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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability. 
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Executive Summary 

This report presents the application of the Frama-C static analyser to the VESSEDIA benchmarks 
presented in the D4.3 report. It also describes the problem faced, the approach taken to resolve 
them before comparing the Frama-C’s results against the Clang static analyser tool. 

This document starts with the remainder of the test cases chosen and explained in the [D4.3] report. 

It describes the practical issues faced when applying Frama-C on the benchmarks, due to the 
peculiarity of the DARPA CGC benchmark. 

The next section describes the solution that enabled Frama-C to analyse successfully all the 
samples. The solution is based upon a compatibility layer and some minor modifications of the 
source code of the sample. 

Then, the document gives the results for the Frama-C and Clang static analyser tools on the 
benchmarks before commenting them. Later, the statistics about the coverage of the analysis and 
the number of alarms raised by Frama-C are given. 

Overall, Frama-C is able to warn the analyst of the presence of potential runtime errors.  On the 
contrary, Clang static analyser is able to give a valid warning for only one sample. Yet Frama-C 
produces a lot more alarms. Furthermore, the information given by the tool is not always sufficient 
to easily identify if the alarm is spurious nor the genuine nature of the bug. 

Finally, the summary of the experiments is presented with all the issues faced. The conclusion 
proposes some improvements to Frama-C which could enhance the user experience or facilitate the 
manual process of the alarms triaging. 
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Chapter 1 Introduction 

1.1 Related Deliverables 

Deliverable 
Number 

Deliverable Title Type Dissemination 
level 

[D1.7] Vulnerability discovery methodology Report Public 

[D4.2] VESSEDIA approach for security evaluation Report Public 

[D4.3] Benchmarks for evaluating VESSEDIA tools Report Public 

[D43.zip] Source code of samples selected for the benchmarks Archive Public 

[D45.zip] Modified source code of samples selected for the 
benchmarks 

Archive Public 

Table 1: Related Deliverables 

 



D4.5 - Quality tests & limits of VESSEDIA tools regarding security vulnerabilities detection 

VESSEDIA D4.5 Page 2 of 38 

Chapter 2 Methodology 

2.1 Reminder about the benchmarks and the methodology 

This section sums up briefly the benchmarks and the methodology described in the [D4.3] document. 

The benchmarks are composed of eight categories. Each category contains two samples: one simple 
and another complex sample chosen from the DARPA CGC samples corpus. The two samples 
illustrate one kind of vulnerability: 

The [D4.3] document present all the details about the vulnerabilities we are looking for in the 
benchmarks. Therefore, only the vulnerabilities in the basic samples are kept in this section. 

 

 Vulnerability 1 – Stack Buffer Overflow 

 Vulnerability 2 – Heap buffer overflow 

 Vulnerability 3 – Null pointer dereference 

 Vulnerability 4 – Use after free 

 Vulnerability 5 – Uninitialised variable 

 Vulnerability 6 – Off by one 

 Vulnerability 7 – Double free 

 Vulnerability 8 – Format string 

2.2 Process of evaluation 

The [D4.3] document has chosen two well-known static analysers to compare against Frama-C. 

Between this document and [D4.3], the list of chosen static analysers received a major update. Thus, 
we decided to use the most up to date version of each selected static analysers. 

The selected tools for this analysis are: 

- Frama-C version 19.0 (Potassium)1 
- Clang Static Analyzer version 8.0.02 

 

Initially, it was planned to compare with the results provided by CodeSonar version 5 but due to a 
licensing issue, this tool was removed from the selection. 

 

2.3 Particularity of the DARPA CGC test cases which hinder the Frama-
C’s analysis 

At the beginning of the evaluation, Frama-C was only able to process and analyse the simple 
samples. For the complex ones, Frama-C could not process the source code without stumbling on 
an error. 

Indeed, the DARPA CGC samples were developed for a non-standard operating system called 
DECREE. No standard library (libc) was given to the sample developers, so each sample contains 
its own implementation of a subset of the libc. The DARPA CGC corpus respects convention when 

                                                

1 Frama-C can be downloaded at https://frama-c.com 
2 Clang static analyser is available for download at https://clang-analyzer.llvm.org 

https://frama-c.com/
https://clang-analyzer.llvm.org/
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it comes to the architecture of a sample repository. This minimal subset of the libc is always stored 

in the lib/ sub-repository. The main part of the source code is in the src/ sub-repository. 

To analyse a code base, Frama-C makes the hypothesis that the code uses a POSIX standard 
library. Thus, Frama-C has its own annotated libc implementation. Also, thanks to its custom libc, 
Frama-C is able to analyse a code base without any annotations in it. Each annotated function in the 
libc plays the role of a starting point for the analysis. Furthermore, the “stubs” function and their 
annotations accelerate the analysis of the source code of the program because Frama-C does not 
need to reanalyse the source code of the libc, which is costly and redundant. 

Fortunately, the re-implemented subset of the libc functions in each sample has the same name and 
signature than the ones in the POSIX libc. Hence, it seemed possible to abstract this subset and use 
the default standard library shipped with Frama-C. Moreover, the vulnerabilities which Frama-C 
should detect are never in the libc subset. All the buggy code of the DARPA CGC samples is always 

in the src/ sub-repository. 

With these two elements in mind, the best approach to handle these samples with Frama-C seemed 
to exclude all the code of subset libc which is mostly POSIX compliant and let Frama-C uses its own 
libc instead. 

For the few discrepancies due to the DECREE operating system, a minimal compatibility layer was 
developed for each sample. Trail of Bits3 has chosen this same method to port the DARPA CGC 
corpus from the DECREE platform to the Windows, macOS, and Linux operating systems. This 
solution is directly inspired by their work. It tries to be the least intrusive possible and avoids to modify 
the source code of the sample. 

 

2.4 Corpus modification 

In the [D4.3] document, the selection of the samples was made over the Trail of Bits’ repository4. 
Their compatibility layer is useful to test the samples on widespread computers, however, it was a 
work overload to remove this layer and replace it with our own. Thus for this analysis, we started 
over from the original DARPA CGC repository5. 

Each complex sample repository contains three sub-repositories: 

 src/ which contains the main source code of the sample and where the vulnerability is 

present; 

 lib/: it contains the dependencies of the sample and its own implementation of its own 

subset of the libc; 

 pov/: it contains the xml files that represent an input which trigger the vulnerability. 

Our approach was to try to analyse with Frama-C only the portion of the code under src/. We 

proceeded incrementally by successively running an analysis using Frama-C and then fixing the 
reported errors, until we obtained a complete compatibility layer for Frama-C. The compatibility layer 
implementation is made of “stub” functions, functions that mimic the behaviour of the DARPA 

syscalls. The compatibility layer’s source code is in a libcgc.c file in the top repository of each 

sample. 

