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Executive Summary

Deliverable 3.5 consists in the software tools that have been developed in tasks T3.1 (modu-

lar reasoning for system validation and verification), T3.3 (verification service for formal static

analysis), and T3.4 (enhancements of the GUI). The present document describes each tool

included in this deliverable.
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Chapter 1

Introduction

The present document is part of D3.5 of VESSEDIA, which gathers the tools that have been

developed or enhanced within WP3, and more specifically T3.1 (modular reasoning for sys-

tem validation and verification), T3.3 (verification service for formal static analysis), and T3.4

(enhancements of the GUI).

As indicated in report D3.1, T3.1 has primarily consisted in binding together the Diversity

tool, dedicated to model analysis with Frama-C, for verifying that the scenarios identified by

Diversity at model level were indeed feasible within the implementation. For that, Diversity

didn’t target directly ACSL, the primary formal specification language of the platform, but took

advantage of a Frama-C plugin called RPP, able to accept specifications in a format more

suitable to Diversity. Finally, in the last year of the project, another Frama-C plugin, MetACSL,

has been designed and developed in order to facilitate the specification of another kind of

higher-level properties. More precisely, ACSL is basically restricted to properties that must

be verified at a specific program point (when entering a function, returning from a function,

at each step of a particular loop, or at given statement). MetACSL offers the possibility to

write once a property that must be verified at many places, scattered all along the code

base, thereby facilitating the expression of system-level properties that must be verified by

the implementation. Diversity is described in more detail in chapter 2. RPP and MetACSL

are presented in chapter 3, respectively in section 3.1 and 3.2.

Task T3.3 was dedicated to build a verification server that would be able to launch many

automated theorem provers over the proof obligations generated byWP. Since, at first glance,

these proof obligations are all independent from each others, and their number can grow

quickly as the code and its specification become longer, deferring them to a server that can

handle them in parallel seems indeed interesting. A first version of the server has been made

available as D3.2. Chapter 4 describes this new version of the server.

Finally, various enhancements have been done to Frama-C’s GUI as part of T3.4, and

are presented in chapter 5. First, the work done on the current GUI of Frama-C is described in

section 5.1. Then, the new server plugin, which is at the heart of the client/server architecture

of the future GUI is presented in section 5.2. The first client of the server, the Dive plug-in for

exploring dependency graphs between memory location, is detailed in section 5.4. Then, the

early prototype of a more generic client of Frama-C server, Ivette, is presented in section 5.5.

VESSEDIA D3.5 Page 1 of 19



D3.5 - Enhanced version of the tools

Chapter 2

Diversity

Diversity is a tool aimed at generating test scenarios from the description of a system in

terms of input/output automata. In particular, It can take as input UML sequence diagrams

describing the intended interactions between the various components of a system. This

is then converted into Diversity’s internal format xLIA, and Diversity performs a symbolic

execution in order to generate the constraints on the inputs of the system that will lead to the

execution of the various possible branches. These constraints will then be used to generate

different test sequences that will be fed to the actual implementation in order to check if

it reacts according to the model. Diversity is based on the Eclipse IDE, and is part of the

Eclipse Formal Modeling project in the Eclipse Foundation ( https://projects.eclipse.
org/projects/modeling.efm).

Within VESSEDIA, Diversity has been extended in order to be able to take into account

actual function calls in the model of the system, in order to gather constraints on the argu-

ments that are fed to these functions, as well as to the results they are supposed to return to

their callers. Since these constraints are accumulated along each execution path explored

by the symbolic execution, they cannot readily be translated as function contracts for each

function encountered on the path. Instead, the constraint as a whole can be seen as a rela-

tional property tying together the results of these calls. Relational properties are not handled

natively by Frama-C, but there exists a dedicated plug-in for them, RPP, described in sec-

tion 3.1.

