
D2.5

Basic Analyzers and collaboration of
analyses - Final Release

Project number:
731453

Project acronym:
VESSEDIA

Project title:
Verification engineering of safety and security

critical dynamic industrial applications

Start date of the project:
1st January, 2017

Duration:
36 months

Programme:
H2020-DS-2016-2017

Deliverable type:
Report

Deliverable reference number:
DS-01-731453 / D2.5 / 1.0

Work package contributing to the deliverable:
WP2

Due date:
December 2019 - M36

Actual submission date:
15th of January, 2020

Responsible organisation:
KUL

Editor:
Bart Jacobs

Dissemination level:
PU

Revision:
1.0

Abstract:
This report describes further enhancements

to the front-ends and specification libraries

developed in Task 2.1, the improved analy-

zers developed in Task 2.2, and the prototy-

pes of new analyzers developed in Task 2.4

and 2.5

Keywords:
software verification, software analyzers

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

The project VESSEDIA has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 731453.

VESSEDIA D2.5 Page 2 of 8

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Editor

Bart Jacobs(KUL)

Contributors

Virgile Prevosto (2-CEA)

Gergely Eberhardt (4-SLAB)

Bart Jacobs (8-KUL)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The content of this document reflects

only the author’s view – the European Commission is not responsible for any use that can

be made of the information it contains. The users use the information at their sole risk and

liability.

VESSEDIA D2.5 Page I

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Executive Summary

This document reports on further work done as part of all tasks in WP2 during M33-M36. The

work was centered around the following four technologies:

• Extensions of Frama-C basic and derived analyzers (MdR and StaDy plug-ins)

• ACSL++ and Frama-Clang, which extend the ACSL specification language and the

Frama-C verification framework for C programs with support for C++ programs

• The VeriFast tool for modular formal verification of C and Java programs

• The SecuRate metric for prioritizing verification alarms

It is a complement to deliverables D2.3 and D2.4, submitted at M32 and does not cover all

the tools that were released in these two previous deliverables, but only those on which major

further work was done during M33-M36.

VESSEDIA D2.5 Page II

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Contents

1 Introduction 1

2 Frama-C 4

2.1 F -C Kernel . 4

2.2 M -R . 4

2.3 S D . 4

2.4 Installation . 5

3 ACSL++ and Frama-Clang 6

4 VeriFast 7

5 SecuRate 8

VESSEDIA D2.5 Page III

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

List of Figures

List of Tables

VESSEDIA D2.5 Page IV

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Chapter 1

Introduction

Today’s software industry faces the considerable challenge of delivering software for powe-

ring IoT devices and applications that meets both the market’s stringent cost and time-to-

market constraints, and users’ expectations of privacy and security. Indeed, a number of

well-publicized cases of IoT devices being hacked, allowing attackers to spy on users or

even inflict physical damage, indicate that current industry practice fails to meet these goals.

The VESSEDIA project aims to address this challenge by developing methodologies,

metrics, and tools that enable industry actors to more cost-effectively assess, verify, and

certify the security of the IoT software they develop. Work Package 2, in particular, collects

the VESSEDIA activities concerning verification tool development. Within Work Package 2,

Tasks 2.1, Programming Languages Artefacts, 2.2, Extensions of Existing Analyses,

and 2.3, Runtime Vulnerability and Attack Protection through Data and Control Flow

Integrity Enforcements are concerned with the development of individual verification tool

building blocks, whereas Tasks 2.4, Composite Analysis Tools, and 2.5, Integration into

the Software Development Lifecycle, are concerned with composing building blocks to

achieve advanced functionalities.

In the current state of the art of verification tools, no tool is capable of offering the strongest

security guarantees without any user intervention. Therefore, all currently proposed tools

make a trade-off between the strength of the security properties verified, and the amount

of user intervention required. Choosing the right tool then depends on weighing the cost of

security issues versus the cost of verification in the context of a particular software deve-

lopment project: for a project where the risk of residual security vulnerabilities remaining in

the delivered product is relatively tolerable, tools that require little or no user intervention are

preferrable, whereas for a project where such residual vulnerabilities would be catastrophic,

tools that require significant user expertise and effort but provide high assurance of security

are justified.

