

D1.7
Vulnerability discovery methodology

Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security

critical dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D1.7 / 1.0

Work package contributing to the

deliverable:
WP 1

Due date: Dec 2018 - M24

Actual submission date: 22nd January, 2019

Responsible organisation: AMO

Editor: Cédric BERTHION

Dissemination level: PU

Revision: 1.0

The project VESSEDIA has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:

This document is a methodology to detail how to use

Frama-C to perform a security audit of C source code.

It is focus on specific constraints faced by security

evaluators: time constraint and lacks of previous

knowledge of the audited source code.

Keywords:
Security evaluation, C Source code, Code auditing,

Frama-C

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page I

Editor

Nicolas ZILIO (AMO)

Cédric BERTHION (AMO)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability. This document has gone through the consortiums internal review
process and is still subject to the review of the European Commission. Updates to the content may be made
at a later stage.

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page II

Executive Summary

This document first presents a comprehensive review on C source code auditing as experienced
by security auditors, facing specific constraints: time constraint and lacks of previous knowledge
of the audited source code. Then, a methodology detailing how to use Frama-C to perform a
security audit of C source code, given the previous constraints, is presented.

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page III

Contents

Chapter 1 Introduction ... 1

1.1 VESSEDIA motivation and background ... 1

1.2 Role of the deliverable ... 1

1.3 Structure of the document .. 1

1.4 Related deliverables ... 2

Chapter 2 Security evaluation by source code auditing 3

2.1 Code analysis in security evaluation .. 3

2.1.1 What is it and how it differs from code review in development? 3

2.1.2 It should be all about context .. 4

2.1.3 On using automation tools for security review ... 5

2.1.4 On the conduct of a source code security evaluation .. 5

2.1.5 On the methodology used ... 6

2.2 A general methodology for code analysis .. 7

2.2.1 Requirements for the reviewer .. 7

2.2.2 Methodology overview .. 7

2.2.3 Methodology phases .. 7

2.2.4 Quick Summary .. 17

Chapter 3 Most Common Vulnerabilities in C .. 18

3.1 Technical background .. 18

3.2 C language intrinsic vulnerabilities ... 23

3.2.1 Buffer Overflow ... 23

3.2.2 Null pointer dereference ... 28

3.2.3 Uninitialized variable utilization ... 30

3.2.4 Double free ... 31

3.2.5 Use-after-free ... 35

3.2.6 Integer Overflow ... 36

3.2.7 Off-by-one .. 37

3.2.8 Format String .. 38

3.2.9 Type confusion ... 40

3.3 Cryptographic vulnerabilities .. 42

3.3.1 Non-respect to cryptographic standards ... 42

3.3.2 Misuse of cryptographic algorithms... 42

3.4 C vulnerabilities depending on the environment .. 42

3.4.1 Race condition .. 42

3.4.2 Path manipulation ... 44

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page IV

3.4.3 SQL Injection .. 45

3.4.4 Command Injection ... 46

3.4.5 Logic bugs .. 48

3.4.6 Contextual vulnerabilities .. 49

Chapter 4 On using Frama-C within the proposed methodology 51

4.1 What is Frama-C? .. 51

4.1.1 Description ... 51

4.1.2 Frama-C’s intended use ... 52

4.1.3 A brief discussion on using Frama-C for security code review 52

4.2 Integration of the modified Frama-C into the proposed methodology................. 53

4.2.1 Using Frama-C on the automated review part .. 53

4.2.2 Using Frama-C on the manual review part of the analysis phase 60

Chapter 5 Applying Frama-C’s use on an example .. 62

5.1 Choosing a sample .. 62

5.2 Quick discovery phase ... 62

5.3 Review phase... 63

5.3.1 Automated review ... 63

5.3.2 Manual review phase .. 67

Chapter 6 Summary and Conclusion .. 69

Chapter 7 List of Abbreviations ... 70

Chapter 8 Bibliography .. 71

Chapter 9 Annex ... 72

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page V

List of Figures

Figure 1: proposed methodology flow .. 7

Figure 2: discovery phase sub-phases ... 8

Figure 3: review sub-phases .. 10

Figure 4: vulnerability analysis sub-phases .. 13

Figure 5: closure phase.. 15

Figure 6 : source code methodology summary ... 17

Figure 7: memory layout of a program ... 19

Figure 8: stack evolution in the previous program .. 20

Figure 9: heap layout ... 21

Figure 10: free of a chunk .. 21

Figure 11: reallocating a chunk .. 22

Figure 12: physical address layout ... 22

Figure 13: a pointer in memory .. 23

Figure 14: stack layout after variables declaration.. 24

Figure 15: stack manipulation when writing data in the buffer .. 25

Figure 16: pass variable overwrite ... 25

Figure 17: privilege escalation without the correct password .. 26

Figure 18 : heap overflow exploitation from the previous program ... 27

Figure 19: control flow hijack due to BSS overflow ... 28

Figure 20: bss overflow to control flow hijack ... 28

Figure 21: segmentation fault due to null pointer dereference .. 30

Figure 22: uninitialized variable utilisation .. 31

Figure 23: double free vulnerability leveraged into an identity theft .. 34

Figure 24: use-after-tree vulnerability leveraged into identity theft .. 35

Figure 25: execution of the off-by-one program .. 38

Figure 26: stack layout when calling printf .. 38

Figure 27: internal working of printf ... 39

Figure 28: format string vulnerability used to read secret file .. 40

Figure 29: format string vulnerability used to parse the stack ... 40

Figure 30: example of type confusion ... 41

Figure 31: race condition illustration ... 44

Figure 32: path manipulation example ... 45

Figure 33: elevating its privileges through command injection .. 48

Figure 34: logic bug leading to wrong privileges given to the user .. 49

Figure 35 : accessing red alarms tab within the GUI of Frama-c .. 57

D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page VI

Figure 36 : using Impact plugin in the graphical interface of Frama-C (green statements are the
one highlighted by Impact plugin) ... 60

Figure 37 : using Zones to highlight statements (in pink) that define the value of huhu variable in
the printf function .. 60

List of Tables

Table 1: CVE count in 2017 (source: http://cppcheck.sourceforge.net/) 4

Table 2: examples of commonly used security scanners .. 11

Table 3: list of potentially vulnerable libc functions ... 12

Table 4: matrix giving risk score ... 14

Table 5: impact score determination .. 14

Table 6: exploitability score determination.. 14

Table 7 : example of a vulnerability presentation that could be found in the report 15

VESSEDIA D1.7 Page 1 of 104

Chapter 1 Introduction

1.1 VESSEDIA motivation and background

The VESSEDIA project aims to bring safety and security to the next generation of software
applications and Internet connected devices. In our rapidly changing world, the Internet has been
the source of many benefits for individuals and companies alike, transforming entire industries.
With this new technology, capable of connecting billions of devices and people together, new
threats have also appeared – threats VESSEDIA will help software developers address in order
to create connected applications that are safe and secure. VESSEDIA proposes to enhance and
scale up modern software analysis tools, in particular the mostly used open-source Frama-C
analysis platform, to make them useful and accessible to a wider audience of developers of
connected applications. At the forefront of connected applications is the Internet of Things (or IoT
for short), which has undergone explosive growth and where security risks have become all too
real. VESSEDIA will focus on this domain to demonstrate the benefits our tools bring to the table
when developing connected applications. VESSEDIA will tackle this challenge by 1) developing
a methodology that makes it possible to adopt and use source code analysis tools as efficiently
and with similar benefits as it is already possible in the case of highly-critical applications, 2)
enhancing the Frama-C toolbox to enable efficient and fast implementation, 3) demonstrating the
capabilities of the new toolbox on typical IoT applications, including an IoT Operating System
(Contiki), 4) developing a standardisation plan for generalising the use of the toolbox, 5)
contributing to the Common Criteria certification process, and 6) defining a “Verified in Europe”
label for validating software products with European technologies such as Frama-C.

1.2 Role of the deliverable

This document reviews the process of source code auditing in security evaluation, then describes
how security evaluators should use and interact with the VESSEDIA tools and plug-ins to discover
common C vulnerabilities, as declared in the work of Task 1.6 inside WP1. An example of using
such a methodology is finally presented.

1.3 Structure of the document

The document can be divided into 5 major parts:

Chapter 2 describes the structure of a source code audit, common methodologies used, and the
constraints applied to such an audit. This chapter should be considered apart from the D4.2
report’s methodology, which focuses on a generic evaluation methodology. Indeed, it is
considered in the latter that the final product is available and can be tested against real attacks.
Common steps like risks analysis are also different due to the fact global information available to
the reviewer is not the same in those two cases. However, in the case the final product is also
available; this report methodology should be considered like a sub step of the generic
methodology presented in D4.2.

Common C vulnerabilities and their implication are presented within Chapter 3.

In Chapter 4 we specify the security evaluation methodology to be applied with Frama-C to
discover vulnerabilities.

Such a methodology on a known vulnerable app is then applied and compared to a classical
approach within Chapter 5.

A Conclusion on limits and adequacy of the methodologies is done in Chapter 6.

VESSEDIA D1.7 Page 2 of 104

1.4 Related deliverables

D1.1 – Security requirements for connected medium security-critical applications

D1.5-a – Vulnerabilities taxonomy

D1.5-b – Analyses choice methodology report

D4.2 – VESSEDIA Approach for security evaluation

VESSEDIA D1.7 Page 3 of 104

Chapter 2 Security evaluation by source code auditing

This paragraph introduces the concept of security source code auditing. The idea is to highlight
the process, its limitations and also the constraints that a reviewer might encounter during an
audit. It will especially serve as an introduction point for the next chapter.

2.1 Code analysis in security evaluation

2.1.1 What is it and how it differs from code review in development?

Source code auditing is a mean by which a security auditor examines and analyses program
source code for potential vulnerabilities or flaws. Its main objectives are to find potential security
problems or exploitable vulnerabilities in the program, then quantify them given possible
scenarios and propose solutions to it. Often, the source code audit is a complementary approach
to other audits such as penetration tests and permits often to reveal security flaws that does not
appear directly while doing other types of audits. Indeed, the auditor is normally here in the
possession of the real backbone of the program, that should let him dive deep into his functioning.
However, source code auditing does not provide a view on possible security architecture around
or another security flaws mitigations tools shipped with the end program. Furthermore, some
security missions only ask for a review based on the output from the analysis tools.

Source code analysis in security evaluation is far different than source code analysis in code
development/review. Indeed, the latter focuses on checking coding standards (does everyone
use the same programming style? Are there multiple operations on the same line?), quality of
code, reducing its complexity, improving its performance and finally ensuring the absence of
functional problems. The final goal is so to produce a “better code” than the previous one.

Regarding the time those reviews should be held, a development code review should occur
regularly at every step of the software development life cycle. This will indeed insure that a “better”
code is produced at the end. On the contrary, security review often occurs at a later point in the
development process. Indeed, the code should normally “work” before the review is done, and
the whole context completely defined (more on that is given later). Its conduct is so often done
when a new big step of the SDLC is to be finished; like validation, pre-production and production
steps. Especially, in the case those two types of reviews are both to be held by one editor,
development reviews are done at a Capability Maturity Model1 (CMM) level of 2 (development
process can be repeatable) or 3 (development process is defined), while security reviews often
occur when the CMM level reaches 4 (development process is managed) or 5 (development
process is managed and optimized).

The reader may ask himself about the following: “- But, by ensuring a better quality of the code,
and so the reduction of the bug number while doing development review, security source code
analysis appears useless. What is the reason to do them so?”. Let’s consider the following
scenario: the code to be analyzed is a highly critical client/server application, and so it has been
proven that the client always sends packets of a given size to the server. As such, in order to
improve performance, no checks are implemented on the server side regarding the size of
packets. More, those packets are stored in a temporary buffer before their processing by the
server. Thus, the server just reads the already defined size of packets from this buffer to treat
them. There is so no bug on the application and while packets are sent by the client, the server
functioning is in nominal mode. However, communications are not authenticated. Let’s now
consider an attacker that mimics the client, and starts sending packets of arbitrary sizes. When
the server will treat the packets from the temporary buffer, the parsing may result in a bad

1 “Managing the Software Process”, Watts Humphrey

VESSEDIA D1.7 Page 4 of 104

interpretation of fields that may lead to a crash of the server, which is critical. There is here a
security problem, which is the possibility of “Deny of service”, or even “arbitrary code execution”,
by an attacker. A solution is to ensure a check on the packet size on reception of data on the
server side.

Finally, the aim of a security audit is to verify that an application cannot be used in any way by a
malicious user, while the development review ensures that the application can be used in the
intended way.

2.1.2 It should be all about context

As denoted by the previous example, the context of the application was important to understand
a potential security flaw on the application. Especially, in the case where it is not possible for an
attacker to mimic a client, then the risk associated with this deny of service would be much lower.

Thus, security code review should not be simply about reviewing pure code (i.e. finding so called
“bugs”), and its efficiency is tied to a global context understanding. Indeed, the idea behind
security code review is to ensure that the code adequately protects its assets, and protects itself
against malicious entries from its environment.

Understanding the whole context permits therefore:

• To establish the risks incurred by the application. Especially, some security failures
may occur even without any functional problem in the analyzed program. One
example would be an improper authentication system.

• To conduct a faster/better analysis as the priority of the audit will be to analyze paths
that are potentially vulnerable to a malicious entry or that are susceptible to cause
the biggest risks to the entity using the application.

• To emit better recommendations, as those could fit the context in which they are
emitted for.

To sum up, security review is about finding bugs that are intrinsic to the code (and that may lead
to a hijack of the normal control flow of the program), but also about finding bugs that are context
dependent.

As a potential proof of this statement, here is a summary (certainly not completely accurate) of
the most common types of security vulnerabilities relevant to C that were declared in 2017 (from
CVE count):

Category Amount

Buffer Errors 2530

Improper Access Control 1366

Information Leak 1426

Permissions, Privileges and Access
Control problems

1196

Input validation 968

Table 1: CVE count in 2017 (source: http://cppcheck.sourceforge.net/)

Considering that “buffer errors”, “input validation” and “information leak” are vulnerabilities that
are dependent on a pure bug from the code that means here that only 65% of vulnerabilities are
resulting from the code itself. Of course, this result is subject to variations (Information leak could
be the result of a functional problem instead for example) and should not be taken too seriously.

http://cppcheck.sourceforge.net/

VESSEDIA D1.7 Page 5 of 104

2.1.3 On using automation tools for security review

As the context of the application is really important to conduct a correct security review of one
code, one has to understand that running a tool on a code is not sufficient. Indeed, tools are not
able to automatically understand the context and the possible risks that may arise from the context
of the application (at least, those should be modeled in the tool by a human).

However, the search for intrinsic bugs can be made much more efficient by tools than by humans.
Manual code reviews are indeed slow, covering 100-200 lines per hour on average. Also, there
are multiple security flaws to look for in code, a lot of data flow to keep in mind and humans can
only keep a small number of them in memory between the point where vulnerability is declared
and the point where this vulnerability can have an impact. Furthermore, a manual code review
requires a profound understanding of the language by the reviewer. It is thus a difficult task prone
to lots of errors. Source code analysis tools can search a program for hundreds of different
security flaws at once, at a rate far greater than any human code review. Those tools provide so
a quick method, that may overall give already good results. It is also a way to give more constant
results across different analyses. Indeed, tools are not subject to tiredness or stress for example,
neither to the intrinsic knowledge of a human reviewer. However, these tools don't eliminate the
need for a human reviewer, as they produce both false positive and false negative results, and
their results still need to be triaged.

Finally, those two manners of leading an analysis are complementary, as automatic review really
helps at getting a first glance on a code for an auditor.

2.1.4 On the conduct of a source code security evaluation

There is no general guidance on how a security source code evaluation should be performed
(please see next paragraph for an explanation). As such, the security auditor is heavily dependent
on several factors for the run of its audit:

- What is aimed at during the security audit. For example, in certain companies, it is asked that
the code is security reviewed before going into production, without however strict criteria. In such
cases, an automatic security review is often asked. The idea is so to use an automatic tool to
detect potential security problems, and the role of the auditor is just to interpret the results of the
tool, avoid false positives, and create the associated report. In other scenarios, a deep source
code audit is required, for example to make sure that an application is secure before using it into
highly critical environments (e.g. military, governments, finance…). In this case, the idea is to
understand deeply the context associated with the application, and to be able to emit attack
scenarios and risks about already found vulnerabilities.

- What is provided for the security audit. Again, it can be really motley. Sometimes, not even a
complete source code is given to the security auditor, and this source code could have been
obfuscated before the audit (due to the fear of intellectual property theft). In the best scenarios,
the auditor is given the whole functional and specifications documentation, a complete code, a
functioning application as well as some assistance from a developer.

- What time is given to the auditor. As a reference, one can take the number of lines of code (LoC)
to be treated during the time given for the audit. For example, in the evaluation of KeePass done
by the European commission, there were a total of 145000 LoC, for 23 days of evaluation done
by 6 auditors at the same time2. This means that the evaluation was done at a rate of
approximately 150 LoC per hour. In the meantime, some missions concern around 20000LoC for
5 days of work of an auditor, so around 600 lines of code to be reviewed by the auditor per hour3.

2 “KeePass Password Safe, code review results report”,
https://joinup.ec.europa.eu/sites/default/files/inline-files/DLV%20WP6%20-01-
%20KeePass%20Code%20Review%20Results%20Report_published.pdf
3 Internal mission realized by Amossys

VESSEDIA D1.7 Page 6 of 104

In practice, what drives the evaluation is the price the client or the editor wants to pay. Given a
price of around 600-1000$ a day for an evaluator in Paris, source code review is in general
expensive to realize. As such, it is often to see heavy time constraints for huge code base, or
poorly documented one, posed to a security auditor in general. The use of a security source code
analysis tool is so often required, and this tool should provide a quick way to determine
vulnerabilities.