The archive included in the deliverable (diversity4inference.7z) contains a windows64
distribution of the framework including the Vessedia extensions as well as a small tutorial on

how to use Diversity in general.
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Chapter 3

Frama-C

The Frama-C platform offers a set of tools for verifying properties about code written in C (with

an experimental C++ front-end developed within WP2 of VESSEDIA, whose latest version

is part of D2.5). A certain number of Frama-C plug-ins are the subject of work done within

WP3 and are gathered in this deliverable. Furthermore, the main Frama-C distribution is

included as well. As the server plug-in (see section 5.2) is part of the main distribution and

Ivette (see section 5.5) depends on requests that were implemented after the latest stable

release of Frama-C (20.0 Calcium), the version included in this deliverable is a development

one, available through the public git repository at https://git.frama-c.com/pub/frama-c/
-/tags/Vessedia-D3.5.

Frama-C main distribution is a pre-requisite before installing the external plug-in that are

included in this deliverable as well. the INSTALL.md file of the Frama-C archive contains

detailed installation instructions, but basically the easiest route is to use the opam package

manager. With respect to the instructions for installing the stable version, installing the ver-

sion corresponding to this deliverable differ only by the need of specifying a custom target

for installation (pin operation in opam’s vocabulary). Assuming opam is installed, the following
sequence of commands should thus install the appropriate Frama-C version:

opam init # only if not done before
opam install depext # only if not done before
opam depext
opam pin add frama-c https://git.frama-c.com/pub/frama-c.git#Vessedia-D3.5

3.1 RPP plugin

The Relational Property Prover (RPP) plug-in is aimed at handling so-called relational prop-

erties, that is properties relating the behavior of different function calls. A simple example of

relational properties can be given by considering a comparison function

int compare(T x, T y)

that is supposed to return -1 if x is less than y, 1 of x is greater than y and 0 if they are

equivalent.

Two basic properties of such a comparison function are in fact relational properties. The

first one is the antisymmetry if two calls to compare are made with the arguments swapped,

the result must be opposite from each others, or in other words:
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\forall x, y; compare(x, y) == -compare(y,x)

The second is the transitivity: if x is less (resp. greater) than y and y is less (resp. greater)

than z, then x must be less (resp. greater) than z:

\forall x, y, z; compare(x,y) == compare(y,z) ==> compare(x,y) == compare(x,z);

Such properties cannot readily be expressed in the standard specification language of

Frama-C, ACSL, whose function contracts can only describe what is supposed to happen in

a single call at a time. RPP has thus introduced a specific syntax to write relational properties,

and then performs a transformation, known as self-composition, to obtain a program with

plain ACSL specifications whose validity imply the validity of the relational property over the

original program. Another transformation is also available in order to take advantage of the

relational properties that have been proved in subsequent verification activities.

In the context of VESSEDIA, RPP has been extended to facilitate the production of re-

lational properties from the constraints gathered by Diversity (see chapter 2). The archive

included in this deliverable is meant to be compiled against the development version of

Frama-C mentioned above, with the usual sequence of commands:

make
make install

The main option of the plugin is -rpp that will activate the transformation of the relational
properties in plain ACSL contracts over wrapper functions

3.2 MetACSL plugin

TheMetACSLplug-in is aimed at expressing in a concise way properties that are supposed to

hold at many points in the program under analysis, with an emphasis towards confidentiality

and integrity properties. More precisely, a meta-property, as handled by MetACSL consists

of three parts:

• its perimeter, i.e. the set of functions where it is active.

• its context, i.e. the kinds of program points where it must be verified

• its body, i.e. the property itself

Depending on the context, the body of the meta-property can use one or more meta-

variables, that will be instantiated at each point relevant for the meta-property. For instance,

a meta-property active for the \writing context, which thus must be verified for each writ-

ing access, can refer to the \written meta-variable, which represents the memory location

that is being written to. With this meta-variable, it becomes easy to give integrity properties

resembling to

AUTHORIZED==0 ==> \separated(\written, confidential_array[0 .. length - 1]);

The line above indicates, in ACSL terms, that unless AUTHORIZED is not 0, no write access to
any cell of confidential_array should occur.