To cover this spectrum and in this way support all types of software development projects,

VESSEDIA verification tool development has focused on the following four tools, supporting

three modes of operation:

• Frama-C Eva is an abstract interpretation tool, built on the Frama-C framework for ve-

rification tools for the C programming language. It analyzes a program’s source code

for particular types of security properties, by computing an abstraction that overap-

proximates the program’s set of reachable states. In contrast to dynamic analysis, if

successful it can guarantee the absence of certain types of vulnerabilities in all possi-

ble executions of the program. The user intervention required is moderate: it is limited

to tuning the abstraction mechanism. Its verification power is limited by the fact that

VESSEDIA D2.5 Page 1 of 8

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

it supports a fixed set of built-in abstractions, which means that it supports only the

security properties that can be expressed using those abstractions and the programs

that can be analyzed using those abstractions.

• Frama-C WP is a deductive verification tool, also built on Frama-C. In contrast to ab-

stract interpretation, it ismodular : it verifies, for each of the program’s modules separa-

tely, that the module satisfies the security properties specified by the user. Compared

to abstract interpretation, it can provide stronger guarantees and support more complex

programs, at the cost of requiring the user to supply a specification for each module,

as well as other user-defined abstractions such as loop invariants and data structure

specifications.

• Frama-C StaDy is based on the collaboration between static and dynamic analysis

tools. More precisely, static analyzers can prove that a program is correct with respect

to some properties of interest, but when a potential issue is raised, some further (ma-

nual) work is indeed to decide whether a real bug has been spotted or this is a false

alarm, consequence of the abstractions that the analyzer has made in order account

for all possible concrete executions of the programs. On the other hand, dynamic ana-

lyzers based on sets of test cases always report real issues, but the set of possible

inputs is usually so large that it is not feasible to explore it exhaustively, meaning that

some issues might go unnoticed by a test campaign. The main goal of StaDy is thus to

focus the attention of test case generators on potential issues emitted by Eva or WP,

trying to find an input vector that will indeed trigger the issue.

• VeriFast is another deductive verification tool. Whereas Frama-CWP is based on clas-

sical Hoare logic, VeriFast is based on an extension of Hoare logic called separation

logic. Separation logic forces the user to specify ownership of all memory locations and

other resources used by the program, further increasing the amount of user interven-

tion required; in return, this allows VeriFast to support more advanced programming

constructs such as, in particular, concurrency. VeriFast supports the C and Java pro-

gramming languages.

The Frama-C tools1 and VeriFast2 are relatively mature tools that have existed for a long

time; the development done as part of VESSEDIA has consisted in making significant impro-

vements to these tools, enhancing their applicability to IoT verification use cases in important

ways.

The structure of the remainder of this report is as follows:

• Chapter 2 reports on the work done in the latest Frama-C version on S D , and

M -R , a plug-in to generate analysis reports in formats suitable for con-

sumption by external tools or for integration in more general evaluation reports.

• While many IoT applications are written in C, at least as many are written in C++.

Chapter 3 reports on the work done to extend the Frama-C framework to also support

the C++ programming language. This involves in particular developing ACSL++, an

extension of Frama-C’s ACSL notation for C program annotations, as well as Frama-

Clang, a Frama-C module that translates ACSL++-annotated C++ programs to ACSL-

annotated C programs. The latter is based on the parser and typechecker of the popular

Clang C++ compiler.

1https://frama-c.com/
2https://github.com/verifast/verifast

VESSEDIA D2.5 Page 2 of 8

https://frama-c.com/
https://github.com/verifast/verifast

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

• Chapter 4 reports on the work done in the context of the VeriFast tool for modular

formal verification of C and Java programs. Specifically, it reports on initial results in

the verification of liveness properties of the I/O behavior of concurrent programs.

• All of the VESSEDIA verification tools generate so-called alarms when potential secu-

rity issues are detected. An important challenge for users is to decide which alarms to

investigate and address first. Chapter 5 reports on the work implementing SecuRate,

a metric for prioritizing verification alarms based on the number of affected products

and the number of affected devices.

VESSEDIA D2.5 Page 3 of 8

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Chapter 2

Frama-C

F -C 20.0 Calcium was released on December 4th, 2019 and forms the basis of this

deliverable with respect to the extensions to the S D and M -R plug-ins,

as well as to the F -C kernel itself, that have been made since D2.3 and D2.4. The main

changes with respect to these deliverables are detailed in this chapter.