The resulting source code should still compile correctly with a standard compiler like GCC or Clang 
and the program output should run as expected. This constraint was necessary to be able to apply 
the Clang Static Analyser to the modified samples. 

                                                

3 https://www.trailofbits.com/ 
4 https://github.com/trailofbits/cb-multios 
5 https://github.com/lungetech/cgc-corpus 

https://www.trailofbits.com/
https://github.com/trailofbits/cb-multios
https://github.com/lungetech/cgc-corpus
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The next sections describe the modifications needed for each complex sample and the results 
obtained by the Frama-C analysis. 

 

2.5 The minimal compatibility layer from DECREE to Linux 

The DECREE platform build for the CGC competition is an operating system which exposes only 

five “syscalls”: receive, transmit, allocate, deallocate, and terminate. 

Most of the samples we faced during this analysis do not depend directly on these “syscalls” but use 

higher-level functions like printf to output result and malloc/free to allocate and deallocate 

memory. 

However, the receive and terminate “syscalls” seems to be preferred against their standard 

counterparts read and exit. 

To be able to analyse and compile the samples correctly, these five non-standard “syscalls” must be 
defined. Our approach was to give an equivalent implementation based upon the standard POSIX 
function known by Frama-C and the compliant compiler. 

For instance, the receive “syscall” is implemented over the standard read function.

int receive(int fd, void *buf, size_t count, size_t *rx_bytes) { 1 
    const ssize_t ret = read(fd, buf, count); 2 
    if (ret < 0) { 3 
        return errno; 4 
    } else if (rx_bytes != NULL) { 5 
        *rx_bytes = ret; 6 
    } 7 
    return 0; 8 

}9 
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2.6 Experimental results 

Our experiment repository is available in the [D45.zip] archive. This archive contains all the modified 
complex samples, two build scripts: one for Frama-C and one for GCC and the output for each static 
analyser. The simple samples analysed are also given in the archive as examples of expected results 
for each category of vulnerabilities. 

 

The next section presents each category of vulnerability. Each description starts by an excerpt of 
the Frama-C analysis results for basic samples. This simple test case shows the kind of alarms which 
an analysist should look for when reviewing the analysis output. The following subsection explains 
the changes applied to the complex sample’s source code to let Frama-C analyse it successfully. 
Afterwards, the results obtained by each static analyser are given and then discussed. 
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Chapter 3 Presentation and analysis of the 

benchmarks’ results 

The [D4.3] document present all the details about the vulnerabilities we are looking for in the 
benchmarks. Therefore, only the vulnerabilities in the basic samples are kept in this section. 

 

3.1 Vulnerability 1 – Stack Buffer Overflow 

3.1.1 Basic sample 

 

Figure 1 - Frama-C’s result for the basic stack overflow sample 
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Figure 2 - main function calling the vulnerable fill function 

In this basic sample, the user’s input is stored in the arg variable. The length of this input is computed 

by the strlen function and then this value is used as the size for the data, which will be copied into 

the destination buffer, the buf variable. Yet, the call to the fill function displayed in the Figure 2, 

fill(name, *(argv + 1)) gives the name buffer as the first argument. The second argument 

is the first argument in the command line. Therefore, the buf variable in the fill function points to 

buffer of a static size of 16 bytes and the second argument arg is given by the user and can have 

any size. 

Frama-C produces a warning at line 5 of main.c file related to the buffer overflow: 

[eva:alarm] main.c:5: Warning: out of bounds read. assert \valid_read(arg 

+ i); 

 

3.1.2 Modifications made to the sample 

The main part of the stack buffer overflow sample’s source code is only one C file named 

service.c. 

Its dependencies are few operations for manipulating and printing strings like strcat and puts. 

Their signatures and semantics are equivalent to the POSIX compliant functions. So, the Frama-C 
custom libc has already suitable “stubs” for these functions and no extra work is required. 

Only two non-standard functions are used: itoa and receive_until. This issue is fixed by copy-

pasting their code in the service.c source file. 

With these changes, Frama-C is able to parse and analyse this sample. 

3.1.3 Frama-C’s results 

Frama-C is not able to produce a red alarm related to the known stack buffer overflow vulnerability, 

which occurs in the list_unread_messages function in the file src/service.c. 

The count variable is an unsigned char. This variable is incremented in the loop displayed in the 

Figure 3. The loop can iterate more than 255 times overflowing the count variable. Frama-C does 

not warn about this behaviour. Thus an input of 256 characters will overflow the count variable and 

produce a call to the allocate function with a size of 0. 

By default, Frama-C does not warn against unsigned integer overflow because it is a defined 
behaviour with regard to the ISO C specification. Frama-C possesses the option –warn-unsigned-
overflow to force an alert about this specific case because it can induce a bug sometimes as in this 
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sample. The analyst analysed again this sample with the –warn-unsigned-overflow option. 

Frama-C raises a new red alarm related to an unsigned overflow on the itoa function, which is not 
related to the known vulnerability. Even with the –warn-unsigned-overflow option, Frama-C does not 

produce an alert on the count = (unsignedunsigned char)((int) count + 1); statement. 

 

Figure 3 - Missing alarms on the Frama-C's analysis output for the stack buffer overflow sample in the 

src/service.c source file 

A thorough analysis of this sample reveals that the vulnerability defined as an integer overflow in this 

description could be better defined as an unsigned downcast. The expression count + 1 which is 

an int of 4 bytes is cast to the smaller type unsigned char which has a size of only 1 byte. 

Therefore, the correct option to give to Frama-C is –warn-unsigned-downcast. This option lets 

Frama-C output a warning about the downcast that provokes the stack buffer overflow. The shows 

the alert in the Frama-C GUI when the switch –warn-unsigned-downcast is enabled. 

 

Figure 4 – Warning about the unsigned downcast when the switch –warn-unsigned-downcast is 

enabled 
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We expect a warning or even better a red alarm on the third call of strcat in the 

list_unread_messages function. Frama-C shows a warning because it cannot prove that the 

requirements for a safe use of strcat hold. 

 

Figure 5 - Vulnerable call to strcat function in the stack buffer overflow sample 

No Red Alarm is raised by Frama-C. Thus this alert seems as important as all the 102 other warnings 
in the eye of an analyst. 

 

3.1.4 Clang static analyser’s results 

Clang static analyser does not find any vulnerability in the code. 

