the code body we did not find any vulnerabilities or threats.

19 https://www.cvedetails.com/cve/CVE-2019-16277/

https://www.boost.org/users/history/
https://gcc.gnu.org/gcc-7/
https://gcc.gnu.org/gcc-7/changes.html
https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=7.5
https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=7.5
https://www.cvedetails.com/cve/CVE-2019-16277/

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 33 of 42

4.4 Findings and recommendations

The current evaluation round for the TCP Proxy had no findings identified, while one of the test
cases remained inconclusive.

4.5 Risk analysis

No risk has been identified in two of the three test cases. Due to one test finished as inconclusive,
we did not consider the risk analysis complete.

4.5.1 SCL result

Based on the testing issues, some of the tests remained inconclusive till the end of the evaluation.
Based on other test results, it can be concluded that if no further threats are identified, the SCL
level would be SCL 4 at the end of evaluation – see the calculation at 3.5.1, where the results were
similar.

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 34 of 42

Chapter 5 Summary and Conclusion

The current deliverable described the work carried out to evaluate the selected Use Case results
from WP5 according to the methodology described in D4.2 [8]. The targets were selected to be
able to demonstrate three examples of the evaluation process:

The document contains the evaluation report of the following part of the VESSEDIA use-cases:

 MQTT client and CoAP server in the new generation Contiki-OS for Inria Use Case
described in D5.2 [13]

 MPL routing protocol used by the 6LoWPAN management protocol for CEA Use Case
described in D5.4 [15]

 Open source TCP Proxy implementation for DA Use Case described in D5.6 [17]

During our evaluation work, we also focused on how VESSEDIA tools can be used towards the
Objectives for WP4 set forth in DoA, namely to review how VESSEDIA results can be used to
improve evaluation results.

Our work showed that while the tools still have some shortcomings, and compatibility can be
further developed, there are equally capable tools that an analyst can use as a basis of systematic
search for issues. Issues uncovered were useful in one of the use cases to pinpoint real issues that
would pull down the security of the developed component. We were able to provide specific
recommendations for the issues so that the Use Case developer would be able to correct the
security-related problems.

As we described in D4.2 [8], the usual next step would be the review phase, which provides time
for the Developer to review the result and fix the issues. At the end of the review phase the
Evaluator verifies the corrected threats and creates a Review Report, which contains the residual
risk and any new threats discovered in the review phase. Due to the timing of the report, we were
not able to carry out this phase yet, but we communicated the issues nevertheless, and we will
verify the resulting fixes after the submission of this report.

The evaluation of the MQTT protocol with Contiki OS in Chapter 2 resulted in an exploitable
vulnerability, which is also present in the latest public release of the Contiki-NG20. We contacted
the developers at 15 January 2020. The developers acknowledged and fixed the problem at 25
February 2020 and promised to merge these fixes to the main branch as soon as possible.

20 https://github.com/contiki-ng/contiki-ng/tree/release/v4.4

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 35 of 42

Chapter 6 List of Abbreviations

Abbreviation Translation

ACSL ANSI/ISO C Specification Language

CC Common Criteria

CFI Code Flow Integrity

CoAP Constrained Application Protocol

CVE Common Vulnerabilities and Exposures

DFI Data Flow Integrity (See [2])

EAL Evaluation Assurance Level

EVA plugin Evolved Value Analysis plugin (see [2])

FAM Formal Analysis Models (See [2])

gcc GNU Compiler Collection

ICB Internet Connected Box

IoT Internet of Things

MDR plugin MarkDown Report plugin (see [2])

MQTT MQ Telemetry Transport protocol

NVD National Vulnerability Database; U.S. government repository of standards-based
vulnerability management data

RPP plugin Automatic Proof of Relational Properties by Self-composition plugin (See [2])

SCL Security Certification level (see [2])

ToE Target of Evaluation

VC Verification Condition

WP Work Package

WP plugin Weakest Preconditon plugin (see [2])

Table 15: List of Abbreviations

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 36 of 42

Chapter 7 Bibliography

[1] VESSEDIA DS-01-731453 / D1.1 / V1.0 report: Security requirements for connected medium
security-critical applications

[2] VESSEDIA DS-01-731453 / D1.2 / V1.0 report: Requirements descriptions for the WP5 use-
cases

[3] VESSEDIA DS-01-731453 / D2.1 / 1.0 report: Basic Analyzers - Intermediate Release
[4] VESSEDIA DS-01-731453 / D2.2 / 1.0 report: Collaboration of analyses intermediate release

V1
[5] VESSEDIA DS-01-731453 / D2.3 / 1.0 report: Basic Analyzers - Final Release
[6] VESSEDIA DS-01-731453 / D2.4 / V1.0 report: Collaboration of analyses intermediate release