2.1.5 On the methodology used

Often security companies argue they are using well-known baselines for security code such as:

• ITIL Version 3 Service Lifecycle for Application Support4

• ISO/IEC 270345

• NIST SP 800-37/646

All those baselines are actually aimed towards the editor. The first one basically presents how an
editor should prepare a security code review, and as such give some insights of the job to be
done by the reviewer. Indeed, it is for example described that an introductory meeting should be
held, where the reviewer is able to understand the application context, and for that, some
resources should be present. As such, we know that the reviewer should conduct an introductory
meeting, if possible. Also, examples of what vulnerabilities to search for are presented for web
based applications but not for C directly. All the other baselines are in fact a security management
plan for the whole lifecycle of a product. In ISO, there is however a security review process. This
process consists in checking that every measure taken to reduce the risks that may be exploited
against the application is correctly implemented. In none of those baselines there is an in-depth
process to realize a security code review, from the view point of the reviewer.

Given those baselines are not aimed towards the reviewer, the whole code review methodology
is in fact a generic consensus made from practical experiences or reviewers. Based on the
OWASP Code review project7, which defines a generic flow of the work to be done for a complete
audit, two main methods of manual source code auditing have been defined. The first one is a
top-down approach, which consists to start from an entry point of the program and either follow
all code branches from that entry point and stop when a branch with no interest is detected. The
second approach is a bottom-up approach: the auditor first establishes a list of interesting
functions to audit in term of security (i.e. functions using calls to known dangerous API) or points
in the code known to be influenced by an attacker, determines if a security problem could arise
and then identify from those functions the code serving as entry point to determine if an attacker
could indeed manipulate the vulnerable function. There are pros and cons for both methods. The
first one is time consuming but covers most of the source code and provides a great
understanding of how the application works. The later one is time saving and focuses on areas
which are the most vulnerable, but does not follow all code branches and skips some kind of
vulnerabilities like logical issues. Also, the latter can only be realized correctly if the
documentation provided by the editor is detailed enough to be able to determine the dangerous
areas of the code.

The choice of the right method is in practice completely influenced by the time given to the auditor
and the size of the code to audit. The idea is indeed to provide the best possible analysis in a
limited amount of time.

4 https://www.fichier-pdf.fr/2011/06/16/itil-v3-application-support/
5 https://www.iso.org/en/standard/44378.html
6 https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final
7 https://www.owasp.org/index.php/OWASP_Code_Review_Guide_Table_of_Contents

VESSEDIA D1.7 Page 7 of 104

Given the results of the previous paragraph, one has to understand that there is no generic
method for a security auditor to do a code review. Especially, in the case of high constraints given
to the auditor, the security audit will often be limited to a “down” approach that is simply check for
known dangerous functions used and/or use an automatic tool to find potential vulnerabilities and
treat the results. In this case, the auditor won’t try to understand the context around the application
and won’t check the security implications of the entry points given by the application.

However, in case of correct constraints given to the auditor, it is better to mix the two methods:
that is, to start with the top-down approach, but while checking the entry point for attacker impact,
browse with a limited depth the branches from the entry point. The idea is so to gain fast
knowledge of the application internal while assessing the dangerous areas of the code, in order
to gain some context.

2.2 A general methodology for code analysis

This paragraph will present a generic methodology to make a security source code analysis from
a reviewer view point. First, an overview will be presented, and then each point of the
methodology will be explained more in-depth. With this presentation, Frama-C integration into it
will be explained in further chapters.

2.2.1 Requirements for the reviewer

The reviewer should have the following qualities in order to perform a good security code review:

• The first and the most important one is the fact that the reviewer should be proficient in
the language of the application audited, in order to make sure vulnerabilities won’t be
omitted due to incomprehension. In the case the application uses libraries or frameworks,
the reviewer should also ideally know the internals of those.

• The second one is the ability to model a system given the documentation and/or the code,
and being able to represent by itself the interactions of this system.

• Finally, ideally the reviewer has a good communication skill, which will be important in
case where developers need to be contacted.

2.2.2 Methodology overview

The proposed methodology is composed of 4 big steps that should take place consecutively.
Below is a diagram presenting it:

Figure 1: proposed methodology flow

In the first phase, the reviewer obtains the knowledge needed to conduct the rest of the analysis.
Basically, the aim is to be able to define the context, and understand what the application should
normally do.
The second phase is the code review phase. It is where vulnerabilities are found within the code.
The third phase, being optional depending on what required, consists in being able to quantify the
found vulnerabilities, and to propose countermeasures for the vulnerabilities found.
Finally, the results from the whole analysis are presented in the closure phase.

2.2.3 Methodology phases

VESSEDIA D1.7 Page 8 of 104

2.2.3.1 Discovery phase

The discovery phase aims at providing a full insight of the application for the reviewer. The idea
is indeed to make sure that the whole context of the application is well understood, in order to
provide a better analysis at the end.

This phase can be divided into 3 to 4 sub phases which can be depicted by the following diagram:

Figure 2: discovery phase sub-phases

The first one is the phase where the reviewer becomes acquainted with the task at hand. He
basically realizes a check-up of the information available, as well as the objectives of the task.
The next phase is a functional review of the application, in order to understand what the
application should do and what its purpose is. The aim of this phase is to determine the assets
that should be protected by the application. The third one is a contextual review, in order to
understand the environmental context of the application. From that, the reviewer should be able
to deduce the risks that the application is exposed to. Finally, a report phase should be done. The
idea is to make sure the same view is shared between the editor and the reviewer, as well as
having some time to tidy up his own reasoning.

2.2.3.1.1 Functional review

The functional review of the application should let the reviewer know what are the “big functions”
of the code, i.e. what are the intended objectives of the code, and its I/O. Basically, it will let him
know the potential entry points that could be leveraged by an attacker.

To do so, the review team should be provided with the following documents:

• Application design document: this document presents what are the requirements before
the code was written, and how those are answered. Generally, a design of the components
of the code, as well as their interactions, is defined in this document.

• Functional specifications: this document presents all the wanted functionalities of the
program.

• Optionally, the documentation about test cases. Those will indeed provide examples of
the running code to the reviewer.

Every document should finally be read and understood.

2.2.3.1.2 Contextual review

The contextual review aims at providing the reviewer with the environment of the code and its
application. The idea is to let the reviewer know the most critical parts of the code, and to know
the parts of the code to investigate first. In a second time, this contextual review will permit to
indicate a level of impact for the vulnerabilities found.

To realize this review, the reviewer should be provided with the following documents:

• Architecture documents: documents describing an in-depth system overview, its different
sub-components, their implementation and how they interact. It is basically a design file
much more technical.

• Integration documents: documents describing how the final application is integrated into
a workflow, what are the other components interacting with it or that can manipulate the

VESSEDIA D1.7 Page 9 of 104

flows of the reviewed application. For example, a web application can be protected
upstream by a web application firewall that raises attacker’s level.

• Business requirements: this document presents rapidly what are the business objectives
of the application.

• Risk analysis: in well-defined SDLC, a risk analysis might be already done. This analysis
so provides a full insight of the threat scenarios feared from the editor’s point of view, and
the potential impact in case of a realization.

Every document should be fully read and understood.

2.2.3.1.3 On mixing those two reviews

There is no obligation the two previous reviews shall be done apart from each other. The
methodology described here made indeed the difference as the objectives of those two reviews
are not the same. If there are documents to be received, in general, all attached documentation
of a code project is sent to the reviewer. More, some reviewers prefer to take the two approaches
together. It is simply a question of feeling.

2.2.3.1.4 The first report phase

During the first report phase, the reviewer should be able to write down the following:

• A description of the sensitive assets that the code should protect (it can be itself) and the
impact associated with their compromise. An example of such assets is presented within
the report D1.1 of VESSEDIA project.

• A description of the threats against the application. For this step, a threat modeling
methodology is presented within the D1.1 or D4.2 report of VESSEDIA project.

• A description of the functional security components of the application

Given the previous points, the reviewer might be able to produce a “security map” of the
application that is every threat scenario and the associated countermeasures. As such, he can
normally determine how to investigate the code in the next phase.

Afterwards, it could be shared and discussed with the editor. One of important aspect here is to
agree on the prioritization of the things that will get reviewed, as well as explaining the reviewer
expert point of view concerning security.

2.2.3.1.5 A practical approach

Most of the time, there is no such documentation, as described in the paragraph 2.2.3.1.2,
attached with a code project. Or, in most cases, the documentation is outdated regarding the
current state of the project. Therefore, one of the most effective ways to get started, and arguably
the most accurate, is to talk with the developers and the lead architect of the application. This
should not take too much time, but just enough for the development team to share some basic
information about the key security considerations and controls. At least, the reviewer should be
able to determine the following points:

• Aims and functionalities of the project

• Assets that should be protected by the application

• Possible important business impacts

• Possible important technical impacts

• Definition of the attack surface

• Required security controls (implemented, regular or policies ones)

Given the answers, the reviewer should so at least be able to determine the importance of the
application for the enterprise and the associated biggest risks; establish the boundaries of the
application and establish potential threats and controls.

VESSEDIA D1.7 Page 10 of 104

In order to do, the reviewer can use simple questions like the following:

“What type/how sensitive is the data/asset contained in the application?”:

This is a keystone to security and assessing possible risk to the

application. How desirable is the information? What effect would it have on

the enterprise if the information were compromised in any way?

“Is the application internal or external facing?”, “Who uses the application,

and are they trusted users?”

“Where does the application host sit? Is there for example a DMZ?”

“If there are internal and external users, what are the differences from a

security standpoint? How do we identify one from another? How does

authorization work?

“Are there anymore security features in your architecture?”

“How important is this application to the enterprise?”

Finally, a walkthrough of the actual running application is very helpful to give the reviewer a good
idea about how the application is intended to work. Also, a brief overview of the structure of the
code base and any libraries used can help the review to get started.

2.2.3.2 Review phase

The review phase consists in actually analyzing the source code for flaws. This is the technical
part of the methodology. The review phase should consist of a manual investigation and also an
automated one to detect flaws in the code. The following diagram presents the steps of the review
phase:

Figure 3: review sub-phases

2.2.3.2.1 Automated review phase

At this step of the analysis, the reviewer should know the global context of the application, and
may be able to determine the structure of the source code. He still hasn’t analyzed the code. In
order to get a first insight into the code and its actual security, as well as eliminating the possible
intrinsic vulnerabilities that may be found in the code, a security source code analyzer can be run.
Indeed, as explained in the paragraph 2.1.3, as tools will be more efficient for such a task, as
finding intrinsic vulnerabilities do not require a context comprehension and are faster and more
precise. This phase is so to get the tool up and running on our code base. It can sometimes need
some tweaks to do so.

The source code analyzer has to be run on the application without any knowledge of it. It is what
is called in the security field a “scanner”. The analyzer indeed scans the code in order to find

VESSEDIA D1.7 Page 11 of 104

vulnerabilities. During the automated analysis, the reviewer can start his own manual analysis
that will be described in the following paragraph.

In the case of a C/C++ code, from a practical point of view, here is a list of commonly used tools
in evaluation centers:

Tool Licensing type

Code Sonar Commercial

IBM Appscan Commercial

Checkmarx Commercial

CppCheck Free

FlawFinder Free

Table 2: examples of commonly used security scanners

The practical point of view of this step cannot be described here, as it is heavily dependent on the
tool used. For example, with Code Sonar, the methodology is the following:

1) Make sure that the code is almost complete and that a compilation chain can be realized
2) Use that compilation chain with Code Sonar (for a Makefile, the command line will look

like : “codesonar make”)
3) Wait for the analysis to be finished

2.2.3.2.2 Results triaging

Once the automated analysis is done, the reviewer should gather results and process them: the
idea is to eliminate false positives and ensure true positives.

From a practical point of view, this step is often considered as a “quick-win” step. Basically, if a
reviewer can determine easily if a result from the automated tool is a true positive, then he should
gather it and report the vulnerability afterwards. Otherwise, especially when determining if the
vulnerability is a true or false positive can’t be decided easily, the reviewer should first gather the
result as a work-in-progress. He could come back to it once its manual phase is done. Indeed, he
will have a more in-depth understanding of the code, allowing him to make an easier decision.

2.2.3.2.3 Manual Review phase

This phase and the next big step of the methodology (e.g. the vulnerability analysis phase) can
be done simultaneously. Here, as already stated in the paragraph 2.1.5, there is no predefined
method to use. We will however consider that the reviewer uses a mixed approach. The idea is
so to determine if a vulnerability may appear in the code given the paths taken from the possible
risks that have been identified in the first phase of the methodology.

The steps are the following:

• take one of the most impactful risks identified

• identify every possible areas of the code where this risk may appear

• check if those areas are vulnerable or not

• finally, check possible entry points leading to those areas and check rapidly for
vulnerabilities in the code branches taken.

VESSEDIA D1.7 Page 12 of 104

Also, in the case the reviewer did not have any tool to perform the automated review of the
previous paragraph, then he should perform a search on known possible vulnerable functions,
and determine if their usage is secure or not. In the case the reviewer is using Linux; grep might

be the tool to use there. Here is a list of known potential functions from the standard Linux Libc

that may have security implications (the reviewer should include here platforms specifics, like
ascii and wide variants of multiple Libc functions in Windows):

potentially vulnerable libc functions

strcpy wcscpy strncpy memcpy bcopy

strcat strncat strccpy strcadd gets

sprintf vsprintf swprintf vswprintf fprintf

syslog snprintf vsnprintf Scanf vscanf

wscanf fscanf sscanf vsscanf vfscanf

strlen wcslen streadd strecpy strtrns

realpath getopt getopt_long getwd getchar

fgetc getc read access chown

chgrp chmod vfork readlink tmpfile

tmpnam tempnam mktemp mkstemp fopen

open exec execl execlp execle

execv execvp system popen atoi

atol drand48 erand48 jrand48 lcong48

lrand48 mrand48 nrand48 random seed48

setstate srand strfry srandom crypt

chroot getenv getlogin cuserid getpw

getpass gsignal ssignal memalign recv

recvfrom recvmsg fread readv strcasecmp

Table 3: list of potentially vulnerable libc functions

Finally, once the manual review of the different risks has been done, the reviewer should take
again the results from the automated review, and fully qualify the vulnerabilities that were not
already qualified (e.g. when it’s was difficult to tell if a result was a false positive or not).

2.2.3.2.4 Reporting phase

In this phase, the idea is creating an inventory for all vulnerabilities found. To do so, for each of
the vulnerability identified, the following information should be written down:

• The vulnerability type, i.e. a generic definition of it. Those generic definitions can be found
in the next chapter as well as a bit of explanations for a reader to understand this
vulnerability.

• The place in the code where the vulnerability can be found so the file name and the line
number

• A code snippet in which the vulnerability can be found. In the case some data flow is
required to fully understand the vulnerability in the code snippet for a reader, it is
interesting to provide multiple code snippets explaining the data flow between the

VESSEDIA D1.7 Page 13 of 104

vulnerability declaration and vulnerability impact (i.e. from where the vulnerability is in fact
declared to the point where it has a real impact on the application).

2.2.3.3 Vulnerability analysis phase

This phase is a consolidation phase, so not necessary, but really interesting in a proper audit.
The idea is to be able to fully determine the risk of a vulnerability found, in order for the editor to
have a plan of remediation. Indeed, this plan permits to know what to prioritize to correct the
application. A diagram presenting this phase is the following:

Figure 4: vulnerability analysis sub-phases

First, the exploitability of each vulnerability identified is determined. Then, a risk analysis can be
realized. Finally, security countermeasures can be defined.

2.2.3.3.1 Exploitability determination phase

This phase aims at determining if a vulnerability is exploitable, that means, can an attacker
leverage the vulnerabilities identified for its own profit (data theft, unauthorized access,
destruction…)? Indeed, even if a vulnerability has been identified, it is not necessarily exploitable.
This step should also be taken apart from the fact that an exploitable vulnerability will or will not
be exploited by an attacker.

Moreover, from a business point of view, it is always interesting if the reviewer can provide some
code that shows the exploitability of a vulnerability. It will provide developers with a proof of
concept that has important psychological impact, that avoids their denial and becomes a proof of
the job being done.

To do so, a full data flow analysis should be realized. The idea is indeed to check:

1) if there is an entry point that can lead to the manipulation of the variables involved in the
vulnerability.

2) If every condition that could lead to exploitation can be met. Indeed, in some case, the
vulnerability found can be only exploited if, for example, enough information can be
leaked.

Once again, there is no generic practical method to determine if a vulnerability can be exploited
or not. This step relies a lot on the reviewer’s expertise, as it needs the capability to understand
how the code behaves.

2.2.3.3.2 Risks analysis phase

Once the exploitability of a vulnerability has been identified, a risk analysis can be performed to
provide a quick insight of a level of risk for this vulnerability (that will be used for the action plan
afterwards the review).

The level of risk is defined as a combination of a level of impact, indicating the gravity of a
produced effect in terms of security, and a level of exploitability, indicating the ease of the
exploitation by an attacker. Of course, the impact level is determined given the contextual
information gathered in the discovery phase, whilst the exploitability level is determined by the
vulnerability analysis.

VESSEDIA D1.7 Page 14 of 104

The score of risk is given by the following matrix:

Impact
low average high

Exploitability

high average high critical

Average

low low

Table 4: matrix giving risk score

Finally, the following criteria have been selected to determine the impact score:

Level Interpretation

Low
The exploitation does not permit the attacker to gain interesting
information nor any additional privileges to compromise an asset of
the system.