> scan-build gcc "-I." libcgc.c src/service.c 

[…] 

src/service.c: In function ‘read_message’: 

src/service.c:427:2: warning: ‘strncat’ specified bound 256 equals 

destination size [-Wstringop-overflow=] 

  strncat( buffer, "***********************************\n", 0x100 ); 

  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

src/service.c:435:4: warning: ‘strncat’ specified bound 256 equals 

destination size [-Wstringop-overflow=] 

    strncat(buffer, ":  ", 0x100 ); 

    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

src/service.c:437:4: warning: ‘strncat’ specified bound 256 equals 

destination size [-Wstringop-overflow=] 

    strncat( buffer, "\n***********************************\n", 0x100 ); 

    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

scan-build: Removing directory '/tmp/scan-build-2019-08-30-152326-30608-

1' because it contains no reports. 

scan-build: No bugs found. 

 

The three warnings raised by the GCC compiler are not related to the expected vulnerability. Even 

though, the strncat function is wrongly used and could be a hint for an unknown vulnerability. 
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3.2 Vulnerability 2 – Heap buffer overflow 

3.2.1 Basic sample 

 

Figure 6 – Frama-C’s result for the basic heap overflow sample 

The only difference between this basic sample and the one described in the §3.1.1 is where the 

memory pointed by the buf variable is allocated. Here, the buf points to a buffer of 16 bytes in the 

heap of the process. In the previous sample, the memory was located in the stack of the process. 
Otherwise, the vulnerability is exactly the same. 

The analysis of this basic sample by Frama-C raises two warnings related to the heap overflow at 

the line 6 of the main.c file. 

[eva:alarm] main.c:6: Warning: out of bounds write. assert \valid(buf + 

i); 

[eva:alarm] main.c:6: Warning: out of bounds read. assert \valid_read(arg 

+ i); 

 

3.2.2 Modifications made to the sample 

The source code of this sample is particular, the main.c file is an already pre-processed form. It 

seems the file was compiled with gcc –E and then pushed to git repository.  

To work on a sane base, we cleaned this file, removing all the useless lines and comments inserted 
by the compiler. 

The sample dependencies are memory-related operations (malloc/free), strings manipulations 

and comparisons and conversions (strchr, strcpy, strtol). Again, the libc shipped with Frama-

C can handle all these functions. So Frama-C is able to analyse this code base composed by the 

main.c and io.c files. 

This sample presents another hurdle which hinders its analysis. The EVA plugin cannot handle 
recursive function and thus the plugin abort the analysis ended it with an error. 
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To circumvent this issue, Frama-C has the –eva-ignore-recursive-calls switch. This option 

makes the EVA plugin ignores all the recursive functions it could face making them unreachable. 
This solution alone is not enough to correctly analyse this sample because the vulnerable code paths 
go through the recursive functions. 

The –inline-call option lets the analyst defines functions which will be inlined in the code 

analysed by Frama-C.  

The combination of the two options forces Frama-C to analyse these functions at least once before 
ignoring them. Thus, with this trick, the tool is able to correctly analyse the samples with recursive 
and mutually recursive functions. 

3.2.3 Frama-C’s results 

There is no red alarm pointing to the known heap buffer overflow in the Frama-C’s output. 

There are multiple warnings at the statement where the vulnerable strcat is called. However, the 

alarms raised do not give more information about the reason. 

 

 

Figure 7 - Excerpt of the Frama-C’s analysis of the Heap Buffer overflow sample 

 

Besides, there are 38 alarms related to invalid memory accesses and no indication can lead analyst 
to consider in priority this alarm rather than the others. 

Also, the alarm about the use of a dangling pointer seems to be a false positive. 
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3.2.4 Clang static analyser’s results 

> scan-build gcc "-I." libcgc.c src/io.c  src/main.c 

[…] 

src/main.c:523:24: warning: Potential leak of memory pointed to by 'argv' 

        note_t* note = get_note(argv[0]); 

                       ^~~~~~~~~~~~~~~~~ 

src/main.c:536:9: warning: Branch condition evaluates to a garbage value 

    if (resp) 

        ^~~~ 

2 warnings generated. 

scan-build: 2 bugs found. 

 

Clang static analysers find two potential bugs not related to the one described by its author and 
expected by the benchmark. 
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3.3 Vulnerability 3 – Null pointer dereference 

3.3.1  Basic sample 

 

Figure 8 - Frama-C’s result for the basic null pointer dereference sample 

The function input_num can return null and so invalidate the pointers num1 and num2. Thus, it is 

not a valid operation to try to dereference them. 

 

Frama-C raises two alarms at the line 28 of the main.c file. 

[eva:alarm] main.c:28: Warning: out of bounds read. assert 

\valid_read(num1); 

[eva:alarm] main.c:28: Warning: out of bounds read. assert 

\valid_read(num2); 

 

3.3.2 Modifications made to the sample 

This sample is also easily handled by Frama-C. It is only composed of the main.c file. It does not 

have any dependencies to a custom libc. Instead, it uses directly the transmit and receive 

“syscalls”. With our compatibility layer which defines those two functions over read and write, 

Frama-C is able to process it. 
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3.3.3 Frama-C’s results 

The EVA analysis made by Frama-C detects the known null pointer dereference as shown in the 
Figure 9. It raises a unique red alarm which points directly to the issue. 

Frama-C also generates 8 other alarms related to out of bounds access to memory and integer 
overflows. 

 

Figure 9 - Red alarm for the null pointer dereference vulnerability 

 

3.3.4 Clang static analyser’s results 

The following listing shows the output of the analysis of the sample by Clang static analyser. 

> scan-build gcc "-I." libcgc.c src/main.c 

[…] 

src/main.c:207:3: warning: Called function pointer is null (null 

dereference) 

  ((int (*)())0)(); 

  ^~~~~~~~~~~~~~~~ 

1 warning generated. 

scan-build: 1 bug found. 

 

The analyser successfully identifies the expected vulnerability. It is also able to produce the code 
path, which leads to the vulnerability. 
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Figure 10 - Code path leading to the Null pointer dereference vulnerability 

 

3.4 Vulnerability 4 – Use after free 

3.4.1 Basic sample 

 

Figure 11 - Frama-C’s result for the basic use-after-free sample 

The call to the helper_call_goodfunc frees the memory pointed by the malloc1 variable. So, 

when the call returns, the malloc1 is effectively a dangling pointer and should not be used anymore. 

Frama-C’s analysis displays two warnings related to the use-after-free vulnerability at line 30 of the 

main.c file. 

Frama-C detects that the malloc1 pointer is a dangling pointer and that the access to the vulnfunc 

field is an out of bound access. 

[eva:alarm] main.c:30: Warning:  

  accessing left value that contains escaping addresses. 

  assert ¬\dangling(&malloc1); 
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[eva:alarm] main.c:30: Warning:  

  out of bounds read. assert \valid_read(&malloc1->vulnfunc); 

 

3.4.2 Modifications made to the sample 

The Use after free sample depends on standard functions relate memory and string handling. So 
there is no issue for Frama-C on this part. 

