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Executive Summary

This document reports on the work done as part of Tasks 2.1, 2.2, and 2.3. The work was

centered around the following five technologies:

• The FlowGuard data-flow integrity enforcement technology for C and C++ programs

• ACSL++ and Frama-Clang, which extend the ACSL specification language and the

Frama-C verification framework for C programs with support for C++ programs

• An extension of Frama-C with support for ghost code

• The VeriFast tool for modular formal verification of C and Java programs

• The SecuRate metric for prioritizing verification alarms
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Chapter 1

Introduction

Today’s software industry faces the considerable challenge of delivering software for powe-

ring IoT devices and applications that meets both the market’s stringent cost and time-to-

market constraints, and users’ expectations of privacy and security. Indeed, a number of

well-publicized cases of IoT devices being hacked, allowing attackers to spy on users or

even inflict physical damage, indicate that current industry practice fails to meet these goals.

The VESSEDIA project aims to address this challenge by developing methodologies,

metrics, and tools that enable industry actors to more cost-effectively assess, verify, and

certify the security of the IoT software they develop. Work Package 2, in particular, collects

the VESSEDIA activities concerning verification tool development. Within Work Package 2,

Tasks 2.1, Programming Languages Artefacts, 2.2, Extensions of Existing Analyses,

and 2.3, Runtime Vulnerability and Attack Protection through Data and Control Flow

Integrity Enforcements are concerned with the development of individual verification tool

building blocks, whereas Tasks 2.4, Composite Analysis Tools, and 2.5, Integration into

the Software Development Lifecycle, are concerned with composing building blocks to

achieve advanced functionalities. The present deliverable reports on the former; Deliverable

2.4 reports on the latter.

Since, in the current state of the art of verification tools, no tool is capable of offering

the strongest security guarantees without any user intervention, all currently proposed tools

make a trade-off between the strength of the security properties verified, and the amount

of user intervention required. Choosing the right tool then depends on weighing the cost of

security issues versus the cost of verification in the context of a particular software deve-

lopment project: for a project where the risk of residual security vulnerabilities remaining in

the delivered product is relatively tolerable, tools that require little or no user intervention are

preferrable, whereas for a project where such residual vulnerabilities would be catastrophic,

tools that require significant user expertise and effort but provide high assurance of security

are justified.

To cover this spectrum and in this way support all types of software development projects,

VESSEDIA verification tool development has focused on the following four tools, supporting

three modes of operation:

• The FlowGuard tool is a dynamic analysis tool. Rather than verifying the absence

of vulnerabilities ahead of deployment, it monitors program execution at run time and

detects ongoing attacks that attempt to exploit vulnerabilities to manipulate a program’s

data flow. It requires little or no user intervention.

• Frama-C Eva is an abstract interpretation tool, built on the Frama-C framework for ve-

rification tools for the C programming language. It analyzes a program’s source code
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for particular types of security properties, by computing an abstraction that overap-

proximates the program’s set of reachable states. In contrast to dynamic analysis, if

successful it can guarantee the absence of certain types of vulnerabilities in all possi-

ble executions of the program. The user intervention required is moderate: it is limited

to tuning the abstraction mechanism. Its verification power is limited by the fact that

it supports a fixed set of built-in abstractions, which means that it supports only the

security properties that can be expressed using those abstractions and the programs

that can be analyzed using those abstractions.

• Frama-C WP is a deductive verification tool, also built on Frama-C. In contrast to ab-

stract interpretation, it ismodular : it verifies, for each of the program’s modules separa-

tely, that the module satisfies the security properties specified by the user. Compared

to abstract interpretation, it can provide stronger guarantees and support more complex

programs, at the cost of requiring the user to supply a specification for each module,

as well as other user-defined abstractions such as loop invariants and data structure

specifications.

• VeriFast is another deductive verification tool. Whereas Frama-CWP is based on clas-

sical Hoare logic, VeriFast is based on an extension of Hoare logic called separation

logic. Separation logic forces the user to specify ownership of all memory locations and

other resources used by the program, further increasing the amount of user interven-

tion required; in return, this allows VeriFast to support more advanced programming

constructs such as, in particular, concurrency. VeriFast supports the C and Java pro-

gramming languages.

Whereas the FlowGuard tool was developed from scratch as part of the VESSEDIA pro-

ject, the Frama-C tools1 and VeriFast2 are relatively mature tools that have existed for a long

time; the development done as part of VESSEDIA has consisted in making significant impro-

vements to these tools, enhancing their applicability to IoT verification use cases in important

ways.