Average
The exploitation leads to the compromise of a non-critical asset for
the system.

High
The exploitation leads to the compromise of a critical asset for the
system.

Table 5: impact score determination

And here is the criteria to determine the exploitability score:

Level Interpretation

Low
The exploitation is not feasible in the current state of the program
(but it could become so in future evolutions of it)

Average The exploitation must be realized by an expert attacker.

High
The exploitation can be done by a non-expert attacker, or can even
be realized automatically by tools.

Table 6: exploitability score determination

The attentive reader may have noticed that a different approach has been taken to evaluate the
risk level of a vulnerability here than how it is presented in the report D4.2. Indeed, the vulnerability
cannot be tested in its final environment, and as such the final “likelihood” cannot be evaluated
correctly in general. However, in the case the final application can be reviewed along with the
code, then the D4.2 methodology should be followed.

2.2.3.3.3 Countermeasures definition phase

Finally, the last phase of the audit is to define potential countermeasures to a given vulnerability.
Given the context of the application, the idea is to propose a measure that corrects the
vulnerability with the least impact on the whole architecture and least budget. Indeed, the less
difficult a measure is to be implement, the more likely it will be implemented by the editor.

Unfortunately, there is once again no more practical method to use. In the case the vulnerability
can be corrected in the code, without changing the components design, a patch can be created
by the reviewer. In some cases, the solution might be to attach a COTS (component-of-the-shelf,
e.g. a commercial and already existing component) component with the application.

2.2.3.3.4 Report phase

VESSEDIA D1.7 Page 15 of 104

Once again, the risk analysis should be included in the report for each vulnerability found, as well
as the countermeasures definition. A vulnerability can roughly be presented in the report as given
below:

Risk level (with colors):
Huge

Vulnerability’s name

Summary A quick summary

Risk
Impact level Huge and explanations

Exploitability level Huge and explanations

Vulnerability location Source file and line number

Vulnerability description Full description and code snippet

Countermeasure Countermeasure definition

Table 7: example of a vulnerability presentation that could be found in the report

Below is also a note on how the whole report can be presented. A good layout is to provide the
report for two different readers: the technical staff, which is in charge of the code, and the
management staff. The management staff likes to have a quick look on statistics regarding the
analysis, while the technical staff really likes in-depth analyses.

To do so, the general layout of the report can be the following:

1) Introduction
2) Analysis methodology presentation
3) Quick results and statistics
4) Technical part

a. Discovery phase analysis
b. Vulnerabilities
c. Resume of vulnerabilities (basically tables with a prioritization by impact to have

an almost already done risk reduction plan)
5) Conclusion

2.2.3.4 Closure phase

The closure phase is basically the end of the review. The report is finalized, and a closure meeting
is held if possible. Here is a diagram representing it :

Figure 5: closure phase

2.2.3.4.1 Final report phase

Once at this step, the report is finalized and delivered to the editor. From the layout proposed at
paragraph 2.2.3.2.4, this step consists in calculating statistics for the management staff, as well
as doing the resume tables for the technical staff. A quality control is realized and finally the report
is ready to be delivered.

VESSEDIA D1.7 Page 16 of 104

2.2.3.4.2 Ending meeting phase (optional)

Ideally, all reviews should end with an ending meeting. This meeting should present first the risks
identified, as well as statistics on vulnerabilities found and costs of countermeasures. This part is
known as a “management meeting part”. The idea is so to provide quick insights for the decision-
makers. The second part of the meeting should be technical focused, for developers to be able
to understand all vulnerabilities found. This part is so a review of every vulnerability found,
possibly with a code snippet, and a quick explanation, as well as a slide on countermeasure and
exploitability. Normally, it is ensured all vulnerability is understood by the technical staff of the
editor.

Finally, a meeting is certainly a better approach than just giving a report to the editor. Indeed, it
allows normally for a constructive review of the whole audit, where the results can be discussed
and adjusted live. However, in practice, most of the time, decision-makers will hate the process
unless there is no vulnerability found, and those meetings tend to be bashing meeting.

VESSEDIA D1.7 Page 17 of 104

2.2.4 Quick Summary

Here is a diagram representing a quick summary of the whole methodology:

Figure 6 :source code methodology summary

VESSEDIA D1.7 Page 18 of 104

Chapter 3 Most Common Vulnerabilities in C

C code is more vulnerable than other “new high-levels” language like java or C#. Indeed, it is a
compiled language with a weak semantics, transformed to machine code that is run as is. This
weak semantics permits especially to write code leading to undefined behaviour or that is
intrinsically unsafe. Moreover, there are especially no additional security mechanisms added to
the language itself, because there is no interpreter capable of determining a deviant behaviour.

In order to be able to understand the following chapters, this paragraph introduces the most
common vulnerabilities that can be found in C source code, given practical examples. As such, it
will be possible later to name vulnerabilities when arguing about Frama-C capabilities, and to fully
understand the example analysis.

For a comprehensive list of vulnerabilities that can be found, please refer to the deliverable D1.5-
a of VESSEDIA project.

3.1 Technical background

C is a compiled language, which means it is run directly by the underlying operating system as
machine code. There is no interpreter for a program in C, which is able to detect potential
vulnerabilities while the program is running. It also directly interacts with the underlying resources.
Especially, on any computer, a program is composed of instructions, which tell what to do, and
memory, where the necessary states of our program are stored for it to function normally. To fully
understand, one has to imagine the case of a program which wants to switch the value of two
variables, on a computer capable of handling one value at a time, it basically needs to do
something like that (its instruction):

1) Let A a variable
2) Let B a variable
3) Save B value somewhere
4) Move A value into B
5) move the saved B value to A

There is a need to save the B variable in memory there. Moreover, in order to have this program
functioning, we need to be able to read its instructions. Those are also saved into memory that
will be accessed by the computer. Nowadays, the same principles apply, but at a bigger scale.

To fully understand C vulnerabilities, one has to understand that a C program needs memory,
and that C programs directly interact with it. Nowadays, any memory of a program is divided
basically in four parts, represented on the following diagram:

VESSEDIA D1.7 Page 19 of 104

Figure 7: memory layout of a program

• There, the text section is in fact the instructions of the code.

• The static/global section is a part of memory that is related to static variables, or global
ones. The memory always has the same size, whatever are the instructions of our program
executed. It is also named the BSS/data section.

• The stack and the heap are the part of memory of a program that dynamically moves with
the instructions executed. Basically, it was decided to have two sections here to improve
the global performance of the programs.

Indeed, the stack is a part of the memory allocated by the operating system for the execution of
a task. It functions like a stack of objects, that is, the last item in the stack is the first one that can
be removed. The stack is used in particular when the variables are transmitted from one function
to another. Thanks to the stack, the task does not have to remember the location of an item within
the stack, which makes the stack much faster in its use.

On the opposite, a program needs also some memory that can be managed directly by itself,
where a chunk of it can be allocated, used and freed at any moment. It is also important in the
case a program need a huge memory footprint to avoid using the stack, and that might otherwise
not be fast enough. This part is the heap. Of course, heap management is more complex and
slower because it is necessary to know permanently which block is allocated.

In order to make sure a program won’t eat all memory that is logically available on a system, the
stack grows towards the heap, and vice versa. When heap and stack are superimposing
themselves, then the underlying OS knows that every memory has been consumed, and it kills
the process to make sure physical memory won’t be filled by the program.

Nowadays, the stack is used basically to store every local variable of functions and their
arguments, to provide a quick way to operate on them. To make sure a program works, some
other information are also used by the stack, and those are declared by the CPU architecture. To
fully explain it, let’s take the following C program and the classical intel x86 architecture:

void foo(int j, int o){ (3)

 int i=2; (4)

 i = i + j + o; (5)

 […]

VESSEDIA D1.7 Page 20 of 104

 return; (6)

}

void main(){ (1)

 int j = 3; (2)

 int o = 4;

 Foo(j,o); (3)

}

In this example, the main function is first loaded (1), allocates two local variables j and o, then
calls foo (3) with the j and o variables as arguments. At this moment, stack is used for memory
management:

First, the argument o for foo is pushed on the stack and then the first argument j, then a function
scope stack is created by first pushing on the stack the value of the returning address of our
function. So, when the stack will be destroyed when foo ends, the address for the program to
continue will be known. Then, the base of the stack of the main function is saved on the stack
(this base is used to navigate more easily between stacks scope, and to provide a quick way to
navigate between function arguments, accessed like ebp+X). All of this is done in (3). Finally, as

foo function use a local variable, i is pushed on the stack (4). Starting at (5), the stack is fully set
for the execution of function foo. When the function ends (6), its stack frame is basically

destroyed: variable i is first removed from it, the base address of main function is restored, and

the return value on the stack is used to go to the end of the main function and continue the
program execution.

Figure 8: stack evolution in the previous program

Heap is managed with totally different mechanisms. As memory can be freed and allocated at
any moment during the execution of the program, allocations are managed as chunks. A chunk
is composed of two parts: a header indicating several information on the allocated data like its
state and also two pointers - one to the previous allocated chunk, and one to the next allocated
chunk - , and finally the allocated data. This actually creates a double linked list of the chunks. In
the meantime, the same double-linked list is used for freed chunks:

VESSEDIA D1.7 Page 21 of 104

Figure 9: heap layout

When a chunk is freed, its state is passed to free and the chunk is moved from the allocated
double-linked list to the freed one:

Figure 10: free of a chunk

Of course, all of this is done to have an overall better performance, as it avoids to modify the
whole chunk to reassemble it with the rest of unallocated memory. When a chunk is reallocated,
it is first searched if there is a freed chunk with sufficient memory space. If this is the case, then
this chunk is removed from the double-linked list of freed chunks and added to the one of the
allocated ones.

VESSEDIA D1.7 Page 22 of 104

Figure 11: reallocating a chunk

If it is not the case, then multiple freed chunks can be merged together. In some memory
managers, there are also additional mechanisms to treat differently the memory given the last
time of use, in order to reorder the double linked lists by priority to increase performance, and
also multiple freed lists depending on the original properties of the chunks. Those mechanisms
are not of interest to understand the following and won’t be treated here.

Finally, here is a last technical caveat of C language to fully understand vulnerabilities presented
afterwards. C uses what is called pointers as a way to manage variables that is accessing them
by address instead of accessing them by value. Indeed, basically the physical memory has the
following layout:

Figure 12: physical address layout

Indeed, every cell of the physical memory contains a value. But this cell could be also accessed
knowing the offset of another cell in the physical layout. For example, if there is a variable that

VESSEDIA D1.7 Page 23 of 104

needs to be accessed multiple times in a program, instead of keeping a track of the value along,
one solution seems to use its address in memory to finally get its value. The most attentive reader
can also note that by using the stack mechanism for arguments, those are by default passed by
value between functions frames. As such, a value is not propagated between different functions
in C, and the solution is to use the address instead. Address behaves like real addresses, where
by knowing the address of someone, you can reach that one. Pointers are variables containing
the address of another variable like in the following layout:

Figure 13: a pointer in memory

In the figure, the cell n°2 contains the address of the cell 17432, itself containing the value

390144. If i variable represents the latter, then the pointer is accessed by the notation &i (the

value 17432), a pointer is dereferenced by using the notation *, meaning the value is accessed

given the address.

3.2 C language intrinsic vulnerabilities

3.2.1 Buffer Overflow

Buffer overflows occur when it is possible in the current flow of a program for a given sized buffer
to have data written above its limits. Buffer overflows can be categorized in three categories:
stack-based, heap-based and BSS-based (given the piece of memory where those occur). Heap-
based overflows occur when dynamically allocated memory is overflowed by filling that memory
area with too much data, usually due to some sort of miscalculation by the programmer. Stack-
based overflows occur when a static-sized local buffer is overflowed by attempting to store more
data within the buffer than its fixed size allows. BSS-based overflows occur when global variables
memory can be overwritten, otherwise due to one of the two precedent overflows, or directly by
an overflow of a static sized buffer located within the BSS.

We will illustrate a classical buffer overflow occurring on the stack. Let’s consider the following
code:
1 #include <stdio.h>

2 #include <string.h>

3

4 int main(void)

VESSEDIA D1.7 Page 24 of 104

5 {

6 int pass = 0;

7 char buff[12];

8

9 printf("\n Enter the password : \n");

10 fgets(buff,20,stdin);

11

12 if(strcmp(buff, "VessediaPWD"))

13 {

14 printf ("\n Wrong Password \n");

15 }

16 else

17 {

18 printf ("\n Correct Password \n");

19 pass = 1;

20 }

21

22 if(pass)

23 {

24 printf ("\n Root privileges given to the user \n");

25 }

26

27 return 0;

28}

This code does basically the following: it first allocates some memory for a pass variable, initiated
to zero, holding the result of the authentication of the user, as well as a memory buffer that will
hold the pass given by the user. The password is then asked for, and compared to a hardcoded
value. In the case the given password is the same that the hardcoded one, then the pass variable
is set to 1. In the other case, the variable is let at value 0. Finally, if the pass variable is not zero
(so if authentication succeeded), then the user is accessing the privileged area.

In this example, we can see that the size of buff variable is set to 12 on line 15. On line 18, the

call to fgets is done with a second parameter equal to 20. That means that this function will copy

up to 20 bytes into the buff buffer, even if its size is equal to 20. So, some memory should be

overwritten. To see what data is overwritten, let’s represent the stack of our function. At the start,
once our main function is loaded, our two variables are put on stack in this manner (we avoided
here possible arguments that may have been pushed on stack):

Figure 14: stack layout after variables declaration

VESSEDIA D1.7 Page 25 of 104

Then, when invoking our fgets function, data is copied from the start of our buff buffer, like this:

Figure 15: stack manipulation when writing data in the buffer

In the case more than 15 bytes of data are copied, then the pass variable starts to be overridden
by the data copied, like in the figure below:

Figure 16: pass variable overwrite

So, in our case, if more than 15 bytes are copied, and data copied is not null, then our pass
variable is no more equal to zero. Finally, the buffer overflow here lets a malicious user to access
the privileged area without knowing the password:

VESSEDIA D1.7 Page 26 of 104

Figure 17: privilege escalation without the correct password

Buffer overflow can also occur on heap and BSS. Here is an example of a heap-based buffer
overflow:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 #define MAX 32

6 #define LENGTH_USERID 8

7

8 void hash(char* test,char* test2){

9 return; //should derives code to a hash into userID

10}

11

12 int main(int argc, char *argv[]){

13 char *code; //Final returned code

14 char *userID;

15 char* key="thisisasupersecretpassword";

16

17 if(argc < 2)

18 {

19 printf("./%s <your code>",argv[0]);

20 return 1;

21 }

22

23 code = (char *)malloc(sizeof(char)*MAX);

24 userID = (char *)malloc(sizeof(char)*LENGTH_USERID);

25 memset(code,1,MAX);

26 memset(userID,0,LENGTH_USERID);

27

28 strcpy(userID,"guest");

29 strcpy(code,argv[1]); //vulnerability here

30

31 if(strncmp(key,code,26)==0){

32 printf("Your code is OK !!\\o/\n");

33 hash(code,userID);

34 }else{

35 printf("Bad code...\n");

36 }

37

38 if(strcmp(userID,"guest")==0){

39 printf("Welcome guest...\n");

40 }

41 else {

42 printf("Welcome registered user : %s !\n",userID);

43 }

44 free(code);

45 free(userID);

46

47 return 0;

48}

VESSEDIA D1.7 Page 27 of 104

In this program, once again the authentication of a user is realized. Basically, one user is
determined by a userID and a password. The idea of this code is to authenticate a user given

its password. Once its password is entered, a hashing function return the correct user associated,
and rights are given based on the userID.

Unfortunately, the program is subject to a heap-based overflow, permitting to overwrite the
userID: two consequent allocations are made on the heap, at lines 23 and 24. That means that

code and userID are actually following each other on the heap, and that when there is a buffer

overflow in code, then userID may be overwritten. Especially here, we see that code is allocated

a given size and that command line parameter is actually copied into it. However, this parameter
can be of any size, and strcpy makes the copy byte by byte until the provided string to copy has

a null-byte. Thus, userID may be overridden, and an access to a privileged area can be granted

here:

Figure 18 : heap overflow exploitation from the previous program

Finally, here is a buffer overflow occurring on BSS. Those buffer overflows are in general less
exploitable because there is a need of some special configuration. Indeed, as already explained
within the previous chapter, BSS is a memory region allocated before the heap, of a given size,
because every global variable size going there is known in advance. Then, most of the variables
that will be accessed are either stack or heap ones, and as it is not possible to write memory past
the heap base (without arbitrary write), variables in BSS will most of the time not be affected by
an overflow. However, here is a case of an exploitable BSS buffer overflow that may lead to
execution flow hijacking:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 char username[512] = {1};

5 void (*_atexit)(int) = exit;

6

7 void cp_username(char *name, const char *arg)

8 {

9 while((*(name++) = *(arg++)));

10 *name = 0;

11}

12

13 int main(int argc, char **argv)

14{

15 if(argc != 2)

16 {

17 printf("[-] Usage : %s <username>\n", argv[0]);

18 exit(0);

19 }

20

21 cp_username(username, argv[1]);

22 printf("[+] Running program with username : %s\n", username);

23

24 _atexit(0);

25 return 0;

26}

Basically, this program simply asks for a user’s name to the user, copy it to username variable,

and finally executes the rest of its instructions based on the username (more than simply exit, but
here it is a projection).