However, two non-crashing off-by-one bugs hinder the analysis. These bugs put Frama-C in an 
invalid state and Frama-C cannot continue its analysis. 

These bugs are not expected nor described in the sample description. Yet, they are genuine bugs 
discovered by Frama-C. 

The two following patches were applied to fix theses bugs and obtain a better coverage for Frama-
C’s analysis. 

 

//for (i = 0; i <= sizeof(g_password)/sizeof(g_password[0]); ++i) 1 
// patch off-by-one 2 
for (i = 0; i < 20; ++i) 3 
{ 4 
cgc_random(&c, sizeof(c), NULL); 5 
[...] 6 
} 7 

g_password[i] = '\0' 8 

1 

//for (i = 0; i < sizeof(default_movies)/sizeof(default_movies[0]); ++i) 1 
for (i = 0; i < 10; ++i) 2 
{ 3 
movie = (movie_t *) malloc(sizeof(movie_t)); 4 
[...] 5 

 

3.4.3 Frama-C’s result 

The analysis raises 164 alarms but no red ones. There are 63 warnings about manipulation of 
dangling pointers which gives some hints about issues related to the handling of the dynamic 
memory. 

The expected alarm should highlight the bad use of the global movie_list_t movies_rented 

variable. This list shares the same pointers as the ones contained in the movie_list_t 

movies_full variable. However, the program forgets to remove a movie object from both these 

lists when a movie is deleted. This behaviour yields some potential dangling pointers in the 

movies_rented list which could lead to a use-after-free vulnerability. Therefore, Frama-C raises 

alarms about the use of the pointer in the movies_rented list. Yet, it raises the same kinds of 

alarms when the program uses the pointers stored in the movies_full list. The excerpt of the 

list_movies function, Figure 12, shows these warnings for both of the list. The ones related to the 

movies_full list are false positives. 
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Figure 12 - Alarms related to dangling pointers in the use-after-free sample 

 

3.4.4 Clang static analyser’s results 

> scan-build gcc "-I." libcgc.c src/main.c src/movie.c 

[…] 

src/main.c:431:9: warning: Branch condition evaluates to a garbage value 

    if (movie->desc) 

        ^~~~~~~~~~~ 

src/main.c:657:7: warning: Branch condition evaluates to a garbage value 

  if (new_title) 
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      ^~~~~~~~~ 

src/main.c:659:7: warning: Branch condition evaluates to a garbage value 

  if (new_desc) 

      ^~~~~~~~ 

3 warnings generated. 

src/movie.c:135:11: warning: Access to field 'next' results in a 

dereference of a null pointer (loaded from variable 'prev') 

    tmp = prev->next; 

          ^~~~~~~~~~ 

1 warning generated. 

scan-build: 4 bugs found. 

 

The results obtained by Clang static analysers do not concern the expected vulnerability, nor the 

second vulnerability explained in the sample’s description in the README.md file. It raises four alerts, 

which seem to be false positives. 

 

3.5 Vulnerability 5 – Uninitialised variable 

3.5.1 Basic sample 

 

Figure 13 – Frama-C’s output for the basic uninitialised variable sample 

The variable is_admin is defined at the beginning of the panel function but no value is given to it. 

When the switch statement reads its value, the behaviour of the process is undefined. 

 

Frama-C detects the use of the uninitialised variable is_admin at the line of the main.c source file. 

[eva:alarm] main.c:18: Warning:  

  accessing uninitialized left value. assert \initialized(&is_admin); 
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3.5.2 Modifications made to the sample 

This sample is only one main.c file. It uses the standard POSIX strings and memory-related 

functions, so Frama-C handles it without difficulty. 

 

3.5.3 Frama-C’s results 

Frama-C’s EVA plugin outputs a red alarm for the use of the h_state variable before its 

initialisation. The analysis highlights precisely a vulnerable statement related to the known 
vulnerability. 

 

 

Figure 14 - Red alarm spotting the uninitialised variable vulnerability 

 

However, the description given in the alarm does not give any indication about the genuine issue. 

The description informs the user that the h_state.word field which is sent to the strlen function 

is not always a valid string. To understand why, the analyst has to check the abstract value computed 

by the EVA plugin for the h_state variable, which is UNINITIALIZED. With this information, the 

analyst can deduce that the underlying vulnerability is an uninitialised variable. 
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Figure 15 - h_state abstract value computed by the EVA plugin 

 

3.5.4 Clang static analyser’s results 

The next listing displays the output given by the analysis of the uninitialised variable sample by the 
Clang static analyser. 

scan-build: Using '/home/fsl/Tools/clan+llvm-8.0.0/bin/clang-8' for static 

analysis 

src/main.c:202:43: warning: The left operand of '==' is a garbage value 

        if (h_state.new_challenge_handler == NULL) 

            ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^ 

1 warning generated. 

scan-build: 1 bug found. 

 

The bug reported by Clang static analyser seems related to the expected vulnerability. Indeed, the 

h_state variable can be used before being initialised. However, the line where the warning was 

found is different from the one found by Frama-C. 

We studied the code path found by Clang static analyser to understand where this discrepancy 
comes from. The path is displayed in the Figure 16. Clang static analyser returns a spurious path. 

Actually, this path contains two checks against the global variable win at the steps n°2 and n°6. 

However, the assumptions made by the static analysers are incompatible. In the step n°2, the win 

variable must be equal to 0. Yet, in the step n°6, win must be different from 0. Therefore, the alarm 

raised by the Clang static analyser is wrong even though the warning highlights a genuine problem 
in the code source. 
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Figure 16 - Code path to trigger the use of uninitialized h_state variable 
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3.6 Vulnerability 6 – Off by one 

3.6.1 Basic sample 

 

Figure 17 – Frama-C’s result for the basic off-by-one sample 

Similarly to the stack buffer overflow vulnerability §3.1.1, the destination buffer, the buf variable, is 
16 bytes long. However, the loop iterates 17 times. Thus, there is an overflow of only one byte on 
the stack of the process. 

 

Frama-C alerts us about the line 7 of the main.c file where the off-by-one vulnerability is present. 

 

[eva:alarm] main.c:8: Warning: out of bounds read. assert \valid_read(arg 

+ i); 

 

3.6.2 Modifications made to the sample 

This sample is the one which required the most modifications. It implements an in-memory file 
system. Unfortunately, the name chosen for its internal structure and its API collide with the I/O 

stream API of the POSIX API: FILE, fopen, fread... To fix this, we added the prefix fs_ or FS to 

each symbol, which raised an error. 

