

D2.2
Collaboration of analyses intermediate release V1

Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security critical

dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Other

Deliverable reference number: DS-01-731453 / D2.2 / 1.0

Work package contributing to the

deliverable:
WP2

Due date: Dec 2018 – M24

Actual submission date: 16th January 2019

Responsible organisation: SLAB

Editor: Gergely Eberhardt

Dissemination level: PU

Revision: 1.0

The project VESSEDIA has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:
Companion report describing software delivered as

D2.2

Keywords:
Combining static and dynamic analysis, AFLSCA,

StaDy

 D2.2 - Collaboration of analyses intermediate release V1

VESSEDIA D2.2 Page I

Editor

Gergely Eberhardt (SLAB)

Contributors

Virgile Prevosto (CEA)

Ákos Köte (SLAB)

Bence Hambalkó (SLAB)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

D2.2 - Collaboration of analyses intermediate release V1

VESSEDIA D2.2 Page II

Executive Summary

This document gives a brief overview of the initial version of the tools developed to accomplish
software analyser collaboration in WP2 of the VESSEDIA project. The main part of the deliverable
consists in the software themselves, which are submitted separately.

D2.2 - Collaboration of analyses intermediate release V1

VESSEDIA D2.2 Page III

Contents

Chapter 1 Introduction .. 1

Chapter 2 Combining Static and Dynamic analysis (SLAB) 2

2.1 General Description .. 2

2.2 Installation instructions .. 2

2.2.1 Installing Frama-C v17.x – Chlorine ... 2

2.2.2 Adding StaDy plugin .. 3

2.2.3 Installing AFL ... 3

2.3 Usage / User stories .. 4

2.4 Usage example ... 4

2.4.1 Using AFL .. 7

Chapter 3 Verification Artefact Management (CEA) .. 10

3.1 General Description .. 10

3.2 Installation instructions .. 10

3.3 Usage .. 10

Chapter 4 Summary and Conclusion ... 13

Chapter 5 List of Abbreviations .. 14

Chapter 6 Bibliography ... 15

D2.2 - Collaboration of analyses intermediate release V1

VESSEDIA D2.2 Page IV

List of Figures

Figure 1 Analysis dialog .. 4

Figure 2: Example source code ... 5

Figure 3: ACSL annotated source code .. 6

Figure 4: Example code loaded into Frama-C GUI .. 7

Figure 5 .. 7

Figure 6: Initialization of AFL ... 8

Figure 7: AFL runtime results .. 8

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 1 of 15

Chapter 1 Introduction

This document presents the two prototypes composing D2.2, and related to tasks T2.4 and T2.5.
For the former, the collaboration between analyzers, and more precisely between static and
dynamic analysis is exemplified by the use of the AFL fuzzer to generate test cases that will falsify
an ACSL property that could not be proved by the WP plugin (see Chapter 2). For the latter, the
MarkDown Report is presented in Chapter 3. It provides two ways for presenting the results of the
Eva plug-in of Frama-C into semi-structured formats that can be understood by external tools.

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 2 of 15

Chapter 2 Combining Static and Dynamic analysis

(SLAB)

2.1 General Description

In the STANCE [4] project SLAB integrated the FLINDER fuzzer tool with the SANTE module. The
combined result used value analysis, program slicing and structural testing for C program
verification and used the FLINDER fuzzer to dynamically confirm each alarm (see section 2.2 in
[1]). In the current version of the Frama-C, the SANTE method is replaced by the STUDY plugin
(section 2.3 in [1]), which generalized the SANTE method and made possible to combine any static
analysis plugin with the dynamic analysis.

The original STADY plugin uses the PathCrawler tool to generate test cases using constraint
resolution, which is an NP-complete problem. Therefore even PathCrawler can ensure coverage,
the termination of the tool cannot be guaranteed within reasonable time in every case. To address
this problem, we aimed to replace PathCrawler with AFL1 (American Fuzzy Lop), which is a widely
used fuzzer capable of increasing coverage with compile-time instrumentation and genetic
algorithms. Although it can handle complex cases also, it cannot guarantee full coverage, so both
the PathCrawler and the AFL test generation can be meaningful in different cases.