As we can see, there is a buffer allocated on the BSS segment, as well as a function pointer. The
function cp_username does not check the length of the provided name to be copied, and as

VESSEDIA D1.7 Page 28 of 104

such, it may be possible to write past the username buffer, directly onto the function pointer,

which is called afterwards. We can control the value of a pointer which will be called as a function.
In case we already know the address of an interesting function, one can call it directly.

Here is an example on how to exploit this code: One can enter as name what is called a shellcode,
which is a piece of directly executable machine code, followed by junk data to fill the buffer, and
finally the address value of the start of our shellcode. To sum up, here is a little schema
representing the hijack of control flow:

Figure 19: control flow hijack due to BSS overflow

And here is a screenshot showing it to be used to pop a shell directly on the machine:

Figure 20: bss overflow to control flow hijack

3.2.2 Null pointer dereference

A null-pointer dereference takes place when a pointer with NULL as value is used as if it pointed

to a valid memory area. This vulnerability usually results in a denial of service because of process
kill, and not a hijacking of a process execution flow. Indeed, accessing the zero address on most
CPU, in ring 3, results in an access violation, and then the process is killed by the kernel. However,
in the kernel memory, the address zero does actually exist. As such, this case is really interesting
in kernel exploitation, as it permits to get the base address of the kernel. By the way, this
vulnerability is still interesting in the case of an application that needs a high-availability such as
a server, because a denial of service might be critical.

Let’s imagine a SCADA server, using a proprietary protocol whose packets size is not
predetermined. This server will basically need to read the size of the packet received, and
allocates memory of that size in order to fill relevant parsing structures. Thus, a hypothetical code
that handles the incoming of a packet is the following:

1 //[...]

2 #include <stdio.h>

VESSEDIA D1.7 Page 29 of 104

3 #include <string.h>

4 #include <stdlib.h>

5

6 //[...]

7

8 typedef struct {

9 unsigned int address;

10 unsigned char size;

11 char* data;

12}packet_t;

13

14 void create_packet(raw_data_t* raw_data, packet_t* new_packet){

15 new_packet->address = (unsigned int)strtoul(raw_data, NULL, 16);

16 new_packet->size = (unsigned char)(raw_data[4]);

17 if (new_packet->size > 5 && new_packet->size < 255){

18 new_packet->data = malloc(new_packet->size*sizeof(char)+1);

19 memset(new_packet->data,0,new_packet->size+1);

20 memmove(new_packet->data,(char*)(raw_data+5),new_packet->size);

21 }

22 else{

23 new_packet->data=0;

24 }

25}

26

27 void debug_packet(packet_t* packet){

28 printf("contents of packet address is %i\n", packet->address);

29 printf("contents of packet size is %i\n", packet->size);

30 printf("contents of packet data[0] is %c\n", (packet->data)[0]);

31}

32

33//[...]

34

35 void main(){

36 raw_data_t* raw_data;

37 //[...]

38 while(server_on){

39 packet_t packet;

40 gather_raw_data(raw_data);

41 create_packet(raw_data,&packet);

42

43#ifdef DEBUG

44 debug_packet(&packet);

45#endif

46

47 clean_packet_data(&packet);

48 //[...]

49 }

50 printf("quitting server\n");

51}

The code basically does the following: a server is started, which is an infinite loop where each
packet is gathered (we can imagine those packets are stored in a circular buffer by the network
card) by the gather_raw_data function. As such, a packet structure is filled, which could be

used for treatment by the handle_packet function. Finally, memory allocated is cleaned in

clean_packet_data function. In the middle of the main function, one can see that in the case

the program is compiled with the DEBUG parameter, then a debug function prints the contents of

packets structures created that way.

As we can see in the declaration of the type packet_t above, a packet is formed by an address,

which is a field of 4 byte, then a size on one byte, and finally its data, which can be of any size.
As such, a packet is at least normally 5 bytes long, and the field size should normally indicate a

VESSEDIA D1.7 Page 30 of 104

size of more than 5. So, what happens at line 17 is the fact that if the size indicated by an incoming
packet is less than five, then the packet is invalid, and its data is set to zero.

But, when the packet is accessed in the debug function, then data is printed. As such, the pointer
to packet data is dereferenced. When the size is less than five, typically in the case an attacker
sends a packet with a size of zero, then the packet data field set to zero is dereferenced, leading
to the vulnerability. That results in a segmentation fault, a kill of our program:

Figure 21: segmentation fault due to null pointer dereference

3.2.3 Uninitialized variable utilization

C language does not provide a way to initialize automatically variables. As such, if a variable is
declared without initialization, the content of this variable is actually undefined, as it will point to
the memory previously in place (basically, stack space is allocated as is, without any push of an
initializer variable on the space allocated). Variables may have some completely unexpected
values, what may lead to security error, as in this variant of our authentication program:

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(void)

5 {

6 int pass;

7 char buff[16];

8

9 printf("\n Enter the password : \n");

10 fgets(buff,sizeof(buff),stdin);

11

12 if(strncmp(buff, "thegeekstuff",16))

13 {

14 printf ("\n Wrong Password \n");

15 }

16 else

17 {

18 printf ("\n Correct Password \n");

19 pass = 1;

20 }

21

22 if(pass)

23 {

24 /* Now Give root or admin rights to user*/

25 printf ("\n Root privileges given to the user \n");

26 }

27

28 return 0;

29 }

Here, the pass variable is not initialized and will contains the value of the memory that was

present when assigning the variable. So if the memory was not nullified, then the pass variable
will not be equal to zero, which means that the user will be authenticated even without giving the
correct password:

VESSEDIA D1.7 Page 31 of 104

Figure 22: uninitialized variable utilisation

3.2.4 Double free

A double free vulnerability occurs when a dynamically allocated variable is freed twice. As a result,
the heap management for the program becomes corrupted and the program has an undefined
behavior. In some cases, a denial of service will occur while sometimes it may be possible for an
attacker to alter the execution flow of the program.

This vulnerability really depends on how the heap management of the program is realized. So, in
the case of the following snippet of code:

a = malloc(10);

b = malloc(10);

free(a);

free(a); // Double Free

c = malloc(10);

d = malloc(10);

When a is freed for the first time, the two lists of chunks become:

Allocated: head -> b -> tail

Freed: head -> a -> tail

When a is freed a second time, the lists become:

Allocated: head -> b -> tail

Freed: head -> a -> a -> tail

Then, when c and d are allocated, as they have the same size than a, they will both be allocated

given the two free chunks pointed to a:

Allocated: head -> b -> c (points to address a) -> d (points to address

a) -> tail

Freed: head -> tail

So, in the rest of the program, when c and d are manipulated, they both manipulates the same
region of memory.

To illustrate an example of such a problem (in fact, this vulnerability is often only useful for
exploitation of control flow in case of just-in-time-compiled code), let’s take the following code that
simulates a tiny Missiles platform management application. Basically, this platform is operated by
a soldier, who can be called by generals to realize several operations:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 #define NB_USER 32

6

7 typedef struct{

8 int ID;

VESSEDIA D1.7 Page 32 of 104

9 char password[10];

10 }user_t;

11

12 //[...]

13

14 void retrieve_password(user_t** user_list, int ID){

15 if (user_list[ID])

16 printf("\thi, here is your password : %s\n",user_list[ID]-

>password);

17 else

18 printf("\tnon existing user\n");

19 }

20

21 void create_user(user_t** user_list){

22 user_t* new_user = malloc(sizeof(user_t));

23 int i;

24 for(i=0;i<NB_USER;i++){

25 if(!user_list[i]){

26 new_user->ID = i;

27 printf("\tplease enter password (9 chars max) : ");

28 char tmp_buffer[10];

29 scanf("%s",tmp_buffer);

30 memmove(new_user->password,tmp_buffer,9);

31 user_list[i]=new_user;

32 printf("\tuser created, here is the ID : %i\n",i);

33 return;

34 }

35 }

36 printf("\tcan't create a new user!\n");

37 return;

38 }

39

40 void get_user_id(int* ID){

41 int i;

42 printf("\twhat's the ID to be used here ? : ");

43 scanf("%d",&i);

44 *ID=i;

45 }

46

47 void delete_user(user_t** user_list,int ID){

48 free(user_list[ID]);

49 }

50

51 //[...]

52

53 int main(int argc, const char * argv[]){

54 int loopout = 0;

55 int choice;

56 int current_ID=0;

57 user_t** user_list = malloc(NB_USER*sizeof(user_t*));

58 while (!loopout)

59 {

60 printf("\nMissiles platform management\n");

61 printf("please select:\n");

62 printf("1. create a new user\n");

63 printf("2. delete a user\n");

64 printf("3. retrieve user password\n");

65 printf("4. quit\n\tnum: ");

66 scanf("%i",&choice);

67 switch (choice)

68 {

69 case 1:

70 create_user(user_list);

VESSEDIA D1.7 Page 33 of 104

71 break;

72 case 2:

73 get_user_id(¤t_ID);

74 delete_user(user_list,current_ID);

75 break;

76 case 3:

77 get_user_id(¤t_ID);

78 retrieve_password(user_list,current_ID);

79 break;

80 case 4:

81 exit(0);

82 break;

83 default:

84 printf("wrong choice\n");

85 break;

86 }

87 }

88

89 return 0;

90 }

This code presents a menu for the operator to realize different operations of managing the users
of the missile platform. When a colonel calls the operator, then the latter realizes all operations
asked for because of his grade. However, multiple vulnerabilities can be found in this code
because there are no sanitizing checks while manipulating the users. Indeed, those are
manipulated through their ID, and operations can then be realized in whatever order. It is possible
to delete the same user twice, or to ask for the password of a deleted user.

Let’s imagine the following scenario (completely fancy to be honest):

First, the attacker infiltrates the army, and becomes Skywalker officer. He then imitates colonel
Vador and calls the operator of the missile platform: “– Hi administrator, here is colonel Vador. I
need you to delete my account because it may have been compromised.”

VESSEDIA D1.7 Page 34 of 104

The administrator executes
that, and then receives a
second call, also from the same
attacker: “Hi administrator, here
is colonel Palpatine. I need you
to delete colonel Vador’s
account, and then create him a
new account. Then, you should
also create a new account for
the new officer Skywalker.”

The administrator executes the
order, calls officer Skywalker,
which is the attacker, to create
his account, and finally calls
colonel Vador, to create his
account. Once all of this has
been realized, the attacker calls
to request his password
because “- it does not work”.

In this case, colonel Vador’s
account has been deleted
twice, its user has been freed
twice. Then, the attacker gets
an account which points to the
old memory of colonel Vador’s
account (because a user takes
the same size in memory at
whatever times), and colonel
Vador gets also a new account,
pointing also to his own old
memory area. As such, colonel
Vador’s new account and
Officer Skywalker’s account
point to the same memory. As
colonel Vador’s account is
created last, his password is
put in that memory region.
Then, when the attacker asks
for his password, he indeed
retrieves colonel Vador’s one.
As such, the attacker gained
colonel Vador’s privileges on
the missiles platform.

Here is a screenshot illustrating
that scenario:

Figure 23: double free
vulnerability leveraged into an

identity theft

VESSEDIA D1.7 Page 35 of 104

3.2.5 Use-after-free

Use-after-free vulnerability is, as indicated by his name, caused by the use of an already freed

dangling pointer. Once again, as in the previous vulnerability, the heap memory manager
mechanisms are important to take advantage of this vulnerability.

For example, in the case a chunk is freed, it can be used afterwards by the memory manager for
another object. When the use of the freed object occurs, the program believes to manage another
object than the one really managed.

The Missile management platform used in the previous paragraph is also vulnerable to use-after-
free. Let’s get back to the scenario of an attacker calling the operator: “Hi operator, here is colonel
Palpatine. Please delete my account”. The attacker then waits few days, a user has been created.
As the user created take the same amount of space than Colonel Palpatine’s user identity, the
memory chunk for this new user is the same than the one used for colonel Palpatine. The attacker
can call again the operator and say “-Hi there, here is colonel Palpatine and here is my ID. Please
tell me my password back”. The operator will give the password that points now to the one of the
newly user created. The attacker gains another credential to use on the missile platform.

Here is a screenshot to illustrate this vulnerability:

Figure 24: use-after-tree vulnerability leveraged into identity theft

VESSEDIA D1.7 Page 36 of 104

3.2.6 Integer Overflow

In C, every type data is coded on a fixed size bit field. For example, an integer as defined with the
int keyword is coded on 32 bits even on 64 bits platforms. As such, an integer can be

represented by 31 bits for its value, and one bit for its sign. An int must have a value between -

2 147 483 648 to 2 147 483 647.

When an operation is realized on such a data field, and this operation creates a data field that is
out-of-bound of the theoretical limits, the result is in fact computed using the modulo arithmetic
fusing the size of the field. This often results in miscalculations, and that can lead to out-of-bounds
write. For example, flight 501 of the rocket Ariane 5 crashed because of such a vulnerability.

To illustrate the vulnerability, let’s take a modified version of our IOT server from the paragraph
3.2.2 :

1 #include <stdio.h>

2 #include <string.h>

3 #include <stdlib.h>

4

5 typedef struct {

6 unsigned int address;

7 unsigned char size;

8 char* data;

9 }packet;

10

11 void handle_packet(char* raw_data, packet* new_packet){

12 unsigned char new_size;

13 new_packet->address = (unsigned int)strtoul(raw_data, NULL, 16);

14 new_packet->size = (unsigned char)(raw_data[4]);

15 if (new_packet->size > 5){

16 new_size = new_packet->size+1;

17 new_packet->data = malloc(new_size);

18 memset(new_packet->data,0,new_size);

19 memmove(new_packet->data,(char*)(raw_data+5),new_packet->size);

20 raw_data=raw_data+new_packet->size-5;

21 }

22 else{

23 new_packet->data=malloc(sizeof(char));

24 memset(new_packet->data,0,1);

25 raw_data=raw_data+5;

26 }

27 }

28

29 void clean_packet_data(packet* packet){

30 free(packet->data);

31 }

32

33 //[...]

34 void main(){

35 char* raw_data;

36 init_raw_data(raw_data);

37 //[...]

38 int server_on =1;

39 while(server_on){

40 packet packet;

41 gather_raw_data(raw_data);

42 handle_packet(raw_data,&packet);

43 clean_packet_data(&packet);

44 server_on=0;

45 }

46 printf("quitting server\n");

47 }

VESSEDIA D1.7 Page 37 of 104

In this version, the null pointer dereference vulnerability has been removed, by making sure that
packet data is allocated at least even if the size is less than five. However, the check on line 14
has been modified and it is no more checked that the size is less than 255.

The size is an unsigned char, meaning the data is coded on 8 bits, without any bit for the sign.
The size can have a value between 0 to 255. As such, if a packet with a size of 255 is read, then
the new_size variable, which also an unsigned char, is set to (255+1)%28=0 . As such, when

the memmove operation is called afterwards, an out-of-bounds write occurs. There is also to note

that the malloc return code is not checked, that can lead also to an out-of-bounds write.

3.2.7 Off-by-one

Off-by-one bugs are basically buffer overflows whose outreach is a writing of only one more byte.
They got special subclass vulnerabilities as by overwriting only one byte, exploitation methods
are by far different than those in classical buffer overflows. Especially, those are much more
difficult to exploit, and the only meaningful cases for an exploitation is when a given function
pointer can be overwritten by one byte. Moreover, detecting them is also not trivial and requires
a deep understanding of C standard library.

To illustrate this class of vulnerabilities, let’s take again the authorization handler from the buffer
overflow case. Here, the developer modified the program in an attempt to correct the buffer
overflow, and to have a better amplitude on the input, while retaining the fact that the password
is still coded on 15 bytes:

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(void)

5 {

6 int not_logged = 1;

7 char buff[15];

8 char s[64];

9

10 memset(buff, 0, sizeof(buff));

11

12 printf("\n Enter the password : \n");

13 fgets(s,63,stdin);

14 strncat(buff, s, sizeof(buff));

15

16 if(strcmp(buff, "thegeekstuff"))

17 {

18 printf ("\n Wrong Password \n");

19 }

20 else

21 {

22 printf ("\n Correct Password \n");

23 not_logged = 0;

24 }

25

26 if (!not_logged)

27 {

28 /* Now Give root or admin rights to user*/

29 printf ("\n Root privileges given to the user \n");

30 }

31

32 return 0;

33 }

VESSEDIA D1.7 Page 38 of 104

In this example, the bug comes from an improper call to strncat(3) function. As it is said in the

manual page, this function adds a terminating null byte. So, as the destination buffer size doesn’t
take this into account, an overflow of 1 byte might happen, overwriting stack data, which is here
the not_logged variable. As such, a user with a wrong password can still access the privileged

area:

Figure 25: execution of the off-by-one program

3.2.8 Format String

Format string vulnerability is a mishandling of the printf-like functions parameters, and is one

of the most dangerous vulnerability because it gives attacker the ability to read or write anywhere
in memory. To understand this vulnerability, one has to understand how printf-like functions work.
In normal cases, the printf functions use a formatter, which is a string indicating the format of

the variables to print, and then the list of all variables to print. For example, one call to printf might
be the following:

printf(“hello %s”,username); where “hello %s” is the formatter.

When such a function is called, its parameters are passed on the stack as already explained in
paragraph 3.1. Our previous call has the following stack:

Figure 26: stack layout when calling printf

Then, internally and in a simplified version, the printf function parses its first argument, and

stops at each identifier like %s. When it encounters such an identifier, the next argument present

on the stack is gathered to form the final string to print. Finally, the final string is sent to stdout.

VESSEDIA D1.7 Page 39 of 104

Figure 27: internal working of printf

There is a need to have the same number of variables than the number of identifiers in the
formatter, because in this case there is the right number of arguments to pop off the stack to be
able to form the final string.