The second issue raised by this sample concerns the implementation of the random generator in 

lib/prng.c file. The random generator uses source entropy given by the DECREE platform. This 

source is accessible through a hardcoded memory page, which starts at the address 0x4347C000. 

Frama-C is not aware that this memory page is always mapped in the process memory. So it gets 
stuck in an invalid state when facing any statement trying to access this random page6. 

The vulnerabilities expected in this sample are not affected by the code in lib/prng.c. Thus, we 

feel safe to modify the behaviour of this random generator for the sake of the experiment. Even if 
the modifications reduce its entropy. 

We replaced the hardcoded access to the memory page to a global buffer with a hardcoded value 

in src/service.c file. 

const char rand_page[] = "HARCODEDSECRET[…]FRAMA-CISOK!!"; 

                                                

6 It appears there is an option in Frama-C to declare a range in the process memory which is always valid to 

read or write. This option called –absolute-valid-range is the preferred solution to handle hardcoded 

pointer. 
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This simple change was enough to let Frama-C fully analyse the sample. 

3.6.3 Frama-C’s results 

The vulnerable statement for this sample is a call to strcpy in the PrependCommandHistory 

function in the shell.c file. The Frama-C analysis displays three alerts for this statement because 

Frama-C cannot prove that the requirements needed to call the strcpy function hold here.  

There are 32 alarms about non valid arguments for the strcpy function in the analysis’s output. 

The truly vulnerable statement has to be extracted from all the other cases. 

 

Figure 18 - Alarms raised for the call to the strcpy vulnerable to an off-by-one buffer overflow 

 

Furthermore, no alert of type out of bounds read is raised for the ENV.CommandHistory[i] 

expression. 

Yet, the variation domains computed by the EVA plugin give some hints about the off-by-one 

vulnerability. The index i ranges from 1 to 16 even though the ENV.CommandHistory field is an 

array of only 15 elements. 
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Figure 19 - EVA plugin outputs for the ENV and i variables in the off-by-one sample 

 

 

3.6.4 Clang static analyser’s results 

The Clang static analyser does not find any bugs in this sample. 

> scan-build gcc "-I." libcgc.c src/fs.c  src/io.c  src/screen.c  

src/service.c  src/shell.c  src/user.c lib/prng.c 

scan-build: Removing directory […] because it contains no reports. 

scan-build: No bugs found. 
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3.7 Vulnerability 7 – Double free 

3.7.1 Basic sample 

 

Figure 20 – Frama-C’s output for the basic double free sample 

This sample calls the function free two times on the pointer a. 

Frama-C shows an alert at the line 9 of the main.c file where the second call to free function on 

the pointer a is made. 

[eva:alarm] main.c:9: Warning:  

  accessing left value that contains escaping addresses. 

  assert ¬\dangling(&a); 

3.7.2 Modifications made to the sample 

The samples source code is four C files: main.c, kty.c, hashtable.c and array.c.  

The only necessary modifications were to modify the include directives to use the standard libc. 

This sample also contains some recursive functions. So, it is necessary to use the combination of 

the –inline-calls and –eva-ignore-recursive-function option to successfully analyse 

this sample with Frama-C. 

 

3.7.3 Frama-C’s results 

The analysis of this sample took longer than the other ones. During our experiments, it took 269 
seconds.  
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Figure 21 - Frama-C’s result for the double free sample 

A warning is displayed related to the double free vulnerability. Frama-C raises 424 alarms in total 
and five red alarms unrelated to the known vulnerability. 

The sample’s description reports a secondary vulnerability, which is a stack buffer overflow. Yet, 

Frama-C does not raise any warning for the guilty strcpy statement. 

 

Figure 22 - Undetected stack buffer overflow in the heap buffer overflow sample 

Besides, the statement is highlighted in red which means that for Frama-C the statement is 
unreachable. Thus, Frama-C did not analyse it. 

The guard parser->cats < 3 in the nyan function, displayed in the Figure 23, makes this code 

unreachable, Frama-C EVA’s plugin computes a set of value of {0; 1} for parser->cats field. 

Therefore, the condition is always true and the nyan function returns directly without further 

processing. 

 

Figure 23 - Guard making the stack buffer overflow unreachable in the nyan function 
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3.7.4 Clang static analyser’s results 

The Clang static analyser finds six bugs in this sample source code. 

> scan-build gcc "-I." libcgc.c src/main.c src/kty.c src/hashtable.c 

src/array.c 

[…] 

src/kty.c:46:20: warning: Value stored to 'tmp' during its initialization 

is never read 

  char c[2] = {0}, tmp[2] = {0}; 

                   ^~~      ~~~ 

src/kty.c:228:8: warning: Value stored to 'decimal' during its 

initialization is never read 

  char decimal[3] = {0}; 

       ^~~~~~~      ~~~ 

src/kty.c:405:7: warning: Null pointer passed as an argument to a 'nonnull' 

parameter 

  if (strcmp("nyan_says", key) == 0 && new->type == KTY_STRING) 

      ^~~~~~~~~~~~~~~~~~~~~~~~ 

src/kty.c:437:9: warning: Null pointer passed as an argument to a 'nonnull' 

parameter 

    if (strcmp("nyan_says", key) == 0 && new->type == KTY_STRING) 

        ^~~~~~~~~~~~~~~~~~~~~~~~ 

4 warnings generated. 

src/hashtable.c:52:9: warning: Branch condition evaluates to a garbage 

value 

    if (table->table) 

        ^~~~~~~~~~~~ 

1 warning generated. 

src/array.c:47:9: warning: Branch condition evaluates to a garbage value 

    if (arr->arr) 

        ^~~~~~~~ 

1 warning generated. 

scan-build: 6 bugs found. 

 

None of the warnings raised by Clang static analyser are related to the expected “Double Free” 
vulnerability. 
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3.8 Vulnerability 8 – Format string 

3.8.1 Basic sample 

Frama-C’s analysis displays multiple alerts, which are not related to the format string vulnerability. 

The vulnerability occurs at the second call to printf that has as first argument *(argv + 1). This 

pointer is the first argument in the command line given to the process. Thus, it is controllable by the 
user. 

 

Figure 24 – Frama-C’s output for the basic format string sample 

 

The bad use of the format string parameter of the printf function is not handled by the EVA plugin 

but by the Variadic plugin. It seems that the Variadic plugin’s alerts are not shown in the GUI but 
solely in the console output. 

Yet, Frama-C generates a warning for the line 21 where the format string vulnerability happens. 

[variadic] main.c:21: Warning:  

  Call to function printf with non-static format argument: 

  no specification will be generated. 