To establish the connection between STADY and AFL, we implement the AFLSCA plugin similarly
to the PathCrawler plugin. The AFLSCA implements the Testgen interface, which is called during
Frama-C execution at specific times.

2.2 Installation instructions

The AFLSCA tool is consisting of the following software modules:

• Modified StaDy plugin

• SCAAFL plugin
• AFL

2.2.1 Installing Frama-C v17.x – Chlorine

Using OPAM package manager, the basic installation can be done with the following steps on
Ubuntu Linux:

apt install opam

opam init

opam pin add frama-c 20180502 # depending on the opam version, might be 17.12

opam install frama-c

1 http://lcamtuf.coredump.cx/afl/
2 In opam 1.2, the default on Debian/Ubuntu, Frama-C Chlorine is known 20180502, while on opam 2.x (the
newest version of the tool), it is known as 17.1.

http://lcamtuf.coredump.cx/afl/

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 3 of 15

There are two Frama-C packages in OPAM:

• frama-c-base: minimal Frama-C installation, without GUI; few dependencies

• frama-c: includes all GUI-related dependencies, plus other recommended packages.

For installing missing Frama-C dependencies:

opam install depext

opam depext frama-c

For more detailed installation instructions see Frama-C chapter in [3] or the full installation guide at
the Frama-C site3.

2.2.2 Adding StaDy plugin

Download StaDy plugin from the official GitHub repository4. The repo’s chlorine branch must be
used for Frama-C v17.x (chlorine). The building process is the following (taken from the repo’s
readme file):

autoconf

./configure

make

make install

If the installation was successful, then the StaDy plugin can be used with Frama-C:

frama-c <file> -main <entry point function> -stady -stady-socket stdio

2.2.3 Installing AFL

First download and unzip the source files from the AFL website5. Compiling the source files should
be pretty straightforward with make. As the quick start guide states: If the build fails, you should see

docs/INSTALL for tips. The targeted binary must be instrumented before it can be analysed with

AFL. If the source code is available, then the program must be compiled with tools found in the root
folder of AFL.

For C programs:

<path to afl>/afl-gcc main.cpp –o main <other gcc arguments>

For C++ programs:

<path to afl>/afl-g++ main.cpp –o main <other gcc arguments>

With makefile:

CC=<path to afl>/afl-g++

…

Finally call the instrumented program with:

<path to afl>/afl-fuzz -i <path to afl>/testcases -o findings_dir main

<program arguments>

The input folder should contain the test cases, the results should be found in the findings_dir.

There is a sample directory for input named testcases in the root folder of AFL.

3 https://frama-c.com/install-chlorine-20180501.html
4 https://github.com/gpetiot/Frama-C-StaDy/tree/chlorine
5 http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

https://frama-c.com/install-chlorine-20180501.html
https://github.com/gpetiot/Frama-C-StaDy/tree/chlorine
http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 4 of 15

With the first usage of the AFL a typical program abort error could emerge:

[-] PROGRAM ABORT : Pipe at the beginning of 'core_pattern'

It means that the AFL could not get core dump notifications directly. It can be resolved with editing
the following file:

sudo nano /proc/sys/kernel/core_pattern

The contents should be temporarily modified to:

echo core >/proc/sys/kernel/core_pattern

2.3 Usage / User stories

0. Follow the installation instructions.

1. Annotate the source code with ACSL to get a better result during static analysis.

2. It is recommended to use the GUI of Frama-C. You can run this via: sudo frama-c-gui

3. Load the source files in the Frama-C GUI with File->Source Files. Here you need to select
the *.c files you want to analyze. After the files have been loaded you can start running the

different plugins to analyze the source code. There is a way to do this in the console if
automation needs to be in place using: frama-c <file> -main <entry point

function> -stady -stady-socket stdio. However, a user will find the GUI much easier

to use since the error messages are more friendly on there.