A format string vulnerability occurs in reality when this condition is not verified. In the case for
example there is no variable as a second argument, while a formatter with one identifier is passed
as the first argument, then printf will still try to read the stack for its second argument. As this
second argument is not present on stack, then the previous value of memory at this place will be
read instead and added to the final string. So, for example, a “%x” identifier passed as the first
argument, without a variable as a second argument, will print the first value on the stack in
hexadecimal, leading to an arbitrary read condition. To illustrate this, let’s take again the
authorization management application. This time, the developer chose to use a configuration file
to have the root password:

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <string.h>

4

5 int main(int argc, char *argv[]){

6 int not_logged=1;

7 char symbol;

8 FILE *secret_file = fopen("config.txt", "r");

9 char buffer[128];

10 char secret[32]={0};

11

12 if(secret_file != NULL)

13 {

14 size_t newLen = fread(secret, sizeof(char), 31, secret_file);

15 if (ferror(secret_file) != 0)

16 {

17 fputs("Error reading file", stderr);

18 } else

19 {

20 secret[newLen++] = '\0'; /* Just to be safe. */

21 }

22 fclose(secret_file);

23 }

24

25 printf("\n Enter the password : \n");

26 fgets(buffer, sizeof(buffer), stdin);

27

28 if(strcmp(buffer, secret))

29 {

30 printf ("\n Wrong Password, you have entered : ");

31 printf(buffer);

VESSEDIA D1.7 Page 40 of 104

32 printf(". Make sure to use the correct one\n");

33 }

34 else

35 {

36 printf ("\n Correct Password \n");

37 not_logged = 0;

38 }

39

40 if (!not_logged)

41 {

42 printf ("\n Root privileges given to the user \n");

43 }

44

45 return 0;

46}

As one can see, when the password is not the good one, then it is printed on the console, but no
format identifier was used. As such, the vulnerability can be triggered there. So, an attacker can
leverage this to retrieve the root password without having any access to the configuration file:

Figure 28: format string vulnerability used to read secret file

In the above screenshot, the identifier %08x is used to read 32 bits at a time from the stack. The

hexadecimal values are then decoded by the todecode python script. The way it works is the

following:

Figure 29: format string vulnerability used to parse the stack

As shown in the previous figure, it is possible to read the parent’s stack, which is here the main

function. Especially, the parent stack should contain first newLen variable and second the

secret variable, the secret is readable.

3.2.9 Type confusion

VESSEDIA D1.7 Page 41 of 104

A type confusion vulnerability occurs when a variable can point to two different types, and it is
treated as of the wrong type. It is especially true while using the union keyword in C. Unfortunately,
this vulnerability is not common in C, and is much more useful in object language, because in
those, methods are parts of the object. It is possible to call wrong methods on objects which can
lead to a control flow hijack. Here is an example in C, without any security issues after exploitation:

1 #define NAME_TYPE 1

2 #define ID_TYPE 2

3

4 struct MessageBuffer

5 {

6 int msgType;

7 union {

8 char *name;

9 int nameID;

10 };

11};

12

13 int main (int argc, char **argv) {

14 struct MessageBuffer buf;

15 char *defaultMessage = "Hello World";

16

17 buf.msgType = NAME_TYPE;

18 buf.name = defaultMessage;

19 printf("Pointer of buf.name is %p\n", buf.name);

20 /* This particular value for nameID is used to make the code

architecture-independent. If coming from untrusted input, it could be any

value. */

21

22 buf.nameID = (int)(defaultMessage + 1);

23 printf("Pointer of buf.name is now %p\n", buf.name);

24 if (buf.msgType == NAME_TYPE) {

25 printf("Message: %s\n", buf.name);

26 }

27 else {

28 printf("Message: Use ID %d\n", buf.nameID);

29 }

30}

The code intends to process the message as a NAME_TYPE, and sets the default message to

"Hello World." However, since both buf.name and buf.nameID are part of the same union, they

can act as aliases for the same memory location, depending on memory layout after compilation.
As a result, modification of buf.nameID (which is an int) can effectively modify the pointer that

is stored in buf.name,a string.

The execution of the program generates output such as:

Figure 30: example of type confusion

The pointer buf.name was changed, even though buf.name was not explicitly modified.

VESSEDIA D1.7 Page 42 of 104

3.3 Cryptographic vulnerabilities

This paragraph won’t go into many details, as explaining cryptographic background there is a
hard and tedious task that requires another report on its own.

3.3.1 Non-respect to cryptographic standards

Although those are not direct vulnerabilities, there is today a defined standard on most of the
cryptographic functions used. Indeed, using algorithms that have been cracked, or using
algorithms that are known to be vulnerable to a theoretical attack, may lead a user to create a
cryptographic attack on your application. This could especially be used to gather secrets held by
the application.

For example, in Europe, the SOG-IS agreement provides a baseline indicating approved
cryptographic algorithms8.

More than algorithms, there is also a need for any algorithm to verify some sets of cryptographic
properties. Especially, those sets of properties are important because they are ensuring
theoretical non-exploitability. One example of it is what is called the distribution on a hashing
algorithm, ensuring that if one byte of the original message is changed, then at least half of the
total bytes of the hashed message is changed.

In most cases, it is verified that the algorithm was not self-developed and got no cryptographic
review.

3.3.2 Misuse of cryptographic algorithms

Cryptography is a hard topic. As such, an evaluator can often see a misuse of cryptographic
algorithms. Indeed, the developer tried to obtain a set of cryptographic properties, but the
algorithm chosen may not bring all those properties. For example, two of cryptographic properties
are authentication, which is the act of confirming the truth of an attribute of a single piece of data
claimed true by an entity, like its identity, and integrity, assuring the accuracy and completeness
of some data over its entire lifecycle. Most hashing algorithms provide only the latter, while an
asymmetric key algorithm like RSA can provide both. However, sometimes, hashing is used to
authenticate one user on an application.

3.4 C vulnerabilities depending on the environment

3.4.1 Race condition

A race condition occurs when there is some time lapse between the access to a resource, and
then the use or destruction of this resource. If this resource can be controlled by an attacker, then
he may manipulate it in this meantime. The name comes from the fact that the attacker is in race
with the legit program to modify the accessed resource in between. This vulnerability can be used
to elevate one’s privileges.

As an example, let’s say a program has to authenticate users against a credential given in a
ciphered file. To do so, the program first opens the ciphered file to decipher it into a temporary
file on the system (that does not have any system’s controlled access), asks the user about its
credentials, then read the deciphered file to compare the credential given by the user, and finally
destroys the temporary file:

1 #include <stdio.h>

8 https://www.sogis.org/uk/supporting_doc_en.html

VESSEDIA D1.7 Page 43 of 104

2 #include <unistd.h>

3 #include <string.h>

4

5 void decipher_file(char* secret_file,char* temp_file, FILE**

temp_file_handle){

6 //this function basically opens the secret file and the temp file

7 // then deciphers the contents of secret file into temp file

8 //and finally returns a handle towards temp_file

9 }

10

11 int main(int argc, char *argv[]){

12 int not_logged=1;

13 char symbol;

14 char secret_file[]= "config.txt";

15 char temp_file[]="/tmp/tmp_deciphered.txt";

16 FILE* temp_file_handle;

17 char buffer[32]={0};

18 char secret[32]={0};

19

20 printf("deciphering file\n");

21 decipher_file(secret_file,temp_file,&temp_file_handle);

22 printf("\n Enter the password : \n");

23 fgets(buffer, sizeof(buffer), stdin);

24 if(temp_file_handle != NULL)

25 {

26 size_t newLen = fread(secret, sizeof(char), 32,

temp_file_handle);

27 if (ferror(temp_file_handle) != 0) {

28 fputs("Error reading file", stderr);

29 } else {

30 secret[newLen++] = '\0'; /* Just to be safe. */

31 }

32 fclose(temp_file_handle);

33 }

34

35 if(strcmp(buffer, secret))

36 {

37 printf ("\n Wrong Password\n");

38 }

39 else

40 {

41 printf ("\n Correct Password \n");

42 not_logged = 0;

43 }

44

45 if (!not_logged)

46 {

47 printf ("\n Root privileges given to the user \n");

48 }

49

50 return 0;

51 }

Of course, if an attacker is able to modify the file while the user is entering the password, because
a handle is already opened on it, then he can control what will be the value the credentials of the
user will be tested against.

Here is a screenshot illustrating this case (please make sure to look at the times). First, a run of
the program is realized, the user does not have the correct credentials. Then the same run is
realized, but while the user is entering the password, the tmp_file is modified. He can then

authenticate himself:

VESSEDIA D1.7 Page 44 of 104

Figure 31: race condition illustration

3.4.2 Path manipulation

Path Manipulation vulnerabilities occur when a program attempts to access an external resource,
that may be controlled by the attacker, without controlling that the path given to this external
resource is correct. As such, the path may point to an invalid resource.

For example, let’s say a program run by a privileged user invoke the ls command to check about
some files on the system:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char *argv[])

5 {

6 FILE *fp;

7 char path[1035];

8

9 /* Open the command for reading. */

10 fp = popen("ls /etc/", "r");

11 if (fp == NULL)

12 {

13 printf("Failed to run command\n");

14 exit(1);

15 }

16 while (fgets(path, sizeof(path)-1, fp) != NULL)

17 {

18 //do something

19 }

20

21 /* close */

22 pclose(fp);

23

24 return 0;

25 }

One can see at line 10, that a call to the ls command is realized, without using an absolute path.

In such a scenario, the underlying operating system will first search the ls command in the file

system, and then invoke it. On Linux, that search is done in the order given by the PATH

environment variable, which is a series of file system paths interspersed with the delimiter ‘:’. The

VESSEDIA D1.7 Page 45 of 104

search is done as this: the first path in PATH is looked into for the presence of a ls binary. If the

ls binary is found, then it is invoked, meaning the command is invoked. Otherwise, the second

path is taken and the same examination is realized. This continues until the ls binary is found in

one of the underlying path, or until there is no more path to investigate given by PATH variable.

So, if the attacker manipulates the PATH variable by setting it to /tmp and then creates a false

ls binary in this /tmp folder, then this attacker-controlled program will be called instead. Here is

an example to illustrate that kind of manipulation from the program above:

Figure 32: path manipulation example

3.4.3 SQL Injection

A SQL injection appears when a program runs some SQL queries, without separating the request
from the fields of the query. That means that the fields may be manipulated by an attacker to
modify the meaning of the request. Let’s take for the example the following program that
authenticates a user using the MySQL API :

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <mysql.h>

4

5 #define QUERY_LEN 512

6

7 int main(int argc, char *argv[])

8 {

9 char name[32];

10 char password[32];

11

12 MYSQL mysql;

13 mysql_init(&mysql);

14 mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"option");

15

 if(mysql_real_connect(&mysql,"www.goldzoneweb.info","mon_pseudo","****

*","ma_base",0,NULL,0))

16 {

17 printf("\n Enter your name : \n");

18 fgets(name, sizeof(name), stdin);

19

20 printf("\n Enter your password : \n");

21 fgets(password, sizeof(password), stdin);

22

23 char myquery[QUERY_LEN];

24 sprintf(myquery, "select * from users where name='%s' and

password='%s'", name, password);

25

26 if (mysql_query(conn, myquery))

27 {

VESSEDIA D1.7 Page 46 of 104

28 fprintf(stderr, "%s\n", mysql_error(conn));

29 exit(1);

30 }

31

32 MYSQL_RES *result = NULL;

33 MYSQL_ROW row;

34 result = mysql_use_result(&mysql);

35 if(result != NULLL)

36 {

37 printf("Welcome authenticated user : %s",name);

38 }

39 mysql_free_result(result);

40 mysql_close(&mysql);

41 }

42 else

43 {

44 printf("an error occured\n");

45 }

46

47 return 0;

48 }

49

As one can see, the program uses the sprintf function in order to concatenate the query with

the fields given by the user. If the user uses the following credentials admin/adminpass, then

the query becomes:

select * from users where name=’admin’ and password=’adminpass’

It is then checked if the result of the query is not null. In this case, that means the user exists.

An attacker can leverage the vulnerability by providing the following credentials to the application:
admin’ -- /pass. As such, the query becomes the following:

select * from users where name =’admin’ -- and password=’pass’

The end of the query is treated as a comment and the query becomes:

select * from users where name =’admin’

So, only the verification on name will be conducted. The attacker can finally gain privileged
access.

3.4.4 Command Injection

Command injection vulnerability occurs when a program makes a call to an external command
with parameters provided by the attacker. As such, the attacker can potentially make additional
calls to other commands. This call to other commands can really be useful if the program is run
with other privileges than the user one. Indeed, the injected commands will be executed in the
context of the program privileges. Let’s take for example the following program, which is an
ergonomic helper on using SSH:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 void connect_to(){

6 char serv_name[32];

7 char username[32];

8 char pass[32];

9 FILE *fp;

10 char path[1024];

VESSEDIA D1.7 Page 47 of 104

11

12 printf("\n Enter server name : ");

13 fgets(serv_name, sizeof(serv_name), stdin);

14 serv_name[strcspn(serv_name, "\n")] = 0;

15

16 printf("\n Enter your user name : ");

17 fgets(username, sizeof(username), stdin);

18 username[strcspn(username, "\n")] = 0;

19

20 printf("\n Enter your password : ");

21 fgets(pass, sizeof(pass), stdin);

22 pass[strcspn(pass, "\n")] = 0;

23

24 char command[512];

25 sprintf(command, "sshpass -p %s ssh %s@%s",

pass,username,serv_name);

26

27 fp = popen(command, "r");

28 if (fp == NULL) {

29 printf("Failed to run server\n");

30 exit(1);

31 }

32

33 while (fgets(path, sizeof(path)-1, fp) != NULL) {

34 printf("%s", path);

35 }

36

37 pclose(fp);

38 //now, output must be check for authentication error, and then one

can use the ssh connection

39

40 }

41

42

43 int main(int argc, const char * argv[]){

44 int loopout = 0;

45 int choice;

46 char a;

47 while (!loopout)

48 {

49 printf("SSH Helper\n");

50 printf("please select:\n");

51 printf("1. connect to a SSH Server\n");

52 printf("2. retrieve/copy a file on a Server\n");

53 printf("3. managing SSH authentications\n");

54 printf("4. quit\n\tnum: ");

55 scanf("%i",&choice);

56 a = getchar();

57 switch (choice)

58 {

59 case 1:

60 connect_to();

61 break;

62 case 2:

63 retrieve_or_copy();

64 break;

65 case 3:

66 manage_ssh_authent();

67 break;

68 case 4:

69 exit(0);

70 break;

71 default:

VESSEDIA D1.7 Page 48 of 104

72 printf("wrong choice\n");

73 break;

74 }

75 }

76 return 0;

77 }

78

We see this code provides a menu to the user, asking for what the user wants to do with SSH.
One of the options lets the user to connect to a distant server, then to obtain an access to this
distant shell. When this option is chosen, the user is asked for several parameters, that are then
injected into a call to the SSH command. As such, an attacker may for example provide the
following as a server name “server || cat /etc/passwd”, thus the cat command is also

executed in the context of the program.

Here is an illustration of this vulnerability. The current user, nzo, cannot read the file secrets,

owned by root (1). Our SSH helper is however setuid, which means it is executed in the

context of its owner, root (2). The attacker can leverage the example to read the secrets file:

Figure 33: elevating its privileges through command injection

3.4.5 Logic bugs

Logic bugs are the result of when the logic is not correctly calculated in a program, most often
due to operators precedence, or the missing of some parenthesis. Let’s take the following
program, once again similar to the authentication program already presented:

1 #include <stdio.h>

2 #include <string.h>

3

4 #define FAIL 0

5 #define SUCCESS 1

6

7 int AuthenticateUser(char *password) {

VESSEDIA D1.7 Page 49 of 104

8 return !(strcmp(password,"mysuperpass"));

9 }

10

11 int main(void)

12 {

13 char buff[16];

14

15 printf("\n Enter the password : \n");

16 fgets(buff,sizeof(buff),stdin);

17

18 int isUser = FAIL;

19

20 if (isUser = AuthenticateUser(buff) == FAIL)

21 {

22 printf("\n Wrong password\n");

23 }

24 else

25 {

26 printf("\n Good password\n");

27 isUser = SUCCESS;

28 }

29

30 if(isUser == SUCCESS)

31 {

32 /* Now Give root or admin rights to user*/

33 printf ("\n Root privileges given to the user \n");

34 }

35

36 return 0;

37 }

Once again, the user is asked for its password, which is compared to a hardcoded one. In the
case both values match, then the user is given privileges. Here, the variable holding the result of
the authentication is put on the stack after the buff variable, which means that in any case, no
buffer overflow can overwrite it. However, as one can see, the method that authenticates the user
is called within an if statement (at line 30) with incorrect operator precedence logic. Because the
comparison operator "==" has a higher precedence than the assignment operator "=", the

comparison operator will be evaluated first and if the method returns FAIL then the comparison

will be true, the return variable will be set to true and SUCCESS will be returned. As such, any

password can provide the user privileges:

Figure 34: logic bug leading to wrong privileges given to the user

3.4.6 Contextual vulnerabilities

VESSEDIA D1.7 Page 50 of 104

A number of contextual vulnerabilities can arise. Those vulnerabilities are not bugs directly
integrated in the software, but problems in a security functional component of the software,
interacting with its environment. As those are not related to the code in itself, but are tightly linked
to the context, here is a non-exhaustive list of named potential vulnerabilities that can be found:

• A wrong authentication of entities. Here, one can be authenticated in a wrong manner on
the application, thus leading to privilege escalation and identity theft.