The structure of the remainder of this report is as follows:

• Chapter 2 reports on the FlowGuard technology, implemented as a plugin for the

industry-standard GCC C compiler, for hardening programs against attacks that ma-

nipulate a program’s variables without hijacking their control flow. Such attacks are

therefore not prevented by control-flow integrity protections.

• While many IoT applications are written in C, at least as many are written in C++.

Chapter 3 reports on the work done to extend the Frama-C framework to also support

the C++ programming language. This involves in particular developing ACSL++, an

extension of Frama-C’s ACSL notation for C program annotations, as well as Frama-

Clang, a Frama-C module that translates ACSL++-annotated C++ programs to ACSL-

annotated C programs. The latter is based on the parser and typechecker of the popular

Clang C++ compiler.

• Chapter 4 reports on work done to add support for a program annotation construct

known as ghost code to Frama-C. This construct underlies many important verification

techniques, enabling verification of additional properties and program patterns.

1https://frama-c.com/
2https://github.com/verifast/verifast
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• Chapter 5 reports on work done in the context of the VeriFast tool for modular formal

verification of C and Java programs. Specifically, it reports on progress made in veri-

fying deadlock-freedom of programs that use condition variables, and in verifying the

I/O behavior of programs.

• All of the VESSEDIA verification tools generate so-called alarms when potential secu-

rity issues are detected. An important challenge for users is to decide which alarms

to investigate and address first. Chapter 6 reports on work implementing SecuRate, a

metric for prioritizing verification alarms based on the number of affected products and

the number of affected devices.
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Chapter 2

FlowGuard

2.1 Introduction

FlowGuard implements the Data-Flow Integrity (DFI) enforcement for C and C++ code. DFI

emerges as a prevention mechanism for non-control data attacks, which exploit vulnera-

bilities to overwrite security critical data without subverting the intended control-flow in the

program.

2.1.1 Non-Control-Data Attacks

A non-control-data attack differs from a control-data attack (i.e., code-injection, code-reuse)

in that it does not affect the control-flow of a program. Instead, it follows legitimate control-flow

transfers and modifies program logic or decision-making data. The security-critical data that

may be subjected to these attacks includes configuration data, user input data, user identity

data (e.g., UIDs and GIDs), decision-making data (e.g., a boolean value indicating authenti-

cation status), passwords and private keys, randomized values (e.g., canaries, randomized

addresses), and system call parameters.

As an example, the OpenSSL Heartbleed vulnerability [10] allowed a remote attacker

to expose sensitive data, such as private keys, using a non-control-data attack. On the

heartbeat request/response protocol, an attacker could request a heartbeat using a legitimate

payload but providing a payload length field larger (up to 65,535 bytes) than the real payload.

Then, the response protocol would craft a response by copying the original payload in a buffer

allocated with size equal to the payload length field. Since the payload length field was not

correctly verified against the length of the real payload, a memory leakage was possible.

2.1.2 Data-Flow Integrity

The DFI enforcement generates the Data-Flow Graph (DFG) of the program leveraging static

analysis. Concretely, it computes a DFG that contains a set of definitions, assigns an iden-

tifier to each definition, and maps those identifiers to instructions. This way, the DFG shows

the instructions that assigned a value to each used variable.

Secondly, it instruments the program introducing data-flow integrity checks that ensure,

before every variable use, that its definition is within the statically generated reaching defini-

tion identifiers.

Finally, it enforces at runtime that the data flow of the program is allowed by the DFG, if

not, the data-flow integrity property does not hold, and the program is terminated.
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2.2 Prototype Details

FlowGuard has been implemented as a plug-in to the popular GCC compiler for C and C++

languages. As a prototype, its intended usage is for research purposes only. It is distributed

under the GNU GPL open source license.

To install the tool, the user can proceed as follows:

1. Install dependencies: ./dependencies.sh

2. Install GCC version 5.4.0: ./getgcc.sh

3. cd flowguard; make plugin

2.3 Usage

To use the tool, follow these steps.