Format string warnings are not displayed in the “Messages” windows of the Frama-C GUI. An analyst 
has to search through the console output generated by the analysis. 
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3.8.2 Modifications made to the sample 

The samples source code is seven C files: admin.c, cmdb_backend.c, main.c, readline.c 

and user.c.  

The only necessary modifications were to modify the include directives to use the standard libc. 

3.8.3 Frama-C’s results 

The EVA plugin’s analysis generates 68 alarms which are unrelated to the known format string 
vulnerability. However, for this experiment, only the variadic plugin’s output is really interesting. It 
raises three warnings. 

There is only one warning related to the call of the printf function with non-static format argument 

leading an analyst directly to the issue. 

3.8.4 Clang static analyser’s results 

To analyse this sample with the Clang static analyser we used the following command line. 

> scan-build gcc "-I." libcgc.c src/admin.c  src/cmdb_backend.c  src/cmdb.c  

src/debug.c  src/main.c  src/readline.c  src/user.c 

[…] 

src/cmdb_backend.c:134:12: warning: Potential leak of memory pointed to by 

'row' 

    return 0; 

           ^ 

1 warning generated. 

scan-build: 1 bug found. 

The bug reported by Clang is not related to the “Format String” vulnerability. 

Nowadays, the C compilers detect this kind of blatant format string, thus we recompiled the samples 

with a stricter set of compiler checks. We used the -Wall command line flag for this purpose. 

Surprisingly, the GCC compiler, in this 8.3.0 version, does not raise any warning about the vulnerable 

printf. 

> gcc -Wall "-I." libcgc.c src/admin.c  src/cmdb_backend.c  src/cmdb.c  
src/debug.c  src/main.c  src/readline.c  src/user.c 

src/cmdb_backend.c: In function ‘add_entry’: 

src/cmdb_backend.c:146:16: warning: unused variable ‘i’ [-Wunused-

variable] 

         size_t i; 

                ^ 

src/cmdb_backend.c: In function ‘print_movies’: 

src/cmdb_backend.c:263:18: warning: format ‘%d’ expects argument of type 

‘int’, but argument 2 has type ‘size_t’ {aka ‘long unsigned int’} [-

Wformat=] 

         printf("%d movie(s)\n", g_list_length); 

                 ~^              ~~~~~~~~~~~~~ 

                 %ld 
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src/cmdb_backend.c:278:18: warning: format ‘%d’ expects argument of type 

‘int’, but argument 2 has type ‘size_t’ {aka ‘long unsigned int’} [-

Wformat=] 

         printf("%d movie(s)\n", g_num_rented); 

                 ~^              ~~~~~~~~~~~~ 

                 %ld 

 

However, the Clang 8.0.0 compiler shows a warning at the guilty printf statement. 

 

>s clang -Wall "-I." libcgc.c src/admin.c  src/cmdb_backend.c  src/cmdb.c  
src/debug.c  src/main.c  src/readline.c  src/user.c 

src/cmdb_backend.c:146:16: warning: unused variable 'i' [-Wunused-

variable] 

        size_t i; 

               ^ 

src/cmdb_backend.c:263:33: warning: format specifies type 'int' but the 

argument has type 'size_t' (aka 'unsigned long') [-Wformat] 

        printf("%d movie(s)\n", g_list_length); 

                ~~              ^~~~~~~~~~~~~ 

                %zu 

src/cmdb_backend.c:278:33: warning: format specifies type 'int' but the 

argument has type 'size_t' (aka 'unsigned long') [-Wformat] 

        printf("%d movie(s)\n", g_num_rented); 

                ~~              ^~~~~~~~~~~~ 

                %zu 

src/cmdb_backend.c:288:16: warning: format string is not a string literal 

(potentially insecure) [-Wformat-security] 

        printf(g_all_genres[i]); 

               ^~~~~~~~~~~~~~~ 

src/cmdb_backend.c:288:16: note: treat the string as an argument to avoid 

this 

        printf(g_all_genres[i]); 

               ^ 

               "%s", 
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Chapter 4 Experiment results summary 

We used the -eva-metrics-cover option from the Frama-C command line tool to obtain the 

coverage associated of the EVA plugin analysis. This metric shows the percentage of code that 
Frama-C succeeded to analyse. It was a useful tool to troubleshoot the issue faced when we 
analysed the samples. 

Unfortunately, only Frama-C is able to output the coverage of the analysed source code. Thus, we 
miss the data for the Clang static analyser tool. 

 

Sample EVA function 
coverage 

EVA statements coverage in those 
functions (%) 

# lines of 
code 

Stack buffer 
overflow 

50% 95% 447 

Heap buffer 
overflow 

32% 91% 579 

Null pointer 
dereference 

42% 90% 170 

Use after free 37% 95% 753 

Off by one 28% 93% 1468 

Uninitialised 
variable 

4% 50% 223 

Double free 63% 98% 1398 

Format String 68% 97% 759 

Table 2 - Coverage obtained by Frama-C's analysis 

 

Overall, the function coverage of the EVA plugin is pretty low, because the plugin computes the 
coverage over all the provided code to Frama-C, even if the code is unreachable. Nevertheless, 
Frama-C is able to produce an alarm related to each vulnerability in the benchmarks. 

The uninitialised variable sample displays very low function coverage, as shown in Table 2. When 
Frama-C finds a red alarm, the code which follows is considered as unreachable. In this case, the 
vulnerability appears near the beginning of the main function. Thus, Frama-C finds it quickly and 
stops immediately. This behaviour explains this very low coverage. Yet, it does not hinder the ability 
of Frama-C to identify successfully the vulnerability in this case. 

 

The [D4.3] document established three metrics to evaluate the static analysers: 

1. Detection: a Boolean to check if the vulnerability is detected or not.  

2. Calculation time: How long does the tool take to produce its results. 

3. False positive: How many warnings raised are actually false positives. 

 

At the end of the experiments, it appeared that the Calculation time was not relevant here. Once 
stripped down of their custom library, each sample are pretty small. Therefore, the analysis took a 
few seconds for both tools. One exception is the double free sample, which took 269 seconds for 
Frama-C to carry out its analysis. The reason that could explain this gap in analysis time could be 
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the use of the –inline-call option. In addition, the double free is the second biggest sample in terms 
of lines of code and has the better code coverage, as shown in Table 2. 

We also reconsidered the false positive metric. It is a long, tedious, and error prone process to review 
each alarm raised by Frama-C to check if the alarm is spurious or not. Besides, if we only consider 
alarms directly related to the expected vulnerability, all the others alarms should be seen as false 
positives. Even though this method is much quicker, it is also unfair. Indeed, during the experiments 
Frama-C detected some unknown and genuine bugs in the samples. Therefore, without an 
exhaustive triaging of every alarm we could not compute a meaningful false positive metric. For all 
these reasons, we did not try to compute these metrics for the benchmarks. 