2.1 F -C Kernel

The improvements to handling ghost code that were available through the M plug-in

presented in Chapter 4 of D2.3 have been incorporated directly in the main type-checker of

Frama-C and are now in a stable state.

In addition, the incorporation of the M -R plug-in into the main repository

of Frama-C (see below), led to a consolidation of the internal representation of Markdown

documents. While mostly visible only to developers at this stage, this will result in a easier

production of such documents in the whole platform (notably for the R plug-in itself),

leading to a smoother integration of F -C results into various reports.

2.2 M -R

The M -R plug-in, which was made available in an experimental version as

part of D2.4, has been stabilized and incorporated into F -C main distribution, while

its Markdown internal representation has replaced the one previously available in F -C

itself (see above).

2.3 S D

In order to facilitate the use of S D over CEA use-case in WP6, various improvements

have been made over the plug-in. The most important ones include:

• preliminary support for recursive types

• preliminary support for bitwise operations in ACSL formulas

• preliminary support for pointer subtraction in ACSL formulas

VESSEDIA D2.5 Page 4 of 8

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

• simpler instrumentation of the code, and better support for C standard library specifi-

cations as found in Frama-C standard headers

2.4 Installation

The StaDy archive that is part of this deliverable is meant to be compiled against the Frama-

C 20.0 Calcium version (which is also included). As was the case in D2.4, it depends on the

PathCrawler plug-in, though, which is not publicly distributed.

The Frama-C archive included in this deliverable is exactly the same as the one that is

available for download on the https://frama-c.com website. Hence, it is possible to install it
through the opam package manager, which is the preferred installation method as indicated

in the INSTALL.md file in the archive. This file also contains detailed installation instructions,

as well as the necessary dependencies, allowing for a manual installation.

Once Frama-C itself has been installed, StaDy itself can be installed, provided PathCra-

wler is available, by decompressing the archive, and, in the Frama-C-StaDy directory, issuing

the commands:

./configure
make
make install

VESSEDIA D2.5 Page 5 of 8

https://frama-c.com

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Chapter 3

ACSL++ and Frama-Clang

Deliverable D2.3 provided the first version of the ACSL++ manual, describing a formal spe-

cification language for C++, based on ACSL for C. A new version, taking into account dis-

cussions and feedback from Vessedia partners is part of D2.5. It does not provide brand

new features, but include many clarifications over the constructions that were proposed in

the initial version.

In parallel, some improvements weremade to the frama-clang plug-in that provides Frama-

C with a C++ front-end. These improvements are publicly available as frama-clang 0.0.8, and

include:

• compatibility with Frama-C 20.0 Calcium and Clang 9.0;

• support for the \exit_status construction in ACSL++;

• better support for ghost code at frama-clang level, in conjunction with the enhance-

ments mentioned in the previous chapter;

• various fixes allowing the C++ part of the plug-in to be compiled against -Wall option

of the g++ compiler.

VESSEDIA D2.5 Page 6 of 8

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Chapter 4

VeriFast

During M33-M36, KUL has started to investigate the problem of formal modular verification of

liveness properties of the I/O behavior of concurrent programs. For example, for a concurrent

web server, we want to verify that it responds to each request, or, in other words, that it does

not starve any clients. Often, web servers are multithreaded, to exploit hardware parallelism.

Such programs typically terminate only under fair scheduling assumptions. This complicates

liveness reasoning.

While our research on this topic is ongoing, we have obtained initial results. The docu-

ment Verifying Termination of Busy-Waiting for Program Abortion, attached to this delivera-

ble, describes an approach for verifying termination under fair scheduling of programs where

some threads abort the program and other threads run forever. Since verifying that a pro-

gram eventually performs some I/O action X can be encoded as verifying that the program

terminates, assuming that action X aborts the program, this is a step towards our goal.

We are aiming to submit a paper on our work to the prestigious ECOOP 2020 conference.

VESSEDIA D2.5 Page 7 of 8

D2.5 - Basic Analyzers and collaboration of analyses - Final Release

Chapter 5

SecuRate

See the separate document attached to this deliverable.

VESSEDIA D2.5 Page 8 of 8

	Introduction
	Frama-C
	Frama-C Kernel
	Markdown-Report
	StaDy
	Installation

	ACSL++ and Frama-Clang
	VeriFast
	SecuRate