• An absence of protection of assets. Those assets could be for example, the ciphering keys
used by encryption software, stored in clear text in a database. As such, the compromise
of those assets leads to security problems.

• An absence of measures to prevent denials of service.

• An absence of logging utilities. This vulnerability is often overlooked, but in highly critical
environment, logging is able to provide legal insurance as well as a way for an
investigation to be held.

• The modification of the business parameters. One example here could be a financial
program, using a configuration file. If the configuration file permits to alter taxes or rates,
then the whole business can be impacted.

VESSEDIA D1.7 Page 51 of 104

Chapter 4 On using Frama-C within the proposed

methodology

This paragraph introduces how to incorporate Frama-C tools analysis within the proposed
methodology of the paragraph 2.2. First, Frama-C will be briefly presented. In a second hand, a
way to use concretely Frama-C is presented.

4.1 What is Frama-C?

4.1.1 Description

Frama-C is a static C/C++ source code analyzer, aimed at validation and proof of specifications
of code. As such, it was proposed for highly critical development, to ensure the safety of the code
afterwards. It is built on Ocaml, and has a plug-in architecture: a generic kernel centralizes
information and conduct analyses, and plug-ins may communicate with the kernel and the other
plug-ins via the kernel to provide analyses treatments and results.

The summed-up functioning of Frama-C is the following: First, the code is preprocessed by the
gcc compiler. It produces a code with macro-expansion, header files inclusion and trigraph
replacement. From this, Frama-C builds an abstract syntax tree (AST), i.e. a tree formed by the
tokens of the code, obtained via the parsing of it. Finally, operations of source code analysis are
directly computed on the AST (certainly while doing AST annotation). Finally, this AST and the
results are operated by the several plugins to provide a deeper analysis.

The principal following plugins are shipped with the default Frama-C installation:

• Evolved value analysis (EVA): this plugin realizes a lot of operations based on abstract
interpretation. The first ones are to be able to compute at any statement in the program
the different values of the variables from the global and current scope. It also realizes
several checks on memory accesses, like checking if memory accessed in tables or by
pointers is valid. Integer arithmetics are also checked.

• E-ACSL plugin: this plugin provides the ability to process E-ACSL statements within the
source-code. Those statements are in fact a language for proof verification, and formal
properties are deducted from them. As such, those properties can then be verified while
running other analyses.

• WP plugin: this plugin aids in assisting with proof verification. It will basically check any
formal proof to be verified in the source code, helps with indications when the proof cannot
be verified, and can run multiple provers on those proofs.

• Slicing plugin: this plugin produces a slicing of the code to generate an output still
compiling, but with only the statements verifying certain properties.

• Impact plugin: this plugin outputs the statements that are impacted by the modification of
a given statement. This plugin seems to rely on the slicing plugin to generates its results.

• Metrics plugin: this plugin provides several statistics about the code, like cyclomatic
complexity and EVA coverage estimation.

A more thorough description is given within D3.3 document of VESSEDIA project.

VESSEDIA D1.7 Page 52 of 104

4.1.2 Frama-C’s intended use

Frama-C was intended for code safety, primarily required in highly critical domains like
aeronautics, space and nuclear. As such, it follows to the following environment conditions:

• In general, code in such environments run on a single core and use very few system and
user interaction. They are also in general quite small, and do not use libraries much.

• Those codes need to verify the enforced development process, and formal properties. So,
whilst code is developed, formal proofs can also be developed.

• One of the biggest aims is to ensure there is no undefined nor unspecified behavior in the
program, even in a critical state. As such, the program should be exempt of any bugs or
run-time errors.

• The other big aims is to ensure the source code is compliant with some specifications, like
MISRA-C9 for example.

Frama-C seems to be used in the following way in actual industrial environment:

• the main code is developed. In the meantime, specifications proofs and formal proofs are
developed. Also, in order to be able to verify all proofs, E-ACSL specifications are
developed.

• Once everything is developed, then Frama-C is used to ensure the code verifies the formal
properties developed along with it, by means of proofs, as well as ensuring the absence
of bugs for a code that is self-supporting. Especially, it can be used to ensure that variables
are in a given range at a certain point of the program, and it can also make sure that all
variables are initialized for example.

• In the case Frama-C tool discovers an error or a property that is not proven to be satisfied
by the code, the code can be modified. Then, Frama-C is run again on the code, etc. until
it says there is no error and all proofs are verified.

4.1.3 A brief discussion on using Frama-C for security code review

Formal specifications can only be produced by highly mature corporations, where skilled
engineers are dedicated to this job. There is a huge probability that any code to be security
reviewed is not shipped with any formal specifications, unless this code is to be used in highly
critical environments.

Moreover, here are some vulnerabilities that can be detected by Frama-C:

• Buffer overflows,

• Double free,

• Null Dereference,

• Use-after-free,

• Integer Overflows,

• Uninitialized variables.

Frama-C appears so to be an interesting tool only for certain categories of code, where the
following properties are met:

- code is deeply mastered by the developer (no use of frameworks nor a lot of additional libraries)

- code has low interaction with its environment and users

- code does not rely on implicit system treatment of it

9 https://www.misra.org.uk/Publications/tabid/57/Default.aspx

VESSEDIA D1.7 Page 53 of 104

- code follows a specification to avoid potential flaws

Those codes can be found in embedded systems nowadays. Unfortunately, many of the new
embedded systems (IOT and the like) are coded by less-mature organizations, where those
categories of code are still not developed.

4.2 Integration of the modified Frama-C into the proposed
methodology

4.2.1 Using Frama-C on the automated review part

4.2.1.1 Modifying Frama-C to support more codes

Frama-C appears to not be as efficient for codes that require a lot of interaction with their
environment, because those interactions need modelling, and is not able to analyze the standard
functions calls without added specifications.

On the latter, an analysis of Frama-C internals reveals that Frama-C defines what is called stubs
for the standard Libc functions. Those stubs are actually E-ACSL annotations on top of every libc
functions, ensuring some formal properties. Within those stubs, it appears that there is most of
the time no annotations regarding potential security problems involved by the use of those
functions. For example, here is the stub of the fgets function (which will be modified later on):

/*@

 requires valid_stream: \valid(stream);

 assigns s[0..size] \from indirect:size, indirect:*stream;

 assigns \result \from s, indirect:size, indirect:*stream;

 ensures result_null_or_same: \result == \null || \result == s;

 ensures terminated_string_on_success:

 \result != \null ==> valid_string(s);

 */

What this stub does is the following:

• By calling \valid(stream), it is verified that stream is allocated memory

• Assigns clauses are here to assign symbolic values to the destination buffer

• Ensures clauses add additional properties to the symbolic values. It is for example
added that the result is either the destination buffer assigned by the previous clauses or
the null pointer.

As one can denote, there is no condition to make sure that the destination buffer size is enough
to hold the stream. As such, a buffer overflow won’t be detected there.

Those stubs can be partially adapted to security reviews. As a reminder, given that high
constraints are often given to the reviewer, the reviewer should be able to use Frama-C quickly
on the code to analyze, without having to study in-depth the code first. The idea is to ensure that
Frama-C detects at least potential dangerous functions calls that may indicate to the reviewer
where potential vulnerabilities in the source code reside.

To do so, E-ACSL functionalities have been studied a bit more in-depth. Basically, it is possible
to ensure formal properties on a fixed sized memory area, but otherwise, it is not directly possible
to model environment interaction in case the environment is not modeled first (e.g. it’s not possible
to write completely generic environment interactions) or to create on-the-fly annotations based on
analyzed code properties. From those observations, the stubs can be modified like as follow:

VESSEDIA D1.7 Page 54 of 104

- The first case is when the function may generate buffer overflows, and this function is using a
size parameter as an argument. It is here possible to define that the output memory should be
valid, and to make sure that there is no buffer overflow. To do so, it is possible to add the following
pre-condition:

requires <function_name>_security_potential_buffer_overflow: \valid(dest + (0

.. size - 1));

So, in the case of the fgets function for example, the stub is changed from:

/*@

 requires valid_stream: \valid(stream);

 assigns s[0..size] \from indirect:size, indirect:*stream;

 assigns \result \from s, indirect:size, indirect:*stream;

 ensures result_null_or_same: \result == \null || \result == s;

 ensures terminated_string_on_success:

 \result != \null ==> valid_string(s);

 */

extern char *fgets(char * restrict s, int size,

 FILE * restrict stream);

To:

/*@

 requires fgets_security_potential_buffer_overflow: \valid(s + (0 .. size -

1));

 requires valid_stream: \valid(stream);

 assigns s[0..size] \from indirect:size, indirect:*stream;

 assigns \result \from s, indirect:size, indirect:*stream;

 ensures result_null_or_same: \result == \null || \result == s;

 ensures terminated_string_on_success:

 \result != \null ==> valid_string(s);

 */

extern char *fgets(char * restrict s, int size,

 FILE * restrict stream);

This case can be adapted to the following functions: strncpy, memcpy, bcopy, strncat.

- In the case the library function may generates buffer overflow, but there is no size parameter in
its argument, there is no way to simply create a stub verifying that the size of the destination is
superior or equal to the length of the input (especially when the input comes from user supplied
string). As such, instead of making formal assertions here, it is possible to use Frama-C to detect
the use of such a function (instead of using an additional tool). To do so, one could use a
requirement pre-condition that is always false. But this comes at the cost of the function to not be
analyzed by the core of Frama-c. In fact, the only proper way to do it is to modify Frama-c shipping
or to rewrite every dangerous C functions to include a wrong assert that will emit an alarm during
the analysis. The first approach does seem better, as it avoids to maintain a separate codebase
from Frama-c and standard Libc. One can find the corresponding modifications in the annex of
this document. Those modifications for example permit to emit a warning when the functions gets

and toto are called.

VESSEDIA D1.7 Page 55 of 104

- In the case the function may create potential integer overflows; it seems there is no way to
ensure such a thing using E-ACSL. The idea is to use the same modifications than before to emit
a warning when a dangerous function is called.

- In the case the function is sensible to format string vulnerabilities, there is also no possibility
using E-ACSL to detect them accurately. The same approach than before can be applied, in order
to detect them.

4.2.1.2 Generic methodology to make Frama-C analyses

The following paragraph presents a generic approach on how to use Frama-C to analyze a source
code in the automated review part of the methodology. This approach is to be followed in the case
one reviewer has to use Frama-C on a code. To produce this methodology, the following two
principles were followed: the automated review part should be able to detect most of the intrinsic
C vulnerabilities, and this review should not take too long to be done. Especially, it was sought to
reduce a lot the verbosity of Frama-C. This methodology assumes also that the reviewer knows
if the code can be analyzed with Frama-C. Indeed, C Windows code for example has almost no
chance to be analyzed with Frama-C, as windows libc is not supported. In the case the code is
not complete or use proprietary libraries not shipped with it, due to the soundness of Frama-C,
there is a huge probability that the analysis won’t be relevant.

This methodology is composed of 6 steps:

1) Compiling project with GCC

2) Preprocessing files with Frama-C

3) Frama-C value analysis

4) Results triaging

5) Results analysis

6) Results refining

4.2.1.2.1 Compiling project with GCC

This step is optional but highly recommended. Indeed, the whole compilation chain might not be
provided with the code, and as such simply trying to compile the project will make the reviewer
loose too much time.

If possible, compiling the project with GCC, is a complementary approach to the use of Frama-C.
Indeed, GCC is by itself capable of detecting several vulnerabilities, like uninitialized variables or
types confusions. It is especially useful because it can detect some vulnerabilities not detected
by Frama-C, and conversely, like format string errors and several buffer overflows that may occur
while calling standard libc functions. It is also a first step to make sure that Frama-C will be able
to preprocess the source files.

This compilation needs to be made with several flags to raise more warnings that are interesting
in our case. This flag needs to be added to the compilation chain of the source code.

Those flags are the following:

• Wall: Enables almost all compiler’s warning messages.

• Wextra: Enables some extra warning messages that are not enabled by -Wall.

• Wnull-dereference: This warning is not set on by the two previous options, and can
permit to point out some null dereference vulnerabiltiies.

• Wformat=2: This option enables more precision while emitting warnings on format
strirngs.

• Wpedantic: Enables some checks like arithmetic overflows.

VESSEDIA D1.7 Page 56 of 104

• Wconversion: Enbales some additional checks on type conversions, as it is not
enabled by –Wall and –Wextra.

Once the compilation is ended, every warning should be investigated to check if there is any
potential security vulnerability declared with it.

From a practical point of view, compilation chains are often provided with a Makefile. A Typical

workflow is to open that Makefile, and search for the CPPFLAS or CFLAGS variable. This

variable is modified by adding “-Wall –Wextra”. Then the compilation can be launched by a make

all | tee output.txt command. By adding tee command, the output is redirected also into

a file, facilitating the process of the warnings emitted.

4.2.1.2.2 Preprocessing files with Frama-C

The next step of the analysis is to preprocess files with Frama-C, that is simply parse them and
make sure Frama-C is capable of handling every construct. To do so, the following command
should be entered:

frama-c –c11 –machdep <the targeted platform for our code> `find . –name *.c`

The -c11 option is added to the command line to allow the use of some C11 constructs that are

otherwise prohibited. The idea is to tend to a more global analysis and avoid possible errors that
can be simply omitted. Here are two examples of prohibited syntax that are authorized when using
the –c11 option:

static const int NUM = 6;

void function(void) {

 char test[NUM];

 char test1[6] = {0};

}

In this example, the first array declaration is not correct because of the constant integer passed
as initialization size. In the second one, the syntax is prohibited because of the initializer “{0}”.

The option machdep is used to avoid errors based on the size and alignment of elementary data

types.

4.2.1.2.3 Frama-C in-depth analysis

To run the real analysis of Frama-C, the following command line should be used:

frama-c –c11 –machdep <arch> -val -no-results -remove-redundant-alarms -

value-log w:<output_file> -val-reduce-on-logic-alarms `find . –name *.c` -

save savefile

Once this command is finished, the output file should be gathered for the following steps of the
use of Frama-C. Indeed, this command basically asks Frama-C to simply output warnings in the
output_file, and to reduce redundant alarms the most. The –no-results option is used as it is

not relevant in our case to keep a trace of the values across the program symbolic execution.

4.2.1.2.4 Triaging results

The next step is to triage a bit the results of the analysis, and especially to remove useless alarms,
from a security view point, that may be present within the output file. To do so, the following script
might be used on the output file:

cat $1| grep -v 'RHS' > temp1

cat temp1| grep -v 'LHS' > temp2

VESSEDIA D1.7 Page 57 of 104

cat temp2| grep -v 'unknown' > temp3

cat temp3| grep -v 'invalid' > temp4

cat temp4| grep -v '\[value\] warning' > temp5

cat temp5| grep -v 'pointer comparison' > temp6

This script does the following:

• removes possibly warning left in the output_file, that are not alarms. Indeed, it appears
that only alarms are relevant to security analysis.

• Removes some messages stating on a non-compliance from MISRA development guide.
These messages are for example indicating that it is not possible to use non binary fields
on binary operators (the remove of lines using RHS and LHS keywords).

• Removes messages stating Frama-C was not able to correctly check some E-ACSL
properties. This is the removal based on unknown and invalid keywords.

• Removes messages stating on an error about a pointer comparison. In fact, the
comparison might be false from a logical point of view, but it should not create any bug.
Those messages could however be used in the manual analysis.

4.2.1.2.5 Analyzing results

The first step for analyzing results is to access the “red alarms” of Frama-c, e.g. those

considered as critical or that are analysis errors. To do so, graphical interface should be used
with the results of the analysis. To do so, the following command should be used:

frama-c-gui –load savefile

where savefile is the filename used as a parameter for the save argument of the analysis.

Once in the GUI, the “red alarms” tab should then be accessed, and the alarms emitted here

analyzed. Here, a “mem_access” alarm indicates a wrong memory access or allocation, inducing

potentially either an overflow or a potential leak of information. An “Initialization” alarm

indicates a potential use of an uninitialized variable.

Figure 35: accessing red alarms tab within the GUI of Frama-c

Then, every line of the output file (the one containing all the warnings) should be analyzed. Here
is how it can be done:

VESSEDIA D1.7 Page 58 of 104

• If the line contains the following: “out of bounds write”, followed by a potential

“\valid(<expression>”. This message means there is potentially a buffer overflow in

the application. To determine if the alert is relevant or not, the reviewer needs to check for
the size of the buffer in which some data is written, compared to the size of the data
written.

• If the line indicates the following: “out of bounds read”. This message indicates a

potential information leak. The reviewer needs to make sure that the memory accessed is
in fact allocated.

• If the message is: “accessing out of bound index”. This message may indicate a

potential of-by-one bug or buffer overflow. Once again, the idea for the reviewer is to check
that indeed the buffer access is realized within its bounds or not.

• If the line contains “signed/unsigned overflow”. This message indicates a potential

integer overflow problem. The reviewer has to make sure that such an overflow might not
occur.

• Another message of interest is “accessing left-value that contains escaping

address”. Indeed, this message might indicate a potential use-after-free, or double free

vulnerability, because Frama-C cannot make sure the address accessed is valid. To
check, a data flow analysis on the variable creating this message should be realized to
verify if it is always allocated and correctly accessed.

• The sixth message that may be interesting is “accessing uninitialized left-

value”. It may indeed indicate an uninitialized variable use. The reviewer should conduct

a data flow analysis to check if the variable is in fact initialized or not.

• Some messages may indicate “underflow”, that means a possible logic error may occur.
The reviewer should check if the access variables were not tampered in an incorrect
manner.