Meta-properties are expressed at global level and are thus interesting for reflecting system-

wide properties that are supposed to be verified by the implementation. MetACSL proceeds
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by instantiating each meta-properties into a set of plain ACSL annotations, at each program

point specified by the perimeter and the context of the meta-property. It is then up to the

classical analyzers plug-ins of the platform (in particular WP and Eva) to check whether the

generated ACSL properties hold.

The MetACSL archive included in the deliverable is meant to be compiled against the

development version of Frama-C mentioned above. Once the main Frama-C distribution is

installed, installing MetACSLon top of it is merely a matter of issuing the following commands

in MetACSL’s top directory:

make
make install
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Chapter 4

Verification Server

A first version of a verification server for parallelizing proof tasks coming from the WP plug-

in of Frama-C has been introduced in deliverable D3.2 and is the subject of task T3.3. The

present deliverable contains an implementation of the verification server that is meant to be

deployed on the AWS Lambda cloud computing platform. Due to the high degree of parallel

execution, the system enables a high acceleration compared to the conventional execution

on the (local) system.

4.1 Design

4.1.1 Theorem provers as microservices

In a so-called microservice architecture, an application is developed as a set of small inde-

pendent services. These so-called microservices run in their own processes and can com-

municate via defined interfaces.

The verification service should enable the parallel and independent execution of differ-

ent automatic theorem provers. These are addressed and executed as separate services,

each with its own interface. In principle, the verification service can therefore be understood

as a set of different microservices, whereby each microservice covers one theorem verifier.

These can then be integrated by a verification application in which the microservice is con-

tacted via the corresponding interface. The way in which the execution of these different

microservices is coordinated, the so-called microservice orchestration, is taken over by the

verification application. A microservice itself is not directly involved in this coordination, as it

is only responsible for the one-time execution of a theorem proving device. Thus, more com-

plex applications and different use cases can be realized on the basis of the independently

executable Microservices.

The independent microservices are implemented on a separate cloud-based infrastruc-

ture. In this case, AWS Lambda is used, but the approach should probably be adaptable to

other cloud infrastructures. AWS Lambda is a so-called serverless computing platform of-

fered by the cloud computing provider Amazon Web Services (AWS). Serverless computing

is a programming model in which the application developer does not have to worry about

providing and operating physical infrastructure but has to develop his own application code.

The execution of the program code and the reservation of resources is handled by a single

vendor. Thus, AWS Lambda offers the abstraction of stateless functions, so-called Lambda

functions, for which a developer can write any application code, which is then executed by
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the provider. AWS Lambda is therefore also an example of the so-called Function as a Ser-

vice (FaaS) model. In serverless computing, the execution of program code for a function is

often event-based, for example after a request has been made to an HTTP interface.

A lambda function is a (usually small) program written in one of the programming lan-

guages supported by AWS Lambda. The program code must have an implementation of a

special function which is used as an entry point for executing the Lambda function. If, for ex-

ample, the Java programming language is used, one way of creating a lambda function is to

define a class that implements the RequestStreamHandler interface. To do this, it must de-

fine a method called handleRequest, which is then used as the entry point when the lambda
function is started. The handleRequest method also has an argument of type InputStream,
an argument of type OutputStream and an argument of type Context. The arguments of

type Input- and OutputStream serve to communicate with the Lambda function externally

and can be used to integrate the Lambda function into a Web API. The argument of type

Context can be used within the lambda function to access some information concerning the
context of the lambda function. An example of a simple lambda function written in the Java

programming language can be found in the following listing. The function shown here stores

the received input data in a buffer and sends this data back via the OutputStream.

public class Echo implements RequestStreamHandler {

public void handleRequest (

InputStream is ,

OutputStream os ,

Context c )

throws IOExcept ion {

byte [ ] b u f f e r = new byte [ 16384 ] ;

i n t l eng th = i s . read ( bu f fe r , 0 , bu f f e r . leng th ) ;

os . w r i t e ( bu f fe r , 0 , leng th ) ;

}

}

A completed Lambda function can be uploaded to the AWS Lambda platform via a so-

called provision package (e.g. as a zip file). After uploading, AWS Lambda performs the

lambda function. In the case of Java, such a provision package contains the compiled pro-

gram code of the lambda function, resources (data that the program code can access during

execution) and program libraries on which the lambda function depends (usually JAR files).