V2
[7] VESSEDIA DS-01-731453 / D4.1 report: Metrics for VESSEDIA tools in quality assurance
[8] VESSEDIA DS-01-731453 / D4.2 / 3.0 report: VESSEDIA approach for security evaluation
[9] VESSEDIA DS-01-731453 / D4.3 report (unreleased): Benchmark for evaluating VESSEDIA

tools
[10] VESSEDIA DS-01-731453 / D4.4 report (unreleased): VESSEDIA in Common Criteria

evaluations
[11] VESSEDIA DS-01-731453 / D4.5 report (unreleased): Quality tests & limits of VESSEDIA tools

regarding security vulnerabilities detection
[12] VESSEDIA DS-01-731453 / D5.1 report: Inria’s use case intermediate report
[13] VESSEDIA DS-01-731453 / D5.2 report: Inria’s use case final report
[14] VESSEDIA DS-01-731453 / D5.3 report: CEA’s use case intermediate report
[15] VESSEDIA DS-01-731453 / D5.4 report: CEA’s use case final report
[16] VESSEDIA DS-01-731453 / D5.5 report: DA’s use case intermediate report
[17] VESSEDIA DS-01-731453 / D5.6 report: DA’s use case final report
[18] Jeges E., Berkes B., Eberhardt G. and Kiss B. (2014). MEFORMA Security Evaluation

Methodology - A Case Study. In Proceedings of the 4th International Conference on Pervasive
and Embedded Computing and Communication Systems - Volume 1: MeSeCCS, (PECCS
2014) ISBN 978-989-758-000-0, pages 267-274. DOI: 10.5220/0004919902670274

[19] http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
[20] The Constrained Application Protocol (CoAP) https://tools.ietf.org/html/rfc7252
[21] IEEE 802.15.4, IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate

Wireless Personal Area Networks (LR-WPANs), DOI 10.1109/ieeestd.2011.6012487,
<http://ieeexplore.ieee.org/servlet/opac?punumber=6012485>.

[22] A. Shostack, Threat Modeling: Designing for Security, Wiley, 2014.

http://www.scitepress.org/Papers/2014/49199/index.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://tools.ietf.org/html/rfc7252
http://ieeexplore.ieee.org/servlet/opac?punumber=6012485

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 37 of 42

Appendix A. C++ TCP Proxy server source

We used the following source in manual source code analysis under 4.3.3.

//

// tcpproxy_server.cpp

// ~~~~~~~~~~~~~~~~~~~

//

// Copyright (c) 2007 Arash Partow (http://www.partow.net)

// URL: http://www.partow.net/programming/tcpproxy/index.html

//

// Distributed under the Boost Software License, Version 1.0.

//

//

// Description

// ~~~~~~~~~~~

// The objective of the TCP proxy server is to act as an

// intermediary in order to 'forward' TCP based connections

// from external clients onto a singular remote server.

//

// The communication flow in the direction from the client to

// the proxy to the server is called the upstream flow, and the

// communication flow in the direction from the server to the

// proxy to the client is called the downstream flow.

// Furthermore the up and down stream connections are

// consolidated into a single concept known as a bridge.

//

// In the event either the downstream or upstream end points

// disconnect, the proxy server will proceed to disconnect the

// other end point and eventually destroy the associated

// bridge.

//

// The following is a flow and structural diagram depicting the

// various elements (proxy, server and client) and how they

// connect and interact with each other.

//

// ---> upstream ---> +---------------+

// +---->------> |

// +-----------+ | | Remote Server |

// +---------> [x]--->----+ +---<---[x] |

// | | TCP Proxy | | +---------------+

// +-----------+ | +--<--[x] Server <-----<------+

// | [x]--->--+ | +-----------+

// | Client | |

// | <-----<----+

// +-----------+

// <--- downstream <---

//

//

#include <cstdlib>

#include <cstddef>

#include <iostream>

#include <string>

#include <boost/shared_ptr.hpp>

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 38 of 42

#include <boost/enable_shared_from_this.hpp>

#include <boost/bind.hpp>

#include <boost/asio.hpp>

#include <boost/thread/mutex.hpp>

namespace tcp_proxy

{

 namespace ip = boost::asio::ip;

 class bridge : public boost::enable_shared_from_this<bridge>

 {

 public:

 typedef ip::tcp::socket socket_type;

 typedef boost::shared_ptr<bridge> ptr_type;

 bridge(boost::asio::io_service& ios)

 : downstream_socket_(ios),

 upstream_socket_ (ios)

 {}

 socket_type& downstream_socket()

 {

 // Client socket

 return downstream_socket_;

 }

 socket_type& upstream_socket()