4.2.1.2.6 Refining results

This step should in fact be conducted at the same time than the previous step. The idea is to be
able to realize a quick triaging of results, or to rerun an analysis that may provide better results in
the case the number of alerts emitted by Frama-C is too high for the analysis time to fit in the time
given by the reviewer. Unfortunately, this step is too dependent on the results of the analysis.
Some examples will be given instead.

- In the case the reviewer notes that many alarms are emitted by Frama-C due to a huge context
use by the program, he may create a fixed environmental context for the program. To do so, he
may create a new analysis_main function into the program that initiates the whole context of

the analysis, and declare this function as the new entry point for the analysis.

Here is an example taken from the documentation of Frama-C. First, let’s imagine the following
program (in this case, Frama-C will complain on not being able to provide correct interval to argv)
:

int main(int argc, char **argv)

{

 if (argc != 2) usage();

 //following of the program

...

}

void usage(void)

{

 printf("this application expects an argument between '0' and '9' \n");

 exit(1);

}

VESSEDIA D1.7 Page 59 of 104

Based on the information provided by this source code, one can understand that the program
waits for one argument that is a numeric value. As such, the analysis_main function can be

written like this:

int analysis_main(void)

{

 char *argv[3];

 argv[0]="Analyzed application";

 argv[1]="1";

 argv[2]=NULL;

 return main(2, argv);

}

The same can be done for global variables or environment ones.

- In the case the reviewer notes that a lot of errors are due to the use of a macro, the macro can
be rewritten to be error safe, or some E-ACSL annotations can be added to add to the verification.

- Another way to reduce the number of alarms is to annotate all loops in the code that can be
easily determined. The idea is to check every “for” loops in the code, and check if the boundary

can be determined. If so, an assertion inducing an unrolling of the loop will increase the precision
of the results, which should reduce the number of false positive alarms. This assertion is formed
like that:

/*@ loop pragma UNROLL <number of loops>; */

Here is an example showing how to use such an assertion. Let’s consider the following code:

#include <stdlib.h>

int main() {

 int * tab=(int *) malloc(sizeof(int)*10);

 int i;

 tab[0]=1;

 for (i=0;i<11; i++)

 tab[i]=1;

 return 0;

}

One can see there is a “for” loop within the code, where the boundary is “11”. The “for” loop

will be executed as such ten times. In order to have better results of Frama-c, the code can be
modified like this:

#include <stdlib.h>

int main() {

 int * tab=(int *) malloc(sizeof(int)*10);

 int i;

 tab[0]=1;

 /*@ loop pragma UNROLL 10; */

 for (i=0;i<11; i++)

 tab[i]=1;

 return 0;

}

VESSEDIA D1.7 Page 60 of 104

- Also, if there is too much of the use of some particular constructs in the code, like the use of
dangling pointers between functions, it might be interesting to simply drop every alarms emitted
by Frama-C associated with that, for example by running grep –v on the output file.

- Finally, if there are too many alarms still left, it might be interesting to consider that the code is
not really analyzable by Frama-c. A less precise and sound tool can so be used instead.

4.2.2 Using Frama-C on the manual review part of the analysis phase

Actually, Frama-C could also be used during the manual review of the analysis phase. Indeed, its
formal analysis led to the creation of two plugins that may be interesting in our case, because one
of the major parts of the manual review is to be able for the reviewer to navigate in the source
code given the data flow, and Frama-C is able to construct this data flow.

For example, the reviewer may stumble upon a call to a “strcpy” that may overflow the resulting

buffer, without knowing how the resulting buffer was allocated in the code. To do so, he has to go
to the top of the control flow of the program, to search for the allocation possibilities.

In another part, the reviewer may want to know how the variable that controls the authentication
in a given program is handled. To do so, the idea is to know what are the statements affected by
the modification of this variable in the program.

The first plugin that is of interest is the impact plugin:

Figure 36: using Impact plugin in the graphical interface of Frama-C (green statements are the one
highlighted by Impact plugin)

Basically, this plugin highlights all statements that are affected as a side effect of a given
statement of a C program. That means all statements where data flow is modified, and all
statements in which the statement is used.

The second plugin of interest is the Scope one, using its zones function:

Figure 37: using Zones to highlight statements (in pink) that define the value of huhu variable in the printf
function

VESSEDIA D1.7 Page 61 of 104

This plugin highlights statements in a function that impact the value D of a variable at a certain

point L. It can be interesting in the case big functions are present in the code, to be able to quickly

identify the statements responsible for the value a variable at a point.

The two following plugins can be used like the following: the reviewer detects a point in the code
from where a data flow analysis could be interesting. He then uses the two plugins to be able to
conduct this data flow analysis, and to highlights the statements responsible for the values at this
point of the program. It is a way for him to avoid to analyze useless code.

However, whilst those plugins are of interest, a certain number of limitations are present: for
Impact plugin, there is no clear view of the affected functions. The reviewer needs to navigate by
hand between each function to discover which one is affected. Some buttons to navigate between
the impacted statements, given the dataflow of the program, could be interesting there. In batch
processing, statements impacted are printed without any context apart from the line number. What
could be interesting there is that impact prints the affected statements given the data flow of the
program. Also, Scope plugin do not expand past the caller.

So, in general, Frama-C can be used for the manual review part of the analysis phase in the case
the code is not too big, and can be understood easily for navigation.

VESSEDIA D1.7 Page 62 of 104

Chapter 5 Applying Frama-C’s use on an example

This paragraph aims at explaining how to use Frama-C concretely on a real-life example, given
the methodology presented at the previous chapter. The idea is so to understand how to possibly
adapt quickly Frama-C’s use to the code analyzed in order to get better results.

5.1 Choosing a sample

For the example to be chosen, several criteria have been selected:

• The code should be of a well-known tool

• The code should be known to be vulnerable

• Frama-C should be usable on the code without the need to rewrite huge portions of it

After several searches, it appears that gzip 1.2.4 might be a good candidate. Indeed, several CVE
have been posted on it, and the code appears in the github repository “open-source-case-studies”
of Frama-C, used for benchmarking. Moreover, gzip is currently a tool used on every linux
distribution. The sample used for the following can be found here:
https://ftp.gnu.org/gnu/gzip/gzip-1.2.4.tar. From the Makefile, it appears the code of the Linux

version of Gzip is composed of 7324 LoC.

5.2 Quick discovery phase

This example has no thorough documentation provided. As a starting point, one can however
take the currently available information on gzip given in:

• the man page: http://manpagesfr.free.fr/man/man1/gzip.1.html,

• the readme of the project (as well as the NEWS file, and the Changelog),

• the TODO file, as it may contain information on vulnerabilities to be corrected in the
future.

Gzip is not a critical application, as all it does is basically compressing files and decompressing
them. It is also almost always used with the privileges of the current user. There are two risks
associated with the use of this tool:

- A bug can be triggered in Gzip to alter its execution flow. This can be dangerous in the case
Gzip is for example run on a file storage server. It will indeed provide a remote access to an
attacker. A deny of service is however not interesting in any case, because gzip won’t create a
deny of service of the whole server.

- In case gzip is run with other privileges (because permissions are handled by the underlying
OS), a leak or the rewrite of interesting files could occur. However, this has very low chance to
happen as gzip is not run with other privileges in most cases.

From this quick discovery, one can already states on the relevance of the results from using
Frama-C: the execution flow alteration might be discovered by Frama-C itself, as it will certainly
come from a memory problem. The malicious files manipulation risk however cannot be detected
with Frama-C, because this is a race conditions vulnerability or environment interaction one.

https://ftp.gnu.org/gnu/gzip/gzip-1.2.4.tar
http://manpagesfr.free.fr/man/man1/gzip.1.html

VESSEDIA D1.7 Page 63 of 104

5.3 Review phase

5.3.1 Automated review

Once again, we will step through every steps required for the automated review here. The version
of Frama-C in use here is Frama-C Chlorine (version 17). No stubs modification has been done
for this analysis.

1) Compiling the project

Gzip is shipped with a Makefile.in and a configure script. To create a Makefile, the

command ./configure is launched into the directory of Gzip. Then, to compile it with the

additional options described in the previous chapter, the Makefile is modified as such:

- CFLAGS = -O

+ CFLAGS = -O –Wall –Wextra –Wpedantic –Wformat=2 –Wnull-dereference -

Wconversion

The compilation is then launched. The output is around 200 warnings emitted, and they all
concern possible faults from converting from one type to another. However, most of them appear
to be irrelevant, as the numbers manipulated are too far from the bounds.

2) Preprocessing files

Files are then preprocessed with Frama-C, given the following command:

frama-c –c11 –machdep x86_64 gzip.c zip.c deflate.c trees.c bits.c unzip.c

inflate.c util.c crypt.c lzw.c unlzw.c unpack.c unlzh.c getopt.c

Here, the list of files provided is taken from the Makefile. Indeed, a lots of C files present in the
repository are here for cross-platform support and are not needed (and won’t certainly be correctly
analysed by Frama-C). So, only the relevant ones are included for the preprocessing.

The output of this command is the following :

[kernel] Parsing gzip.c (with preprocessing)

[kernel:typing:incompatible-types-call] gzip.c:448: Warning:

 implicit conversion between incompatible function types:

 void (*)(void)

 and

 void (*)(int)

[kernel:typing:incompatible-types-call] gzip.c:452: Warning:

 implicit conversion between incompatible function types:

 void (*)(void)

 and

 void (*)(int)

[kernel:typing:incompatible-types-call] gzip.c:457: Warning:

 implicit conversion between incompatible function types:

 void (*)(void)

 and

 void (*)(int)

[kernel:typing:implicit-function-declaration] gzip.c:611: Warning:

VESSEDIA D1.7 Page 64 of 104

 Calling undeclared function isatty. Old style K&R code?

[kernel:typing:implicit-function-declaration] gzip.c:778: Warning:

 Calling undeclared function close. Old style K&R code?

[kernel:typing:implicit-function-declaration] gzip.c:831: Warning:

 Calling undeclared function unlink. Old style K&R code?

[kernel:typing:implicit-function-declaration] gzip.c:1369: Warning:

 Calling undeclared function lseek. Old style K&R code?

[kernel:typing:implicit-function-declaration] gzip.c:1373: Warning:

 Calling undeclared function read. Old style K&R code?

[kernel:typing:implicit-function-declaration] gzip.c:1632: Warning:

 Calling undeclared function chown. Old style K&R code?

[kernel] Parsing zip.c (with preprocessing)

[kernel:typing:implicit-function-declaration] zip.c:111: Warning:

 Calling undeclared function read. Old style K&R code?

[kernel] Parsing deflate.c (with preprocessing)

[kernel] Parsing trees.c (with preprocessing)

[kernel] Parsing bits.c (with preprocessing)

[kernel] Parsing unzip.c (with preprocessing)

[kernel] Parsing inflate.c (with preprocessing)

[kernel] Parsing util.c (with preprocessing)

[kernel:typing:implicit-function-declaration] util.c:46: Warning:

 Calling undeclared function read. Old style K&R code?

[kernel:typing:implicit-function-declaration] util.c:156: Warning:

 Calling undeclared function write. Old style K&R code?

[kernel] Parsing crypt.c (with preprocessing)

[kernel] Parsing lzw.c (with preprocessing)

[kernel] Parsing unlzw.c (with preprocessing)

[kernel:typing:implicit-function-declaration] unlzw.c:261: Warning:

 Calling undeclared function read. Old style K&R code?

[kernel] Parsing unpack.c (with preprocessing)

[kernel] Parsing unlzh.c (with preprocessing)

[kernel] Parsing getopt.c (with preprocessing)

[kernel] User Error: Incompatible declaration for read:

 different integer types unsigned long and unsigned int

 First declaration was at gzip.c:1373

 Current declaration is at zip.c:111

[kernel] Frama-C aborted: invalid user input.

A study of this output shows that Frama-C is not able to find the definition of several functions,
whilst GCC does. That means there is certainly some compilations options at the source of the
problems of Frama-C. After a bit of research, it appears the Makefile contains the following flags:
-DSTDC_HEADERS=1 -DHAVE_UNISTD_H=1 -DDIRENT=1 -DNO_UTIME=1.

VESSEDIA D1.7 Page 65 of 104

The command invoking Frama-C can be modified to include those:

frama-c -c11 -machdep x86_64 -cpp-extra-args='-DSTDC_HEADERS=1 -

DHAVE_UNISTD_H=1 -DDIRENT=1 -DNO_UTIME=1' gzip.c zip.c deflate.c trees.c

bits.c unzip.c inflate.c util.c crypt.c lzw.c unlzw.c unpack.c unlzh.c

getopt.c

The only error appearing in the output is then the following:

[kernel] User Error: Incompatible declaration for strncmp: different integer

types unsigned long and int

First declaration was at FRAMAC_SHARE/libc/string.h:130

Current declaration is at getopt.c:175

To correct this error, the following modification is done in getopt.c:

- extern int strncmp(const char *s1, const char *s2, int n);

+ extern int strncmp(const char *s1, const char *s2, size_t n);

There are warnings left, but the processing does not output any more error.

3) Analysis and triaging

The analysis is run with the following command:

frama-c -c11 -machdep x86_64 -cpp-extra-args='-DSTDC_HEADERS=1 -

DHAVE_UNISTD_H=1 -DDIRENT=1 -DNO_UTIME=1' -val -no-results -remove-redundant-

alarms -value-log w:<output_file> -val-reduce-on-logic-alarms gzip.c zip.c

deflate.c trees.c bits.c unzip.c inflate.c util.c crypt.c lzw.c unlzw.c

unpack.c unlzh.c getopt.c –save <savefile>

The first analysis terminates with an error stating a degeneration point reached by the EVA plugin.
The option -val-ignore-recursive-calls is used to be able to conduct the analysis. It

takes approximately 1h and the output is 2807 lines long in the log file. A count of the keyword
alarm reveals 1669 unique alarms. Once passed to the triaging script, the final output is

composed of 1382 alarms.

4) Results review

Some attempts were made to reduce even more the number of alarms emitted by EVA plugin. A
quick way is to create a context for the main function. While doing this, the number of alarms is
reduced by several dozens. It was attempted also to make few modifications on macros to add
type casts when it was not present. The few modifications realized did not modify the total number
of alarms. In the end, there are still approximately one thousand alarms to be checked by the
reviewer.

This is a too big number to be considered like a quick-win phase of the review. In fact, checking
every alarm might be here not more efficient that making the whole review by hand. As such, the
code analysed here might not be appropriate for an analysis with Frama-c. An interesting feature
would be to provide a score associated with an alarm. The idea would be to indicate the
“correctness” of one alarm (for example, if an alarm is emitted based on an approximation realized
by Frama-C, then the score is low).

However, instead of checking every alarm, it was searched if Frama-C was able to detect the
CVE that are depending on bugs in the code:

- CVE-2010-0001: Integer underflow in the unlzw function in unlzw.c in gzip before 1.4 on 64-bit
platforms, as used in ncompress and probably others, allows remote attackers to cause a denial
of service (application crash) or possibly execute arbitrary code via a crafted archive that uses
LZW compression, leading to an array index error. If one looks at the patch:

diff --git a/unlzw.c b/unlzw.c

VESSEDIA D1.7 Page 66 of 104

index fb9ff76..8f8cbee 100644

--- a/unlzw.c

+++ b/unlzw.c

@@ -240,7 +240,8 @@ int unlzw(in, out)

 int o;

 resetbuf:

- e = insize-(o = (posbits>>3));

+ o = posbits >> 3;

+ e = o <= insize ? insize - o : 0;

 for (i = 0 ; i < e ; ++i) {

 inbuf[i] = inbuf[i+o];

It seems that e, which should be a positive integer, might indeed get a negative value if o is bigger

than insize. Then, the variable e is used to indicate the offset where to read in the input file. As

such, trying to read a negative offset in the input file will trigger the crash. Here, Frama-C gives
several warnings of integer overflow. It could be used to potentially detect this vulnerability.

- CVE-2009-2624: it appears huft_build function in inflate.c in gzip before 1.3.13 creates a hufts
(aka huffman) table that is too small. When looking at the patch, here is the correction applied:

diff --git a/inflate.c b/inflate.c

index 7dd630a..2f8670d 100644

--- a/inflate.c

+++ b/inflate.c

@@ -335,13 +335,15 @@ int *m; /* maximum lookup bits, returns

actual */

 } while (--i);

 if (c[0] == n) /* null input--all zero length codes */

 {

- q = (struct huft *) malloc (2 * sizeof *q);

+ q = (struct huft *) malloc (3 * sizeof *q);

 if (!q)

 return 3;

- hufts += 2;

+ hufts += 3;

 q[0].v.t = (struct huft *) NULL;

 q[1].e = 99; /* invalid code marker */

 q[1].b = 1;

+ q[2].e = 99; /* invalid code marker */

+ q[2].b = 1;

 *t = q + 1;

 *m = 1;

VESSEDIA D1.7 Page 67 of 104

 return 0;

One can understand that a heap overflow may be created within the application, in the case the
archive inflated is specially crafted for. Unfortunately, this vulnerability cannot be trivially
determined. Frama-C warns about a potential buffer overflow once the q is written into:

inflate.c:446:[value:alarm] warning: out of bounds write. assert \valid(q +

j_0);

As such, there is a possibility that Frama-C detects correctly the vulnerability here.