The implementation of the theorem provers as a microservice is done with the help of

AWS Lambda by designing a corresponding lambda function that models the processing of

a request, the execution of the corresponding theorem proving program and the response to

the request. For each theorem verifier to be used, only the program code of the correspond-

ing Lambda functions has to be developed. After this has been provided in AWS Lambda,

the execution and automatic scaling is taken over by AWS. Based on the automatic scaling

of the lambda functions, the verification service can execute many theorem provers in par-

allel and accelerate the verification with Frama-C/WP.

4.2 Implementation

In order to feed the microservices, a verification application must run on the client machine,

where Frama-C/WP is also located, in order to act as a gateway between Frama-C (with

WP generating the proof obligations as usual) itself and the provers microservices. The
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verification application is a single executable program implemented in the Go programming

language. The main reason for using Go was that Go enables efficient parallel execution of

many processes. This is particularly important for the parallel execution of requests to the

verification service. In its current form, the verification service consists in 5 lambda functions

for the five provers that are used.

The aim of the verification application is (only) to outsource the execution of the theorem

provers to the verification service. Frama-C/WP normally executes the entire verification pro-

cess from the generation of proof obligations to the execution of the theorem provers without

interruption on one computer. To implement the exemplary (parallel) verification application,

the verification process must therefore be broken off by terminating the execution of Frama

C/WP after generation of the proof obligations. Since Frama-C/WP does not support inter-

faces for the transmission of proof obligations, all information required for verification must

be extracted from the files that were generated until Frama-C/WP was aborted.

The starting point for formal verification with Frama-C/WP using the verification service

is ACSL-specified C source code. In the current implementation of the application, Frama-C

version 18.0 was used to generate the proof obligations. The first step within the verification

application is to run Frama-C/WP to generate proof obligations from the specified source

code. A simple call of the program in the following form is sufficient:

frama-c -wp [Options] -wp-prover why3 -wp-gen [C files]

Options is a set of configuration options (see Frama-C/WP Manual for how to use the

configuration options of Frama-C/WP) and C files are the paths to the specified C files to be

verified by Frama-C/WP. Frama-C/WP generates text files in .why format when executed in

the described form. These contain all the information needed to prove the proof obligations

contained therein by means of theorem provers. The execution of Frama-C/WP is aborted

after the generation of the proof obligations, so no theorem provers (local) are called/exe-

cuted.

Since Frama-C/WP does not support interfaces for the transfer of proof obligations, the

verification application must now use the generated files in the following step to manually

identify all proof obligations to be proven. There are two types of proof obligations in Frama-

C/WP: Theories and Lemmas. However, once all proof obligations have been identified, this

distinction is of no further significance in the context of the verification service. All generated

proof obligations, both theories and lemmas, must be proven. To identify all generated proof

obligations, the generated .why files are searched for definitions of theories and lemmas.

With the help of the proof obligations determined, so-called tasks are now generated

in an application-internal representation. A task symbolizes a task to be performed by the

verification service and corresponds to a combination of a burden of proof and a theorem

prover who is to try to prove the burden of proof. In addition, a task captures the name of

the file in which the burden of proof is defined and the result of the processing by a theorem

verifier for later evaluation.

Depending on the use case used, the number of tasks and also the times at which the

tasks are created differ. In the most simple usage, there is exactly one task per proof obli-

gation after all proof obligations have been identified. The theorem verifier to be used is the

first theorem verifier in the order used. If it does not succeed, a new task is created for the

second prover in the list and so on. In another setting, in order to benchmark provers, tasks

for all possible combinations of proof obligation and theorem verifier are created from the

beginning.
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Before the tasks can be sent as requests to the verification service for further processing

in the next step, they must first be serialized. To do this, the task is transferred to a JSON

representation. This contains the name of the proof obligation and the name of the file that

contains the proof obligation. In addition, it contains a coded version of all .why files that

are needed by theorem provers to perform a proof and must therefore be sent as part of the

request.