 {

 // Remote server socket

 return upstream_socket_;

 }

 void start(const std::string& upstream_host, unsigned short upstream_port)

 {

 // Attempt connection to remote server (upstream side)

 upstream_socket_.async_connect(

 ip::tcp::endpoint(

 boost::asio::ip::address::from_string(upstream_host),

 upstream_port),

 boost::bind(&bridge::handle_upstream_connect,

 shared_from_this(),

 boost::asio::placeholders::error));

 }

 void handle_upstream_connect(const boost::system::error_code& error)

 {

 if (!error)

 {

 // Setup async read from remote server (upstream)

 upstream_socket_.async_read_some(

 boost::asio::buffer(upstream_data_,max_data_length),

 boost::bind(&bridge::handle_upstream_read,

 shared_from_this(),

 boost::asio::placeholders::error,

 boost::asio::placeholders::bytes_transferred));

 // Setup async read from client (downstream)

 downstream_socket_.async_read_some(

 boost::asio::buffer(downstream_data_,max_data_length),

 boost::bind(&bridge::handle_downstream_read,

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 39 of 42

 shared_from_this(),

 boost::asio::placeholders::error,

 boost::asio::placeholders::bytes_transferred));

 }

 else

 close();

 }

 private:

 /*

 Section A: Remote Server --> Proxy --> Client

 Process data recieved from remote sever then send to client.

 */

 // Read from remote server complete, now send data to client

 void handle_upstream_read(const boost::system::error_code& error,

 const size_t& bytes_transferred)

 {

 if (!error)

 {

 async_write(downstream_socket_,

 boost::asio::buffer(upstream_data_,bytes_transferred),

 boost::bind(&bridge::handle_downstream_write,

 shared_from_this(),

 boost::asio::placeholders::error));

 }

 else

 close();

 }

 // Write to client complete, Async read from remote server

 void handle_downstream_write(const boost::system::error_code& error)

 {

 if (!error)

 {

 upstream_socket_.async_read_some(

 boost::asio::buffer(upstream_data_,max_data_length),

 boost::bind(&bridge::handle_upstream_read,

 shared_from_this(),

 boost::asio::placeholders::error,

 boost::asio::placeholders::bytes_transferred));

 }

 else

 close();

 }

 // *** End Of Section A ***

 /*

 Section B: Client --> Proxy --> Remove Server

 Process data recieved from client then write to remove server.

 */

 // Read from client complete, now send data to remote server

 void handle_downstream_read(const boost::system::error_code& error,

 const size_t& bytes_transferred)

 {

 if (!error)

 {

 async_write(upstream_socket_,

 boost::asio::buffer(downstream_data_,bytes_transferred),

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 40 of 42

 boost::bind(&bridge::handle_upstream_write,

 shared_from_this(),

 boost::asio::placeholders::error));

 }

 else

 close();

 }

 // Write to remote server complete, Async read from client

 void handle_upstream_write(const boost::system::error_code& error)

 {

 if (!error)

 {

 downstream_socket_.async_read_some(

 boost::asio::buffer(downstream_data_,max_data_length),

 boost::bind(&bridge::handle_downstream_read,

 shared_from_this(),

 boost::asio::placeholders::error,

 boost::asio::placeholders::bytes_transferred));

 }

 else

 close();

 }

 // *** End Of Section B ***

 void close()

 {

 boost::mutex::scoped_lock lock(mutex_);

 if (downstream_socket_.is_open())

 {

 downstream_socket_.close();

 }

 if (upstream_socket_.is_open())

 {

 upstream_socket_.close();

 }

 }

 socket_type downstream_socket_;

 socket_type upstream_socket_;

 enum { max_data_length = 8192 }; //8KB

 unsigned char downstream_data_[max_data_length];

 unsigned char upstream_data_ [max_data_length];

 boost::mutex mutex_;

 public:

 class acceptor

 {

 public:

 acceptor(boost::asio::io_service& io_service,

 const std::string& local_host, unsigned short local_port,

 const std::string& upstream_host, unsigned short upstream_port)

 : io_service_(io_service),

 localhost_address(boost::asio::ip::address_v4::from_string(local_host)),

 acceptor_(io_service_,ip::tcp::endpoint(localhost_address,local_port)),

 upstream_port_(upstream_port),

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 41 of 42

 upstream_host_(upstream_host)

 {}

 bool accept_connections()

 {

 try

 {

 session_ = boost::shared_ptr<bridge>(new bridge(io_service_));

 acceptor_.async_accept(session_->downstream_socket(),

 boost::bind(&acceptor::handle_accept,

 this,

 boost::asio::placeholders::error));

 }

 catch(std::exception& e)

 {

 std::cerr << "acceptor exception: " << e.what() << std::endl;

 return false;