4. To run an analysis select Analyse->Analyses and in the upcoming dialog select the

analysis you would like to run.

Figure 1: Analysis dialog

5. After pressing execute the analysis will begin and the results can be inspected.

2.4 Usage example

In this section we will demonstrate the usage of the analysis for C code on a given example from
the VESSEDIA vulnerability taxonomy [2] and analyse it with a set of plugins to demonstrate how
static and dynamic analysis can be combined using the existing and newly developed tools.

The original example source code performs very simple authentication by comparing the received
input with the secret password. The example code contains a very simple buffer overflow in the

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 5 of 15

function. If the attacker starts it with an argument larger than 8 characters, the strcpy function

will overwrite the buffer, which is allocated as 8 bytes long.

#include "stdio.h"

#include "string.h"

#include "stdlib.h"

void function(char* input)

{

 unsigned int i=1;

 unsigned int j=2;

 char buffer[8];

 strcpy(buffer, input);

}

int main(int argc, char* argv[])

{

 char *line = NULL;

 size_t len = 0;

 size_t read = 0;

 read = getline(&line, &len, stdin);

 line = strtok(line, "\n");

 function(line);

 if(strcmp(line, "secret"))

 {

 puts("Access denied!");

 return -1;

 }

 else

 {

 puts("Access granted!");

 }

 Free(line);

 return 0;

}

Figure 2: Example source code

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 6 of 15

To help the static analyser we have to annotate the code with ACSL6. Annotation is required by
Frama-C so it can understand what the code does.

#include "stdio.h"

#include "string.h"

#include "stdlib.h"

/*@ requires \valid(input);

*/

void function(char* input)

{

 unsigned int i=1;

 unsigned int j=2;

 char buffer[8];

 strcpy(buffer, input);

}

/* @ requires \valid(argv);

 @ ensures \result == 0;

*/

int main(int argc, char* argv[])

{

 char *line = NULL;

 size_t len = 0;

 size_t read = 0;

 read = getline(&line, &len, stdin);

 line = strtok(line, "\n");

 function(line);

 if(strcmp(line, "secret"))

 {

 puts("Access denied!");

 return -1;

 }

 else

 {

 puts("Access granted!");

 }

 Free(line);

 return 0;

}

Figure 3: ACSL annotated source code

6 https://frama-c.com/download/acsl_1.13.pdf

https://frama-c.com/download/acsl_1.13.pdf

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 7 of 15

After we have annotated the code we can load it into Frama-C.

Figure 4: Example code loaded into Frama-C GUI

After running the plugins you can see the results under the messages tab:

Figure 5: Result after executing the Value plugin for the example code

2.4.1 Using AFL

The dynamic analysis part uses AFL, so to test the code showed in the previous example, we have
to compile it (instrument) with the following command:

afl-2.52b/afl-g++ main.cpp -o main

For AFL testing run the afl-fuzz tool with the following command. As an initial test case we

provided the “secret” string in the test case directory.

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 8 of 15

./afl-fuzz -i testcases2 -o findings_dir2 ./main

Figure 6: Initialization of AFL

Since the example code contains a trivial vulnerability, after the initialization AFL finds the buffer
overflow very quickly.

Figure 7: AFL runtime results

As it seen in the figure above, AFL reported 1 unique crash, which was caused by a 9 bytes long
input string. Although AFL could not give information about the root cause of the crash, there are
several ways (crash dump, executing the program in a controlled environment such as Valgrind
with the input found by the AFL) how such information can be extracted in an automatic way.

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 9 of 15

During the next phase of T2.4, we will continue to implement the AFLSCA plugin, which will be
able to use AFL fuzzer based on the StuDy plugin. The final version of the AFLSCA plugin will be
presented in D2.4.