After creating the JSON representation of a task, it is sent as a request to the verification

service. The verification application sends an HTTP post request to the corresponding inter-

face (API endpoint) of the theorem verifier that is to be executed. The JSON representation

of the task is located in the message body of the HTTP request. The system then waits for

the response from the service. For all tasks available to the verification application, the gen-

eration and execution of the corresponding queries takes place in parallel. This is possible

because there are no dependencies between them. In this way, the requests are sent to the

verification service simultaneously and as quickly as possible. In particular, the fast sending

of a request is useful for the fast processing of all tasks, since the verification service scales

with the number of proof obligations. Therefore, it is not necessary for the verification appli-

cation to delay a request.

In the next step, the requests are received by the verification service, the theorem provers

are executed, and the results are sent back to the verification application. The verification

service is implemented with the two AWS services Amazon API Gateway and AWS Lambda.

The AWS Lambda service is only responsible for the execution of the theorem provers. The

Amazon API Gateway service is used for communication between the verification applica-

tion and the Lambda functions. This enables the integration of the lambda functions, which

are executed by the theorem provers, by providing API endpoints. In this way, interfaces

are provided through which the verification application can effect the execution of a lambda

function and the associated theorem prover.

Using the Amazon API Gateway, an API endpoint is defined for each of the theorem

provers used. This API endpoint can also be configured to trigger a lambda function when

an HTTP mail request is received at one of these endpoints. Therefore, each of the five

defined API endpoints is linked to the lambda function of the associated theorem verifier.

Upon receipt of a request, the Amazon API Gateway service ensures that an instance of the

respective lambda function is started. It is quite possible that not only the lambda functions

of different theorem provers are started and executed in parallel, but also several instances

of a single prover’s lambda function. In this way, the automatic scaling of the executed

Lambda functions with the number of API requests received is made possible. Furthermore,

the Amazon API gateway transmits the message body of the HTTP request or the JSON

representation of the task to the started Lambda function.

A difficulty with the realization of the automatic theorem provers as Lambda functions is

that for their execution the Why3 platform is needed. This platform is responsible for the

start and the execution of the theorem provers. The AWS Lambda function of a theorem

verifier is therefore created as a wrapper function. A wrapper class written in Java imple-

ments the necessary interfaces to integrate the service into the AWS Lambda platform (Web

Services). The actual verification is passed on from the wrapper class to an instance of the

Why3 platform running in the cloud platform.

Amazon Web Services uses so-called MicroVMs to execute Lambda functions. These

virtualize the existing computer resources. The operating system that is used as part of a

lambda function is anAmazon Linux specially adapted byAmazon. Within a lambda function,

the \tmp directory provides a location for storing files in the file system. In order to run
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the Why3 platform and the theorem verifier, they must be stored in the \tmp directory from

within the deployment package. A problem that occurs here is that the Why3 platform usually

attempts to create or access various configuration files in user-specific directories. Also, the

Why3 platform cannot locate the theorem prover in the \tmp directory by default, since the

theorem provers are usually stored in other directories. To get a version of the Why3 platform

that works as expected in AWS Lambda, some small changes have been made to the source

code of the Why3 platform. In this way a slightly modified version of the Why3 platform was

created. The compilation of the modified source code was done on Amazon Linux to ensure

better compatibility.

The resulting executable version of the Why3 platform consists of several executable

files as well as driver and text files. Since AWS Lambda limits the size of a deployment

package to 50MB, any files not required to run a theorem proving program had to be identified

and removed to prevent the deployment package from becoming too large. These steps

ultimately resulted in a light version of the Why3 platform running within AWS Lambda. This

is included in the deployment package as a zip archive file together with the executable file

of the corresponding theorem verifier. The deployment package thus contains the executable

versions of the Why3 platform and the used theorem verifier as well as the compiled program

code of the lambda function and libraries on which the execution of the lambda function

depends.