1. First, make sure the tool is properly installed. See the installation instructions above.

2. To use this tool we need to generate the static Data-Flow Graph of the program, and to

instrument the program based on that DFG, to then at runtime ensure that the program

follows the statically defined DFG. When a program is compiled the tool generates the

DFG and injects the required instrumentation. Then we compile the runtime library and

insert this static DFG which is the one that will be checked against at runtime. Once

the lib is compiled with the static DFG in it, we link the instrumented program to the

runtime lib.

3. There is a Makefile that automates the compile and link process. make test is the ea-

siest way to compile a program, translate the DFG into object files, compile the runtime

instrumentation lib and link the program against the runtime lib.

2.4 Changes

The following changes were made to correct and enhance the functionality of the plugin:

1. During the compilation process, there was an issue that, at first, looked like a problem

that affected variables stored in static storage (when obtaining the first operand of the

expression via TREE_OPERAND(XXX, 0)) leading to a segmentation fault and preventing

the compilation to finish. In the end, we discovered that it was a more general problem

that affected every expression node that had 0 operands, and thus the TREE_OPERAND
operation would keep providing an invalid value. To solve it, the plugin now first com-

putes the number of operands in an expression node before accessing its operands.

2. Fixed a problem that caused the plugin to not load the statics for C programs because

it could not find the main function of the program and consequently could not enforce

the Data-Flow Integrity.
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3. A compilation error was triggered when handling structures that contain a bit-field that

immediately follows another bit-field. This happens because bit-fields can overlap at

RTL level. We have corrected the way in which these cases are handled, in a similar

way as other sanitizers do.

4. Programs compiled with the plugin showed a runtime error that was triggered because,

under certain conditions, instrumentation code was inserted to check if a definition was

within the previously statically generated identifiers before inserting the call to set the

corresponding definition identifier. In the new version, it is ensured that the correspon-

ding “set definition” call is inserted at some point before a “check definition” call.

5. When inserting instrumentation to check the definition of PHI function expressions that

dereference a pointer that is incremented or decremented in a previous different path,

the plugin crashed due to an incorrect handling that resulted in a compilation error when

expanding from GIMPLE to RTL. These cases triggered an error because an invalid

expression that contained multiple consecutive operators was built in consequence.

The new version detects these conditions and builds expressions correctly.

2.5 Changelog

• 20190810: release beta version

• 20190401: release alpha version

• 20180615: release pre-alpha version
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Chapter 3

ACSL++ and Frama-Clang

While many IoT applications are written in C, at least as many are written in C++. This

chapter reports on the work done to extend the Frama-C framework to also support the

C++ programming language. This involves in particular developing ACSL++, an extension

of Frama-C’s ACSL notation for C program annotations, as well as Frama-Clang, a Frama-C

module that translates ACSL++-annotated C++ programs to ACSL-annotated C programs.

The latter is based on the parser and typechecker of the popular Clang C++ compiler.

For this chapter, the following three artifacts are included in this deliverable by reference:

• The document ACSL++: ANSI/ISO C++ Specification Language

• The document Frama-Clang User Manual

• The Frama-Clang software distribution

They are described below.

3.1 ACSL++

One goal of the VESSEDIA project is to advance the definition and capability of the ACSL++

(ANSI/C++ Specification Language) language and tools. There has been for many years a

definition of a specification language for ANSI-C, namely theANSI-C Specification Language

(ACSL) [1]. This language definition underpins the Frama-C tool suite that enables perfor-

ming a variety of tool-supported program analysis and deductive verification tasks. The goal

of the ACSL++ effort is to extend the ACSL language to support C++ and to enhance the

Frama-C tool suite to accept C++ programs as input.

Incorporated by reference within this deliverable is the stand-alone document ACSL++:

ANSI/ISO C++ Specification Language. This document is a substantial enhancement of

the ACSL document [1] (which it incorporates). Both of these are examples of Behavioral

Interface Specification Languages [5], as are JML [3, 12] for Java, SPARK [7] for Ada, Spec#

for C# [13], Dafny [6], Eiffel [8], VeriFast [11] for separation logic, Vercors [2] for concurrent

programs, and so on.