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 10 of 15

Chapter 3 Verification Artefact Management (CEA)

3.1 General Description

As part of D2.2, the MarkDown Report (MDR) plug-in contains the work done on T2.5 relative to
the integration of the results of Frama-C analyzers into more general verification activities. In its
current version, it only targets analyses done with the Eva abstract interpretation plug-in. It has two
possible outputs: either Markdown, a markup language that can easily be edited by hand, or
SARIF, the Static Analyzers Results Interchange Format, a json schema proposed as a standard in
the OASIS foundation for providing any kind of information about source code (see
https://github.com/oasis-tcs/sarif-spec/). The markdown version is currently more advanced, but
work on the SARIF output will continue and be made available in D2.4. The generated markdown
document can be used to produce standalone documents or be integrated into larger reports
thanks to the use of the Pandoc tool (https://pandoc.org). Furthermore, as described below, the
generated markdown can be completed with remarks made by the user, for instance to indicate
why a given reported issue is in fact a false alarm.

3.2 Installation instructions

In order to facilitate the usage of VESSEDIA artifacts, the version of MDR included in this
deliverable is meant to be compiled against Frama-C 17.1 Chlorine (also known as 20180502)7.
Hence, the first step of the installation is the same as in the previous chapter: installing Frama-C
17.1 Chlorine, preferably through opam.

After that, installing the plugin is simply a matter of extracting the archive, and compiling it. More
precisely, the following sequence of commands should perform the installation.

tar xzvf markdown-report.tar.gz

cd markdown-report

make

make install

To ensure that the installation succeeded, type

frama-c –mdr-h

This should output the list of available options for the MarkDown Report plug-in. The most
important options are described in the next section. Please refer to the README.md file in the
source directory of the plug-in for more information.

3.3 Usage

We will use as an example the file cwe126.c, which is included in the examples/ subdirectory in

the sources of the plug-in. This small example comes from the Juliet test suite of NIST
(https://samate.nist.gov/SRD/view_testcase.php?tID=76270) to show an example of CWE 126
(buffer overflow) and is available in the public domain. For convenience, the code of the function
where the flaw is supposed to be found is included below:

7 A version compatible with Frama-C 18.0 Argon is also available upon request.

https://github.com/oasis-tcs/sarif-spec/
https://pandoc.org/
https://samate.nist.gov/SRD/view_testcase.php?tID=76270

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 11 of 15

void CWE126_Buffer_Overread__malloc_char_loop_64b_badSink(void * dataVoidPtr)

{

 /* cast void pointer to a pointer of the appropriate type */

 char * * dataPtr = (char * *)dataVoidPtr;

 /* dereference dataPtr into data */

 char * data = (*dataPtr);

 {

 size_t i, destLen;

 char dest[100];

 memset(dest, 'C', 100-1);

 dest[100-1] = '\0'; /* null terminate */

 destLen = strlen(dest);

 /* POTENTIAL FLAW: using length of the dest where data

 * could be smaller than dest causing buffer overread */

 for (i = 0; i < destLen; i++)

 {

 dest[i] = data[i];

 }

 dest[100-1] = '\0';

 free(data);

 }

}

First, we analyse the file with Eva. As we use some functions from the standard library (namely
memset), we add the file string.c from Frama-C standard library as input file. We also use the –

slevel option to increase precision, and save the results into file cwe126.sav, that we will use

from now on. All in all, the command line for the analysis itself is the following:

frama-c –val –slevel 100 cwe126.c $(frama-c –print-share-path)/libc/string.c \

 -save cwe126.sav

We see in the output of the analysis that we only one alarm, corresponding to the flaw we are
supposed to detect, which means that our parameterization of Eva is appropriate. We can now go
to the next step, generating a draft of the markdown report. For that, we will of course load the
results of our analysis, and use -mdr-gen draft to indicate that we want to generate a draft

document. In addition, -mdr-stubs allows us to say that string.c contains stub functions, i.e.

functions that are used by the code under analysis but are not themselves in the perimeter of the
analysis. In other words, they emulate some trusted third-party library and it is out of the scope of
Frama-C to decide whether this emulation is faithful or not. Our command line for generating the
draft report then becomes:

frama-c -load cwe126.sav -mdr-gen draft -mdr-stubs \

 $(frama-c -print-share-path)/libc/string.c -mdr-out cwe126.remarks.md

The draft markdown is generated in cwe126.remarks.md. This file is composed of a certain

number of sections, each of which can be annotated by some markdown content to give additional
information. Instructions on how to proceed are given directly in the file as markdown comments.