At the beginning of the execution of a lambda function, the .why files required for pro-

cessing the proof obligation are first stored in the file system of the current lambda function.

For this purpose, the JSON representation of the task is read via the InputStream and trans-

ferred to an internal format. The individual .why files are then extracted from this and written

to the \tmp directory. Likewise the used theorem prover and the Why3 platform from the

supply package are stored in the \tmp directory and made executable. Then the theorem

prover can be executed. The necessary information, such as the name of the proof obliga-

tion, is also taken from the received request. The call of the Why3 platform takes place in

the following form:

why3 prove [why file] -t 10 [options] \
-T [proof obligation] -P [theorem prover]

The call described here has been simplified, for example by omitting various options.

Important parameters are above all the theorem prover to be used and the proof obligation

to be processed. Further information on the use of the Why3 platform can be found in the

Why3 Manual. Finally, the result of the theorem prover execution is returned in a JSON

representation using the OutputStream. This contains the name of the proof obligation and

the result obtained after the theorem prover has been executed.

After the execution of a lambda function is complete, the result of the execution is sent

by the Amazon API Gateway in response to the HTTP request received from the verification

application. After receiving such a response, the verification application extracts the result

from the received JSON representation and stores it in the associated task. This concludes

the processing of this task.

After all tasks have been processed, i.e. the results of the processing by the verification

service are available for all tasks, the results can be evaluated. The number of proof obli-

gations that have been proven at least once and the number of proof obligations proven per

theorem prover used are determined and issued.

The VerificationService.tar.gz archive contained in this deliverable provides the prover
microservices.
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Chapter 5

GUI

Task T3.4 was dedicated to enhance the graphical user interface (GUI) of Frama-C, in or-

der to make the tool easier to use. Some work has been devoted to the current GUI of the

platform, based on the well-known GTK library and is described in section 5.1. In parallel, a

new architecture, based on a client/server approach, has been designed. The server is in-

cluded in the main Frama-C distribution and is presented in section 5.2. Two external clients

are also included in this deliverable, both based on the Electron JavaScript framework. Dive

(section 5.4) is dedicated to explore data dependencies between memory locations, in par-

ticular for investigating the root causes of an alarm emitted by Eva, while Ivette (section 5.5)

is a prototype of a generic GUI for verification activities, with a view dedicated to Frama-C

itself.

5.1 Frama-C GUI

An important task from a technical point of view has been to move away from the obsolete

GTK 2 toolkit to use the slightly newer GTK 3. This was prompted by the support of GTK 3

in OCaml, the language in which the Frama-C platform is written, in the form of the lablgtk3
library containing the bindings with the C-based GTK 3. Support for lablgtk3 appeared in

Frama-C 19 Potassium, released in May 2019, and current versions of Frama-C can be built

against either GTK 2 or GTK 3.

More user-visible changes to the GUI include notably the development of an interactive

mode for guiding the automated provers in resolving proof obligations stemming from WP.

This module, called TIP, appeared in Frama-C 15.0 Phosphorus, in May 2017, and has been

continuously improved ever since.

The other main analyzer of the platform, the abstract interpretation-based Eva plugin,

has also seen notable extensions for displaying its results in Frama-C’s GUI. In particular, it

is now much easier to unfold the abstract values computed for the content of an array at a

given program point, and more generally for observing the abstract state computed by Eva.

Another addition was the so-called Red Alarms panel, dedicated to display alarms emitted

by Eva which have been found to be totally invalid on a least one of the execution paths

explored by Eva. Indeed, such alarms are much more likely to be true alarms than other

emitted alarms (which might only be artefacts of the overapproximations made by Eva in

order to guarantee the termination of the analysis). Hence the user will probably want to

focus on such alarms first and examine the others later. Finally, an helper plug-in, called

Studia, has been developed in order to be able to trace back in the GUI the assignments that
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might contribute to the value of a given memory location at a given program point (typically

where an alarm has been raised by Eva in order to better understand where the issue might

come from).

The current Frama-C GUI is included in the main distribution and is installed by default if

the appropriate dependencies (i.e. lablgtk2 or lablgtk3) are available on the system, which

is the case with the opam-based installation procedure mentioned in chapter 3.