This metric gives an indication about the precision and the usefulness of the static analyser. To fill 
the gap for the missing false positive metric, we introduced two new metrics in addition to ones 
described in the [D4.3] document. The first one simply tells if the static analyser is able to produce 
an alarm, which points to the vulnerability expected in each sample. We called it “Vulnerability found” 
and the metric is a boolean value. The alarm produced should stand out from among all the other 
alarms in a way that an evaluator cannot overlook it during an audit. 

In the Frama-C static analyser’s vocabulary, the red alarms fits all the requirements. Thus, if there 
is a red alarm pointing to the guilty statement that induces the vulnerability we consider that Frama-
C has found it. 

We did not find the equivalent of the “red alarm” in the Clang static analyser. The warnings raised 
by the tool are not sorted. Yet, the Clang static analyser produces very few warnings. So we only 
checked the fact that a warning points to the portion of the code related to the expected vulnerability. 
If it is the case, we state that the vulnerability is found. 

 

Sample # Alarms 
(orange) 

# RED ALARM Vulnerability 
found by a RED 

ALARM 

# Total alerts / # 
lines 

Stack buffer overflow 75 0 No 16,78% 

Heap buffer overflow 108 0 No 18,65% 

Null pointer 
dereference 

9 1 Yes 5,88% 

Use after free 164 0 No 21,78% 

Off by one 75 1 No 5,18% 

Uninitialised variable 13 1 Yes 6,28% 

Double free 424 5 No 30,69% 

Format String 
68 0 

No (by the 
variadic plugin) 

8,96% 

Table 3 - Metrics about the alarms raised by Frama-C 

 

Frama-C produces few red alarms. These alarms stand out the most and would be inspected first 
by an analyst. However, in only two cases, the Red werealarms raised by Frama-C were genuine 
ones. Furthermore, the Null pointer dereference sample and the uninitialised variable sample are 
also spotted by Clang static analyser. So, it seems that these cases are pretty simple to detect for a 
static analyser. 
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Because the variadic plugin’s warnings are split from the alarms raised by the EVA plugin, Table 3 
does not show that Frama-C successfully detects the Format string vulnerability. 

The ratio between the number of alarms against the number of line of codes gives an idea about 
how useful Frama-C is during a code review. Too many alarms per line of code means that the 
manual triage would be too time consuming for an analyst in an evaluation scenario with restricted 
time budget. 

 

Sample # Alarms  Vulnerability found # Total alerts / # lines 

Stack buffer overflow 0 No 0,00% 

Heap buffer overflow 2 No 0,35% 

Null pointer dereference 1 Yes 0,59% 

Use after free 4 No 0,53% 

Off by one 0 No 0,00% 

Uninitialised variable 1 Yes 0,00% 

Double free 6 No 0,00% 

Format String 1 No (by the compiler) 0,00% 

Table 4 - Metrics about the alarms raised by the Clang static analyser 

 

The metrics of the Clang static analyser are the total opposite of the Frama-C’s one. Overall, the 
Clang static analyser is only able to detect the simplest samples: null pointer dereference and the 
uninitialised variable. Clang static analyser raised a lot less warnings but there are not relevant to 
the vulnerabilities we are looking for. 

 

4.1 Experiments on the patched version of the source code 

To obtain an idea about the relevance of the alarms raised by the static analysers, we made the 
same experiment on the patched version of each samples. 

The expected result for these experiments is a decrease in the number of alarms and no alarms at 
all related to the patched vulnerabilities. 

The DARPA CGC corpus contains the patched version of every samples. These code fixes are 

guarded by the use of the PATCHED macro. 

In all the selected sample, the patch are straightforward and minimal most of the time, it only affects 
one statement in the sample’s code base. 

To build the version of each sample where the bug is fixed, we just enabled the PATCHED definition 

in the build chain. To do so, we added the command switch -DPATCHED to the command line used 

to analyse each sample with Clang static analyser. The equivalent switch for Frama-C is –cpp-

extra-args="-DPATCHED". 
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Patched  

Test cases  

EVA 
function 
coverage 

EVA  
statements 
coverage 

(%) 

Alarms 
(orange) 

RED 
ALARM 

lines 
Total 

alerts/ # 
lines 

Stack buffer 
overflow 

50% 95% 75 0 447 16,78% 

Heap buffer 
overflow 

32% 91% 109 0 594 18,35% 

Null pointer 
dereference 

46% 91% 8 0 169 4,73% 

Use after free 36% 95% 165 0 756 21,83% 

Off by one 28% 93% 75 1 1468 5,18% 

Uninitialised 
variable 

37% 93% 19 0 224 8,48% 

Double free 57% 97% 424 5 1398 30,69% 

Format String 68% 97% 68 0 756 8,99% 

Table 5 - Coverage obtained by Frama-C's analysis on the patched source code 

 

The patches applied to each sample only affects few lines in the source code. Therefore, there is no 
big difference in the coverage obtained by Frama-C in both experiments, when we compare Table 2 
and Table 6. 

 

Sample Patched EVA function coverage EVA statements coverage (%) # lines 

Stack buffer overflow 50% 95% 447 

Heap buffer overflow 32% 91% 594 

Null pointer dereference 46% 91% 169 

Use after free 36% 95% 756 

Off by one 28% 93% 1468 

Uninitialised variable 37% 93% 224 

Double free 57% 97% 1398 

Format String 68% 97% 756 

Table 6 - Coverage obtained by Frama-C on the patched version of the source code 
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The comparison between the Table 3 and the Table 7 highlights the fact that for the samples Stack 
buffer overflow, Heap buffer overflow, Off by one, Double free and Format String, the fix made to 
each sample did not affect the analysis made by Frama-C. Indeed, there is no difference betweenthe 
two experiments. The number of alarms and red alarms are still the same. Going through all the 
alarms raised in both scenario: vulnerable or patched source code, to confirm that each alarms are 
still the same is a lot of manual work. We compared the Frama-C’s outputs for the Off by one, they 
were no difference in the outputs related to the alarms. An overview of others samples’ outputs 
seems to confirm that most of the alarms are effectively the same: they target the same source code 
line and they have the same color level (orange or red). 

Consequently, these outputs raise a doubt about the relevance of the subset of alarms that points to 
the vulnerable portion of the source code in each sample. These alarms are present in both cases. 
Thus, their origin seems to be a limitation of the EVA’s analysis. 

In two cases, Use after free and Uninitialised variable, the number of alarms increased, respectively 
by 6 and by 1. These results are counter-intuitive because they seem to indicate that these new 
alarms and the old ones are unrelated to the vulnerability we were looking for. 