3.1.1 Enhancements added in ACSL++

Though some of the work of supporting C++ in Frama-C was begun in earlier projects, under

VESSEDIA the definition of ACSL++ was crystallized and documented. In particular, this
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required defining how specifications would operate for C++, an object-oriented language,

in conjunction with specifications for C, a low-level language. Key features of ACSL++ are

these:

• logic functions and predicates within classes and as member functions or static or vir-

tual

• class invariants

• specifications of templates

• specifications appropriate to functional programming and lambda expressions

• name scoping in classes and namespaces

• inheritance of specifications, including multiple inheritance

• specifications for C++’s for-range loop

• exceptions and exception specifications

• dynamic type information and delegation

• attributes such as [[noreturn]] and noexcept

• C++ casts

• pure functions usable in specifications

• type inference: C++’s auto and decltype features

• first-class boolean literals and types

3.2 Frama-Clang

Frama-Clang is a module for the Frama-C framework that translatesACSL++-annotated C++

programs into ACSL-annotated C programs; the resulting programs can then be analyzed

using other Frama-C components (known as plugins) such as Frama-C Eva and Frama-C

WP. Like ACSL++, the development of Frama-Clang was started before the start of VES-

SEDIA. During VESSEDIA, the pre-existing Frama-Clang prototype was enhanced to parse

ACSL++ and, as far as is currently supported by the Frrama-C kernel, to represent the C++

and ACSL++ features in a form that can be used by Frama-C and its multitude of existing

plug-ins.

3.2.1 Technical work

Preprocessor

Prior to this work, text written within ACSL++ annotations was not subject to standard C/C++

preprocessing in a uniform way; only a partially implemented, custom preprocessor had been

written. Under VESSEDIA, the design and implementation were changed to use the popular

Clang C++ compiler for preprocessing and lexing the source files. Clang was already being
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used to parse the C++ portion of source files, so this step further advanced the integration

with and use of Clang.

There is still a custom lexer that is used in the following workflow:

• First the file is broken into tokens without preprocessing in order to identify preproces-

sing directives that are not permitted inACSL++ annotations (the details of these design

decisions are described in the user manual). Illegal preprocessing directives result in

errors and then are elided from the input so processing can continue, if possible, with

the remaining text.

• The text, possibly modified, is then submitted to Clang and a sequence of preprocessor

tokens is retrieved. Clang does all of the preprocessing steps as described in the C/C++

standards.

• These Clang tokens are then converted to ACSL++ tokens. ACSL++ tokens are used

for two reasons. First, the lexer tokens for ACSL++ are slightly different than the C/C++

preprocessor tokens, so some conversion is needed. For example, ACSL++ includes

keywords that begin with a backslash, which is not a legal single token in C++. Second,

by using ACSL++ tokens we can reuse much of the infrastructure that was already

present for handling ACSL++ source text and ASTs.

• The ACSL++ token stream is then parsed and ASTs are generated and passed on to

the Frama-C kernel.

Parser

The second significant technical accomplishment was a rewrite and enhancement of the

parser. Although the work on the scanner and preprocessor described above was intended

to meld with the existing scanner, this goal proved not the best long-term solution. In fact as

addionalACSL++ features were added to the software implementation the original parser was

found to be too costly to maintain, fix, and expand. It had been written as a handgenerated

Bison-like parser but with state and actions encoded in function pointers, rather than in a

tool-generated table. As a result the grammar implemented by the tool was implicit in the

actions and difficult to correctly fix or change.

The decision was made to replace this parser with a recursive descent parser in which

non-terminals of the grammar are explicitly clear as named function calls in the implementa-

tion. The difficulty of such an implementation is that it is best suited for LL grammars, which

C++ is not. However, ACSL++ mostly is. The areas in which it is not are described in the

user manual, along with the design solutions that were adopted in the new implementation.

3.2.2 User manual

A user manual has been written to accompany the software described in the previous section.

Once installed along with Frama-C, the Frama-Clang front-end mostly acts invisibly to the

user: C++ files are processed by Frama-Clang without user intervention. The user manual

describes the various options available to modify the behavior of the front-end and the limita-

tions of the current implementation. The user manual includes a technical summary of some

implementation details, useful to future maintainers and developers.
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Chapter 4

Ghost code support in F -C

Formal verification of source code often relies on the use of ghost code to make explicit some

information that is otherwise implicit. Basically, it consists in adding some code that can be

seen by the tool used for verification. In order to assure that the verification is correct, the

code must not modify the behavior of the program (otherwise we would verify a program that

has a different semantics). Hence, ghost code can read the variables of the program but not

modify them, it must always terminate and it must not change the control flow of the program.