5.2 Server plugin

In Frama-C 20.0 Calcium, a new plug-in server has been released, whose aim is to respond

to requests from external clients, either to get some information about the internal state of

Frama-C and its plug-ins, or to set the configuration of some analyzers and execute them.

More precisely, the server plugin provides a remote procedure call (RPC) interface to foreign
applications. The protocol is organized in three logic layers, organized as follows:

1. Many external entry points, based on various networking and system facilities

2. A generic logic run-time responsible for scheduling the requests coming from the vari-

ous entry points

3. The Frama-C implementation of requests handler, at the kernel or plug-in level

The intermediate, logic layer, is responsible for adding a small bit of parallelism upon the

intrinsically synchronous behavior of Frama-C. This makes Frama-C resembling an asyn-

chronous RPC server.

The externally visible layer is only focused on transporting external requests to the logic

layer, and transporting back the results to the caller. The only requirement for an entry point

is to be able to transport a sequence of 1-input message for 1-output message over time.

The concrete layer is implemented by the Frama-C kernel and its plug-ins. All requests

must be registered via the Frama-C Server OCaml API in order to be accessible from the

entry-points. Some parts of this documentation are automatically generated from the regis-

tered requests.

From a functional point of view, logical requests are remote procedures with input data

that reply with output data. Each request is identified by a unique name. Input and output

parameters are encoded into JSON values.

To adapt the internal synchronous Frama-C implementation with the external asynchronous

entry points, requests are classified into three kinds:

GET to instantaneously return data from the internal state of Frama-C

SET to instantaneously modifies the state or configure Frama-C plug-ins

EXEC to start a resource intensive analysis in Frama-C

During an EXEC request, the implementation of the all resource demanding computations
shall repeatedly call the yielding routine !Db.progress() of the Frama-C kernel to ensures a

smooth asynchronous behavior of the Server. During a yield call, the Server would be allowed

to handle few GET pending requests, since they shall be fast without any modification. When

the server is idled, any kind of requests can be started.
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From the entry points layer, the asynchronous behavior of the Server makes output data

and input data to be dispatched into different messages. However, from the Client side, we

still want to have one response message for each incoming message. However, answer

messages might contains output data from potentially any previously received requests.

When the client has no more requests to send, but is simply waiting for pending requests

responses, it must periodically send polling requests to simply get back the expected re-

sponses.

To implement those features, the Client-Server protocol consists of a sequence of paired

intput messages and output messages. Each single input message consists of a list of com-

mands:
Commands Parameters Description

POLL - Ask for pending responses, if any

GET id,request,data En-queue the given GET request
SET id,request,data En-queue the given SET request
EXEC id,request,data En-queue the given EXEC request
KILL id Cancel the given request or interrupt its execution

SHUTDOWN - Makes the server to stop running

Similarly, a single output message consists of a list of replies, listed in table below:

Replies Parameters Description

DATA id,data Response data from the identified request

ERROR id,message Error message from the identified request

KILLED id The identified request has been killed or interrupted

REJECTED id The identified request was not registered on the Server

The logic layer makes no usage of identifiers and simply pass them unchanged into output

messages in response to received requests. At the transport message layer, input and output

data are made of a single JSON encoded value. Requests are identified by string, and

request identifiers can be of any type from the entry-points.

Remark the GET, SET or EXEC behavior of a request is actually defined by the request

implementation, from the Frama-C internal side. The Server will silently ignore the request

kind from the incoming messages and use the actual internal one instead. The distinction

still appears in the transport protocol only for a purpose of information, as clients shall know

what they are asking for.

Implementations of entry points layers shall provide a non-blocking fetch function that

possibly returns a list of commands, associated with a callback for emitting the paired list of

replies. The Server main loop is guaranteed to invoke the callback exactly once.

The Server plug-in implements two entry-points, however, other Frama-C plugins might

implement their own entry-points and call the Server.Main.run fetch () function to make
the server starting and exchanging messages with the external world.