The sections are the following:

1. Introduction: empty by default, can be used to describe the purpose of the analysis
2. Context: describes input files and the parameters used by Eva

2.1. Input files
2.2. Configuration

2.2.1. Eva Domains that have been used
2.2.2. Stubbed functions

3. Coverage information
4. Warnings emitted by Frama-C
5. Alarms emitted by Eva

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 12 of 15

6. Conclusion

Once all remarks have been written (or copied from the file cwe126.remarks-sample.md), it is

possible to generate to final version of the report in markdown or as a SARIF json object. For the
former case, the command line is the following:

frama-c -load cwe126.sav -mdr-gen md -mdr-out cwe126.md \

 -mdr-remarks cwe126.remarks.md

For the latter, we only have to change the kind of output and the name of the file that should be
created:

frama-c -load cwe126.sav -mdr-gen sarif -mdr-out cwe126.sarif \

 -mdr-remarks cwe126.remarks.md

Note however that SARIF support is in currently in a very early stage of development, and that the
obtained json object contains much less information than the markdown file.

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 13 of 15

Chapter 4 Summary and Conclusion

This deliverable contains two developments that illustrate how Frama-C can cooperate with other
tools in order to achieve better results regarding software verification. On the one hand, the use of
AFL shows how to leverage a state-of-the-art fuzzer in order to generate test cases that falsifies a
given ACSL property. On the other hand, the MarkDown Report plug-in provides ways to integrate
the results of Eva into broader verification tasks.

While the first results are promising, the tools provided in this deliverable can be extended in
several ways. In particular, MarkDown Report could take into account other plugins, notably WP,
and provide a much better support of SARIF. The final release of the tools, in D2.4, will present the
improvements done in the upcoming year.

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 14 of 15

Chapter 5 List of Abbreviations

Abbreviation Translation

AFL American Fuzzy Lop

ACSL ANSI/ISO C Specification Language

OASIS Organization for the Advancement of Structured Information Standards

SARIF Static Analyzers Results Interchange Format

D2.2 - Collaboration of Analyses - intermediate release V1

VESSEDIA D2.2 Page 15 of 15

Chapter 6 Bibliography

[1] VESSEDIA DS-01-731453 / D3.3 report: Guidelines for combination of static and dynamic
analyses

[2] VESSEDIA DS-01-731453 / D1.5 report: Analyses choice methodology report
[3] VESSEDIA DS-01-731453 / D2.1 report: Basic Analyzers – Intermediate Release
[4] Kiss B., Kosmatov N., Pariente D., Puccetti A. (2015) Combining Static and Dynamic Analyses

for Vulnerability Detection: Illustration on Heartbleed. In: Piterman N. (eds) Hardware and
Software: Verification and Testing. Lecture Notes in Computer Science, vol 9434. Springer,
Cham.

	Executive Summary
	Contents
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Combining Static and Dynamic analysis (SLAB)
	2.1 General Description
	2.2 Installation instructions
	2.2.1 Installing Frama-C v17.x – Chlorine
	2.2.2 Adding StaDy plugin
	2.2.3 Installing AFL

	2.3 Usage / User stories
	2.4 Usage example
	2.4.1 Using AFL

	Chapter 3 Verification Artefact Management (CEA)
	3.1 General Description
	3.2 Installation instructions
	3.3 Usage

	Chapter 4 Summary and Conclusion
	Chapter 5 List of Abbreviations
	Chapter 6 Bibliography