Currently, F -C does not provide the ability to write certain kinds of ghost code and

does not check that the ghost code is non-interferent with the original code. In the context

of Task 2.2 of VESSEDIA, we have improved the support for ghost code in F -C. This

prototype version of F -C:

• accepts ghost arguments to functions,

• keeps the ghost status of ghost functions,

• checks that ghost code is not interferent,

• accepts a ghost qualifier for types.

The support for the ghost arguments and ghost functions status has been added by mo-

difying the F -C kernel and more precisely the parsing and typing phases and is thus an

improvement of the platform itself. The verification of the non-interference of the ghost code

and the ghost qualifier are provided by a plugin called M .

4.1 Example code

Figure 4.1 presents an example of code using the ghost syntax for parameters (see for ex-

ample lines 9, 15, 37), functions (lines 11–12, 24–34) and function calls (line 38) as well as

the _ghost qualifier to specify that some memory belongs to the ghost world (lines 9, 12, 15,

26, 37).

In F -C 19 Potassium, this code cannot be parsed by the kernel, and the ghost code

is not verified to be non-interferent. Our prototype verifies all of this1. For example, one can

slightly modify the code above, for example by declaring the local variable l on line 16 as a

1Note that one particular aspect of non-interference, that is termination, is not verified by M but can

be verified using other plugins. The documentation associated to this protoype tells more about it.
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1 #define NULL ((void*) 0)
2

3 struct list {
4 struct list *next;
5 int k;
6 };
7

8 struct list * list_pop (struct list ** list)
9 /*@ ghost (struct list * _ghost * array, int index, int n) */;

10

11 /*@ ghost
12 void array_pop (struct list * _ghost * array, int index, int n) ; */
13

14 struct list * list_pop (struct list ** list)
15 /*@ ghost(struct list * _ghost * array, int index, int n) */ {
16 struct list *l = *list;
17 if(*list != NULL) {
18 //@ ghost array_pop(array, index, n) ;
19 *list = (*list)->next;
20 }
21 return l;
22 }
23

24 /*@ ghost
25

26 void array_pop (struct list * _ghost * array, int index, int n) {
27 int i = index;
28 while (i < index + n - 1){
29 array[i] = array[i+1];
30 i++;
31 }
32 }
33

34 */
35

36 void caller_code(struct list ** list)
37 /*@ ghost (struct list * _ghost * array, int index, int n) */ {
38 list_pop(list) /*@ ghost (array, index, n) */ ;
39 }

Figure 4.1: A code sample using the new ghost support
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ghost variable, or adding a line modifying the field array[i]->k between lines 28 and 29, to

see that when it is done the plugin detects the violations.

An archive containing the source code for the modified and extended version of F -C,

as well as a document describing the result in greater detail, are attached to this deliverable.
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Chapter 5

VeriFast

VeriFast is a research prototype of a tool for modular formal verification of correctness proper-

ties of single-threaded and multithreaded C and Java programs. It takes as input the source

code files for a Java or C program module, annotated with specifications that express the

module’s intended correctness properties, expressed in a variant of separation logic, as well

as any necessary proof hints, such as loop invariants. It then, without further user interaction

and usually in a matter of seconds, reports either “0 errors found” or the source location of

a verification failure. If it reports “0 errors found”, this means that all possible executions of

the provided module are safe (i.e. do not crash and do not access unallocated memory or

overrun any buffers) and comply with the provided specifications. Otherwise, the user can

inspect the failed symbolic execution path in a debugger-like GUI.

KUL has been developing VeriFast since 2008. It is available as open source at https:
//github.com/verifast/verifast under an MIT license.

During Period 1 of the VESSEDIA project, we have extended VeriFast’s support for I/O

verification, crypto verification, automation, and verification of deadlock-freedom of programs

that use monitors. For details on this work, see D2.1.

During Period 2, we have developed further VeriFast’s support for verifying deadlock-

freedom of concurrent programs that use monitors or channels. This has led to a publication

at ECOOP 2019 [4], and a submission to the ACM TOPLAS journal (under review). These

results will also appear in Jafar Hamin’s PhD thesis (expected to be defended in September

2019). As part of this work, we have further developed the machine-readable formalization

and machine-checked correctness proof of the theory underlying our proposed approach; it

can be found at https://github.com/jafarhamin/deadlock-free-monitors-soundness.
Additionally, we have done further work on verifying I/O behavior with VeriFast, leading

to a publication at FTfJP 2019 [9].
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Chapter 6

SecuRate

A description of this result can be found in a separate document attached to this deliverable.
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