It is the responsibility of Frama-C plug-ins to implement and register requests into the

Server to make them accessible via any entry point. Whereas data is encoded into JSON

structures at the transport layer, requests are processes with well typed OCaml types from

the internal side.

Hence, the requests implementations also requires data encoder and decoders to be

defined. Some predefined data types are provided by the Server plug-in, but more complex

types can be defined and shared among plug-ins via the Server.Data module factory.

Registration of requests, data encoder and decoders always comes with their markdown

documentation thanks to the Markdown library provided by the Frama-C kernel. Hence, a

full documentation of all implemented requests with their data formats can be generated

VESSEDIA D3.5 Page 13 of 19



D3.5 - Enhanced version of the tools

consistently at any time.

5.3 Dome framework

Dome is a JavaScript library based on Electron and React in order to provide the basic blocks

for creating desktop applications based on these libraries, and relies also on Yarn to install

additional JS libraries if needed. It forms the basis of the two clients described below, Dive

and Ivette.

5.4 Dive

Dive is the first client developed against Frama-C Server. It plays a role similar to the Stu-

dia plugin mentioned in section 5.1: it is meant to explore data dependencies between the

memory locations of the program, in order to find the origin of imprecisions in Eva analysis.

It consists in two parts. First, there is a Frama-C plug-in Dive, that can be installed against

Frama-C main distribution with the standard sequence of commands.

./configure
make
make install

The plugin can inspect the abstract state computed by Eva in order to compute data

dependencies and registers the appropriate requests with the server.

As mentioned above, the client part is based on the Dome framework.Additionally, it uses

the Cytoscape graph visualization library. It is named dive-electron and started by typing

make dev in the directory of the application. It will then listen for Frama-C Server on port 9000
of localhost. Hence the server must be started with

frama-c [eva-options or -load state.sav] -server-zmq tcp://127.0.0.1:9000

dive-electronwill then let the user navigate in the call graph of the application, displaying
the dependencies of the memory locations of the currently focused function.

5.5 Ivette

Ivette, the Integrated Verification Environment Toolkit for Trusted Execution, is a prototype

GUI for program verification. It is also based on javascript and the electron framework and

uses the yarn package manager to gather all its external dependencies. The compilation is

done by

./configure
make app

However, for convenience, a linux version of the application is readily available as the

dist/linux-unpacked/ivette executable in the ivette archive.
The process for creating a Frama-C view for Ivette is currently a bit cumbersome, and the

view does not propose all the features of the classic Frama-C GUI: basically only viewing the

source code of functions and displaying the status of ACSL annotations and emitted alarms

is supported, by loading a Frama-C state previously saved with
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frama-c [other options] [C files] -save <file.sav>

Once the ivette executable has been launched, the main window should look like the

following:

First, one must create a new module for Frama-C, which opens the following screen:

The name can be freely changed, but cannot include spaces. Once the module is cre-

ated (by applying the changes), we are back to the main screen, but with the possibility of

displaying our new module:
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The view of the module is initially empty. In order to populate it, we must open the menu

of available components:

This is done by dragging and dropping the components of interest into themain view. Note

that currently only Source Code and Properties Status are really supported. The relative

size of each component can be changed afterwards.
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Then, it is possible to load the Frama-C state (it must have been created by the Frama-C

version contained in this deliverable, whose executable must be in the PATH when launching
Ivette).

Then, we can see the properties and the source code of the functions:
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Chapter 6

Conclusion

This report presented the software packages that compose the deliverable D3.5 of VESSE-

DIA, which is the result of the work done in tasks T3.1, T3.3 and T3.4. As a short summary,

it consists in

• the Diversity tool with its extension to deal with function calls

• the Frama-C tool, with its GUI and its server plugin (distributed in the main archive)

• the Frama-C plugins Meta, RPP and Dive (distributed externally)

• the java-script based clients of Frama-C’s server Dive-Electron and Ivette

• the AWS-Lambda based verification services

All of these tools have shown promising results within VESSEDIA and have good per-

spectives of future developments in the near future.
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