 }

 return true;

 }

 private:

 void handle_accept(const boost::system::error_code& error)

 {

 if (!error)

 {

 session_->start(upstream_host_,upstream_port_);

 if (!accept_connections())

 {

 std::cerr << "Failure during call to accept." << std::endl;

 }

 }

 else

 {

 std::cerr << "Error: " << error.message() << std::endl;

 }

 }

 boost::asio::io_service& io_service_;

 ip::address_v4 localhost_address;

 ip::tcp::acceptor acceptor_;

 ptr_type session_;

 unsigned short upstream_port_;

 std::string upstream_host_;

 };

 };

}

int main(int argc, char* argv[])

{

 if (argc != 5)

 {

 std::cerr << "usage: tcpproxy_server <local host ip> <local port> <forward

host ip> <forward port>" << std::endl;

 return 1;

 }

D4.6 Evaluation using the VESSEDIA use cases

VESSEDIA D4.6 Page 42 of 42

 const unsigned short local_port = static_cast<unsigned

short>(::atoi(argv[2]));

 const unsigned short forward_port = static_cast<unsigned

short>(::atoi(argv[4]));

 const std::string local_host = argv[1];

 const std::string forward_host = argv[3];

 boost::asio::io_service ios;

 try

 {

 tcp_proxy::bridge::acceptor acceptor(ios,

 local_host, local_port,

 forward_host, forward_port);

 acceptor.accept_connections();

 ios.run();

 }

 catch(std::exception& e)

 {

 std::cerr << "Error: " << e.what() << std::endl;

 return 1;

 }

 return 0;

}

/*

 * [Note] On posix systems the tcp proxy server build command is as follows:

 * c++ -pedantic -ansi -Wall -Werror -O3 -o tcpproxy_server tcpproxy_server.cpp

-L/usr/lib -lstdc++ -lpthread -lboost_thread -lboost_system

 */

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 VESSEDIA motivation and background
	1.2 Structure of the document
	1.3 Related deliverables

	Chapter 2 Contiki OS - Inria’s use case
	2.1 Use case description (Applicability Field definition)
	2.1.1 Target of Evaluation
	2.1.2 Scope
	2.1.3 Applicable requirements
	2.1.4 Security objectives
	2.1.5 Threat modelling

	2.2 Evaluation Plan
	2.2.1 Test environment
	2.2.2 Version tested
	2.2.3 Tools and test equipment
	2.2.4 SCL Target
	2.2.5 Test Plan

	2.3 Test cases
	2.3.1 Fuzz testing of CoAP server with AFLSCA
	2.3.2 Fuzz testing of CoAP server with fuzzcoap
	2.3.3 Source code analysis of the MQTT protocol
	2.3.4 MQTT analysis with Frama-C EVA plugin

	2.4 Findings and recommendations
	2.4.1 Possible DoS attack in case of large MQTT messages
	2.4.2 Multiple integer overflows cause functional problems
	2.4.3 Publish handler may be called in case of other commands also

	2.5 Risk analysis
	2.5.1 SCL result

	Chapter 3 CEA’s use case
	3.1 Use case description (Applicability Field definition)
	3.1.1 Target of Evaluation
	3.1.2 Scope
	3.1.3 Applicable requirements
	3.1.4 Security objectives
	3.1.5 Threat modelling

	3.2 Evaluation Plan
	3.2.1 Test environment
	3.2.2 Version tested
	3.2.3 Tools and test equipment
	3.2.4 SCL Target
	3.2.5 Test Plan

	3.3 Test cases
	3.3.1 Evaluation with WP plugin
	3.3.2 Evaluation with EVA plugin

	3.4 Findings and recommendations
	3.4.1 Sequence number was not checked in the ICMP message

	3.5 Risk analysis
	3.5.1 SCL result

	Chapter 4 DA’s use case
	4.1 Use case description (Applicability Field definition)
	4.1.1 Target of Evaluation
	4.1.2 Scope
	4.1.3 Applicable requirements
	4.1.4 Security objectives
	4.1.5 Threat modelling

	4.2 Evaluation Plan
	4.2.1 Test environment
	4.2.2 Version tested
	4.2.3 Tools and test equipment
	4.2.4 SCL Target
	4.2.5 Test Plan

	4.3 Test cases
	4.3.1 Known vulnerabilities research
	4.3.2 Evaluation with EVA plugin
	4.3.3 Manual source code analysis

	4.4 Findings and recommendations
	4.5 Risk analysis
	4.5.1 SCL result

	Chapter 5 Summary and Conclusion
	Chapter 6 List of Abbreviations
	Chapter 7 Bibliography
	Appendix A. C++ TCP Proxy server source