For the Uninitialised variable sample, this increase is explainable by the increase in function 
coverage of 33%, displayed in the Table 6. The EVA’s analysis goes further because no red alarm 
is found and new potential defects are spotted by Frama-C. 

For the two Null pointer dereference and Uninitialised variable samples, Frama-C’s analysis do not 
raise any red alarm anymore. It was the expected results. The vulnerabilities are patched and there 
are neither blatant bugs nor vulnerabilities in their source code. 

 

Sample Patched 
# Alarms 
(orange) 

# Red 
alarms 

Red alarm 
related to the 

patched 
vulnerability 

(False positive) 

# Total alerts/ # lines 

Stack buffer overflow 75 0 No 16,78% 

Heap buffer overflow 109 0 No 18,35% 

Null pointer dereference 8 0 No 4,73% 

Use after free 165 0 No 21,83% 

Off by one 75 1 No 5,18% 

Uninitialised variable 19 0 No 8,48% 

Double free 424 5 No 30,69% 

Format String 68 0 
No (handled by 

the variadic 
plugin) 

8,99% 

Table 7 - Metrics about the alarms raised by Frama-C on the patched version of the samples 

 

Table 8 shows the results obtained by the Clang static analysers on the patched samples. The tool 
does not produce any false positives related to the patched vulnerabilities. The two vulnerabilities 
found by Clang static analysers, the Null pointer dereference and Uninitialised variable samples, do 
not raise any alarms anymore. Therefore, the tool seems to handle those cases correctly. 
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However, the results for all the other samples are strictly the same. The Clang static analyser 
produced the same amount of alarms for each sample and the lines of the source code highlighted 
as buggy were still the same. Those results confirm the fact that those alarms were not related to 
the vulnerability we were trying to detect. 

 

Sample # Alarms  Alerts related to the 
patched 

vulnerability (False 
Positive) 

# Total alerts / # lines 

Stack buffer overflow 0 No 0,00% 

Heap buffer overflow 2 No 0,35% 

Null pointer dereference 0 No 0,59% 

Use after free 4 No 0,53% 

Off by one 0 No 0,00% 

Uninitialised variable 0 No 0,00% 

Double free 6 No 0,00% 

Format String 
1 

No (handled by the 
compiler) 

0,00% 

Table 8 - Results of the Clang static analysers on the patched version of each samples 

 

The experiments made on the patched samples seem to prove that the majority of the alarms raised 
by both of the static analysers are unrelated to the vulnerability we were trying to spot. 

Both of the static analysers handle the Null pointer dereference and Uninitialised variable correctly. 
They are able to spot the vulnerability precisely through an alert or a red alarm. In addition, when 
the vulnerability is fixed no alarms is raised anymore about it. 

Besides, thanks to its variadic plugin, Frama-C also handles the Format String sample the way we 
expect.  

With regard to the two experiments, it seems that the both tools produce genuine alarms only for the 
two samples: Null dereference and Uninitialised variable. In addition, Frama-C with its Variadic plugin 
also handles correctly the Format string sample. The Clang static analyser for this part, does not 
produce any warnings related to this vulnerability. Yet, recent compilers are able to warn developers 
about this issue. Therefore, Clang static analyser could rely on this behaviour and does not even 
need to detect this class of vulnerability. 
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Summary and Conclusion 

This document describes the experiments we made to test the capacity of two static analysers: 
Frama-C and Clang static analyser to handle and analyse vulnerable source code samples from the 
DARPA CGC corpus. 

The main issue we faced when we try to analyse the benchmarks with Frama-C was the use of the 
non-standard DECREE platform. This is quite a rare situation to face for common software running 
on the prevalent platforms like Windows, Linux and macOS. Yet, this kind of situation is not unusual 
for software targeting embedded systems as the computing hardware platforms are often very 
different (e.g. DSP). The solution based upon a compatibility layer and modifying the source code if 
needed was not too expensive for our experiments, because the samples were small. This same 
approach does seem realistic for a bigger project with tens or hundreds of functions to “stub”. 
Moreover, it seems cumbersome to handle multiple versions of the same source code and maintain 
it only for Frama-C. A solution, which does not require to modify the source code but solely to 
configure Frama-C or its standard library, would be more convenient. 

The benchmarks clearly show that Frama-C produces more genuine alarms than Clang static 
analysers. For each sample, the lines of code linked to the known vulnerability were highlighted. It 
also detects genuine bugs not planned by the benchmarks and bad practices. Yet, it also produces 
a lot more alarms in general which means that this false positives ratio is consequently higher. 
Furthermore, the alarms raised on the vulnerable samples are still displayed when we analyse the 
patched version these samples, except for the three most trivial samples: Null pointer dereference, 
Uninitialised variable and Format String. More investigation and expertise about the inner functioning 
of Frama-C are needed to explain this behaviour. 

In the analyst’s point of view, the alarms raised by Frama-C are not always informative about the 
nature of the bug. Even though they point to the faulty lines in the code, Frama-C does not try to 
distinguish between a very large buffer overflow from an off-by-one, nor if the memory overflown is 
in the heap, the stack or the global data. With the data types of the variables and the variation 
domains computed by the EVA plugin, Frama-C could give more precise hints about the potential 
issue. These hints would be very valuable during the manual process of triaging the alerts. 

With regard to the benchmarks proposed in the document [D4.3], once stripped-down of their custom 
dependencies, the DARPA CGC samples are small. Therefore, no significant difference was found 
in the time to analyse the samples by each static analysers. 

The DARPA CGC competition’s purpose was to test binary analysers, static and dynamic. The 
analysers had to generate an input triggering the vulnerability in the sample. Consequently, some 
vulnerabilities are trivial to find statically like the null pointer dereference and the format string 
samples. The challenge resided in the capability of the analysers to forge the input reaching the 
vulnerable portion of code. 

When it comes to the results, we used Frama-C and the previous knowledge about the vulnerabilities 
in the samples to identify quickly if Frama-C succeeds to detect each vulnerability. Even with this 
knowledge, it was not always straightforward to judge if the alarms raised by Frama-C were genuine 
or spurious. Therefore, our experiments do not represent the real process of a code review, where 
an analyst starts from the alarms to figure out if a genuine bug is present in the code. 

The two major problems we faced that could hinder the use of Frama-C, during an evaluation, would 
be the time to build a compatibility layer if Frama-C is not able to analyse it by default. Besides, the 
quantity of alarms raised by Frama-C is still high considering the small size of the code base in the 
benchmarks.  
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Chapter 5 List of Abbreviations  

Abbreviation Translation 

POSIX The Portable Operating System Interface 

API Application programming interface 

GUI Graphical User Interface 
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