- CVE-2001-1228: Buffer overflows in gzip 1.3x, 1.2.4, and other versions might allow attackers
to execute code via a long file name, possibly remotely if gzip is run on an FTP server. The patch
is the following:

--- gzip.c Thu Aug 19 09:39:43 1993

+++ gzip-fix.c Sun Dec 30 13:57:44 2001

@@ -1006,7 +1006,7 @@

char *dot; /* pointer to ifname extension, or NULL */

#endif

- strcpy(ifname, iname);

+ strncpy(ifname, iname, sizeof(ifname) - 1);

/* If input file exists, return OK. */

if (do_stat(ifname, sbuf) == 0) return OK;

@@ -1683,7 +1683,7 @@

}

len = strlen(dir);

if (len + NLENGTH(dp) + 1 < MAX_PATH_LEN - 1) {

- strcpy(nbuf,dir);

+ strncpy(nbuf, dir, sizeof(nbuf) - 1);

if (len != 0 /* dir = "" means current dir on Amiga */

#ifdef PATH_SEP2

&& dir[len-1] != PATH_SEP2

Here, a buffer overflow can be triggered in the BSS by the use of a very long input file (in fact,
today, given limitations on command line, this bug cannot be triggered). The output of Frama-C
reveals however that this vulnerability is not detected while using the common shipping. In the
case the stub of the function is modified however, the vulnerability could have been identified.

Finally, Frama-C appears interesting to detect potential vulnerabilities in the source code.
Unfortunately, its actual output is too much to be relevant for security reviewers.

5.3.2 Manual review phase

As it is not easy to explain how Frama-C Impact and Scopes plugin can be used for this part, it
was intended to show an example on how to use those plugins to get back to the CVE-2005-
0988. This CVE concerns the possibility to modify permissions of arbitrary files when

VESSEDIA D1.7 Page 68 of 104

decompressing, via a hard-link attack, within setuid directories. This can be used for example

to obtain a readable file that was not.

However, once this CVE has been analyzed, it appears that it cannot be really detected given
scopes plugin (it was hoped that a handle to the same file is used, but here istat structure is

used in the meantime).

Unfortunately, no other CVE published on Gzip can be confirmed by the two plugins highlighted
previously.

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 69 of 104

Chapter 6 Summary and Conclusion

This document has presented a generic security source code auditing methodology, as well as C
memory management and several common vulnerabilities depending on it. Using Frama-C for such
an audit has been discussed then, from a generic point of view as well as on a real open-source
example.

For vulnerabilities detection, Frama-C seems interesting in the case of narrowed and well-mastered
code, which can be found in embedded systems. However, in the case of codes having a huge
number of interactions with their environment, using Frama-C can be more difficult.

Several improvements can be made to Frama-C in order to be able to analyse more codes, from
stubs development (and maybe E-ACSL) to dedicated plugins for security reviews. VESSEDIA
project finally appears to be good candidate to provide such improvements.

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 70 of 104

Chapter 7 List of Abbreviations

Abbreviation Translation

API Application programing interface

CMM Capability Mature Model

CPU Control processing unit

CVE Common vulnerability exposure

DoS Deny of Service

I/O Input/Output

IoT Internet of Things

LoC Lines of Code

OS Operating System

SDLC Software development life-cycle

WP Work Package

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 71 of 104

Chapter 8 Bibliography

[1] “Managing the Software Process”, Watts Humphrey
[2] “KeePass Password Safe, code review results report”,

https://joinup.ec.europa.eu/sites/default/files/inline-files/DLV%20WP6%20-01-
%20KeePass%20Code%20Review%20Results%20Report_published.pdf

[3] “ITIL Version 3 Service Lifecycle for Application Support”, https://www.fichier-
pdf.fr/2011/06/16/itil-v3-application-support/

[4] “ISO/IEC 27034”, https://www.iso.org/en/standard/44378.html
[5] “NIST SP 800-37/64”, https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final
[6] “SOG-IS Agreed Cryptographic Mechanisms”,

https://www.sogis.org/uk/supporting_doc_en.html
[7] Owasp code review project,

https://www.owasp.org/index.php/OWASP_Code_Review_Guide_Table_of_Contents
[8] SOG-IS agreed cryptographic mechanisms,

https://www.sogis.org/uk/supporting_doc_en.html
[9] MISRA-C coding baselines, https://www.misra.org.uk/Publications/tabid/57/Default.aspx

https://joinup.ec.europa.eu/sites/default/files/inline-files/DLV%20WP6%20-01-%20KeePass%20Code%20Review%20Results%20Report_published.pdf
https://joinup.ec.europa.eu/sites/default/files/inline-files/DLV%20WP6%20-01-%20KeePass%20Code%20Review%20Results%20Report_published.pdf
https://www.fichier-pdf.fr/2011/06/16/itil-v3-application-support/
https://www.fichier-pdf.fr/2011/06/16/itil-v3-application-support/
https://www.iso.org/en/standard/44378.html
https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final
https://www.sogis.org/uk/supporting_doc_en.html
https://www.sogis.org/uk/supporting_doc_en.html
https://www.misra.org.uk/Publications/tabid/57/Default.aspx

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 72 of 104

Chapter 9 Annex

Here are the complete files of Frama-c source code modified to emit warnings when dangerous
functions are called. In order to add more dangerous functions the line 196 of the
compute_functions.ml file should be modified, by adding:

|| (String.equal kf_name “<name_of_function>”)

- File value_parameters.mli

(**)

(* *)

(* This file is part of Frama-C. *)

(* *)

(* Copyright (C) 2007-2018 *)

(* CEA (Commissariat à l'énergie atomique et aux énergies *)

(* alternatives) *)

(* *)

(* you can redistribute it and/or modify it under the terms of the GNU *)

(* Lesser General Public License as published by the Free Software *)

(* Foundation, version 2.1. *)

(* *)

(* It is distributed in the hope that it will be useful, *)

(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)

(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)

(* GNU Lesser General Public License for more details. *)

(* *)

(* See the GNU Lesser General Public License version 2.1 *)

(* for more details (enclosed in the file licenses/LGPLv2.1). *)

(* *)

(**)

include Plugin.General_services

module ForceValues: Parameter_sig.With_output

module EnumerateCond: Parameter_sig.Bool

module OracleDepth: Parameter_sig.Int

module ReductionDepth: Parameter_sig.Int

module CvalueDomain: Parameter_sig.Bool

module EqualityDomain: Parameter_sig.Bool

module GaugesDomain: Parameter_sig.Bool

module SymbolicLocsDomain: Parameter_sig.Bool

module BitwiseOffsmDomain: Parameter_sig.Bool

module InoutDomain: Parameter_sig.Bool

module SignDomain: Parameter_sig.Bool

module PrinterDomain: Parameter_sig.Bool

module NumerorsDomain: Parameter_sig.Bool

module ApronOctagon: Parameter_sig.Bool

module ApronBox: Parameter_sig.Bool

module PolkaLoose: Parameter_sig.Bool

module PolkaStrict: Parameter_sig.Bool

module PolkaEqualities: Parameter_sig.Bool

module EqualityCall: Parameter_sig.String

module EqualityCallFunction:

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 73 of 104

 Parameter_sig.Map with type key = Cil_types.kernel_function

 and type value = string

module EqualityStorage: Parameter_sig.Bool

module SymbolicLocsStorage: Parameter_sig.Bool

module GaugesStorage: Parameter_sig.Bool

module ApronStorage: Parameter_sig.Bool

module BitwiseOffsmStorage: Parameter_sig.Bool

module AutomaticContextMaxDepth: Parameter_sig.Int

module AutomaticContextMaxWidth: Parameter_sig.Int

module AllRoundingModesConstants: Parameter_sig.Bool

module NoResultsFunctions: Parameter_sig.Fundec_set

module ResultsAll: Parameter_sig.Bool

module JoinResults: Parameter_sig.Bool

module WarnSignedConvertedDowncast: Parameter_sig.Bool

module WarnPointerSubstraction: Parameter_sig.Bool

module WarnCopyIndeterminate: Parameter_sig.Kernel_function_set

module IgnoreRecursiveCalls: Parameter_sig.Bool

module SemanticUnrollingLevel: Parameter_sig.Int

module SlevelFunction:

 Parameter_sig.Map with type key = Cil_types.kernel_function

 and type value = int

module SlevelMergeAfterLoop: Parameter_sig.Kernel_function_set

module MinLoopUnroll : Parameter_sig.Int

module DescendingIteration: Parameter_sig.String

module HierarchicalConvergence: Parameter_sig.Bool

module WideningDelay: Parameter_sig.Int

module WideningPeriod: Parameter_sig.Int

module ArrayPrecisionLevel: Parameter_sig.Int

module AllocatedContextValid: Parameter_sig.Bool

module InitializationPaddingGlobals: Parameter_sig.String

module SaveFunctionState:

 Parameter_sig.Map with type key = Cil_types.kernel_function

 and type value = string

module LoadFunctionState:

 Parameter_sig.Map with type key = Cil_types.kernel_function

 and type value = string

val get_SaveFunctionState : unit -> Cil_types.kernel_function * string

val get_LoadFunctionState : unit -> Cil_types.kernel_function * string

module Numerors_Real_Size : Parameter_sig.Int

module Numerors_Mode : Parameter_sig.String

module UndefinedPointerComparisonPropagateAll: Parameter_sig.Bool

module WarnPointerComparison: Parameter_sig.String

module ReduceOnLogicAlarms: Parameter_sig.Bool

module InitializedLocals: Parameter_sig.Bool

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 74 of 104

module UsePrototype: Parameter_sig.Kernel_function_set

module SkipLibcSpecs: Parameter_sig.Bool

module RmAssert: Parameter_sig.Bool

module LinearLevel: Parameter_sig.Int

module BuiltinsOverrides:

 Parameter_sig.Map with type key = Cil_types.kernel_function

 and type value = string

module BuiltinsAuto: Parameter_sig.Bool

module BuiltinsList: Parameter_sig.Bool

module SplitReturnFunction:

 Parameter_sig.Map with type key = Cil_types.kernel_function

 and type value = Split_strategy.t

module SplitGlobalStrategy: State_builder.Ref with type data = Split_strategy.t

module ValShowProgress: Parameter_sig.Bool

module ValShowInitialState: Parameter_sig.Bool

module ValShowPerf: Parameter_sig.Bool

module ValPerfFlamegraphs: Parameter_sig.String

module ShowSlevel: Parameter_sig.Int

module PrintCallstacks: Parameter_sig.Bool

module AlarmsWarnings: Parameter_sig.Bool

module ReportRedStatuses: Parameter_sig.String

module NumerorsLogFile: Parameter_sig.String

module WarnBuiltinOverride: Parameter_sig.Bool

module MemExecAll: Parameter_sig.Bool

module InterpreterMode: Parameter_sig.Bool

module StopAtNthAlarm: Parameter_sig.Int

(** Dynamic allocation *)

module MallocFunctions: Parameter_sig.String_set

module AllocReturnsNull: Parameter_sig.Bool

module MallocLevel: Parameter_sig.Int

val parameters_correctness: Typed_parameter.t list

val parameters_tuning: Typed_parameter.t list

val parameters_abstractions: Typed_parameter.t list

(** Debug categories responsible for printing initial and final states of Value.

 Enabled by default, but can be disabled via the command-line:

 -value-msg-key="-initial_state,-final_state" *)

val dkey_initial_state : category

val dkey_final_states : category

(** Warning category used when emitting an alarm in "warning" mode. *)

val wkey_alarm: warn_category

(** Warning category used for the warning "locals escaping scope". *)

val wkey_locals_escaping: warn_category

(** Warning category used to print garbled mix *)

val wkey_garbled_mix: warn_category

(** Warning category used for "cannot use builtin due to missing spec" *)

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 75 of 104

val wkey_builtins_missing_spec: warn_category

(** Warning category used for "definition overridden by builtin" *)

val wkey_builtins_override: warn_category

(** Warning category used for calls to libc functions whose specification

 is currently unsupported. *)

val wkey_libc_unsupported_spec : warn_category

(** Warning category used for "loop not completely unrolled" *)

val wkey_loop_unrolling : warn_category

(* ABP *)

(** Warning category used for "dangerous functions traversal" *)

val wkey_dangerous_functions : warn_category

(** Debug category used to print information about invalid pointer comparisons*)

val dkey_pointer_comparison: category

(** Debug category used to print the cvalue domain on Frama_C_[dump|show]_each

 functions. *)

val dkey_cvalue_domain: category

(* Print non-bottom product of states with no concretization, revealed by

 an evaluation leading to bottom without alarms. *)

val dkey_incompatible_states: category

(** Debug category used to print information about the iteration *)

val dkey_iterator : category

(** Debug category used when using Eva callbacks when recording the results of

 a function analysis. *)

val dkey_callbacks : category

(** Debug category used to print the usage of widenings. *)

val dkey_widening : category

(*

Local Variables:

compile-command: "make -C ../../.."

End:

*)

- File value_parameters.ml

(**)

(* *)

(* This file is part of Frama-C. *)

(* *)

(* Copyright (C) 2007-2018 *)

(* CEA (Commissariat à l'énergie atomique et aux énergies *)

(* alternatives) *)

(* *)

(* you can redistribute it and/or modify it under the terms of the GNU *)

(* Lesser General Public License as published by the Free Software *)

(* Foundation, version 2.1. *)

(* *)

(* It is distributed in the hope that it will be useful, *)

(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 76 of 104

(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)

(* GNU Lesser General Public License for more details. *)

(* *)

(* See the GNU Lesser General Public License version 2.1 *)

(* for more details (enclosed in the file licenses/LGPLv2.1). *)

(* *)

(**)

(* Dependencies to kernel options *)

let kernel_parameters_correctness = [

 Kernel.MainFunction.parameter;

 Kernel.LibEntry.parameter;

 Kernel.AbsoluteValidRange.parameter;

 Kernel.SafeArrays.parameter;

 Kernel.UnspecifiedAccess.parameter;

 Kernel.SignedOverflow.parameter;

 Kernel.UnsignedOverflow.parameter;

 Kernel.LeftShiftNegative.parameter;

 Kernel.RightShiftNegative.parameter;

 Kernel.SignedDowncast.parameter;

 Kernel.UnsignedDowncast.parameter;

]

let parameters_correctness = ref Typed_parameter.Set.empty

let parameters_tuning = ref Typed_parameter.Set.empty

let add_dep p =

 State_dependency_graph.add_codependencies

 ~onto:Db.Value.self

 [State.get p.Typed_parameter.name]

let add_correctness_dep p =

 if Typed_parameter.Set.mem p !parameters_correctness then

 Kernel.abort "adding correctness parameter %a twice"

 Typed_parameter.pretty p;

 add_dep p;

 parameters_correctness := Typed_parameter.Set.add p !parameters_correctness

let add_precision_dep p =

 if Typed_parameter.Set.mem p !parameters_tuning then

 Kernel.abort "adding tuning parameter %a twice"

 Typed_parameter.pretty p;

 add_dep p;

 parameters_tuning := Typed_parameter.Set.add p !parameters_tuning

let () = List.iter add_correctness_dep kernel_parameters_correctness

include Plugin.Register

 (struct

 let name = "Eva"

 let shortname = "eva"

 let help =

 "automatically computes variation domains for the variables of the

program"

 end)

let () = Help.add_aliases ["-value-h"; "-val-h"]

let () = add_plugin_output_aliases ["value"]

(* Debug categories. *)

let dkey_initial_state = register_category "initial-state"

let dkey_final_states = register_category "final-states"

let dkey_pointer_comparison = register_category "pointer-comparison"

let dkey_cvalue_domain = register_category "d-cvalue"

let dkey_incompatible_states = register_category "incompatible-states"

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 77 of 104

let dkey_iterator = register_category "iterator"

let dkey_callbacks = register_category "callbacks"

let dkey_widening = register_category "widening"

let () =

 let activate dkey = add_debug_keys dkey in

 List.iter activate

 [dkey_initial_state; dkey_final_states; dkey_cvalue_domain]

(* Warning categories. *)

let wkey_alarm = register_warn_category "alarm"

let wkey_locals_escaping = register_warn_category "locals-escaping"

let wkey_garbled_mix = register_warn_category "garbled-mix"

let () = set_warn_status wkey_garbled_mix Log.Winactive

let wkey_builtins_missing_spec = register_warn_category "builtins:missing-spec"

let wkey_builtins_override = register_warn_category "builtins:override"

let wkey_libc_unsupported_spec = register_warn_category "libc:unsupported-spec"

let wkey_loop_unrolling = register_warn_category "loop-unrolling"

(* ABP : add 1 line *)

let wkey_dangerous_functions = register_warn_category "dangerous_functions"

let () = set_warn_status wkey_loop_unrolling Log.Wfeedback

module ForceValues =

 WithOutput

 (struct

 let option_name = "-eva"

 let help = "compute values"

 let output_by_default = true

 end)

let () = ForceValues.add_aliases ["-val"]

let domains = add_group "Abstract Domains"

let precision_tuning = add_group "Precision vs. time"

let initial_context = add_group "Initial Context"

let performance = add_group "Results memoization vs. time"

let interpreter = add_group "Deterministic programs"

let alarms = add_group "Propagation and alarms "

let malloc = add_group "Dynamic allocation"

(* -- *)

(* --- Eva domains --- *)

(* -- *)

(* Set of parameters defining the abstractions used in an Eva analysis. *)

let parameters_abstractions = ref Typed_parameter.Set.empty

(* This functor must be used to create parameters for new domains of Eva. *)

module Domain_Parameter

 (X:sig include Parameter_sig.Input val default: bool end)

= struct

 Parameter_customize.set_group domains;

 module Parameter = Bool (X);;

 add_precision_dep Parameter.parameter;

 parameters_abstractions :=

 Typed_parameter.Set.add Parameter.parameter !parameters_abstractions;

 include Parameter

end

module CvalueDomain = Domain_Parameter

 (struct

 let option_name = "-eva-cvalue-domain"

 let help = "Use the default domain of eva."

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 78 of 104

 let default = true

 end)

module EqualityDomain = Domain_Parameter

 (struct

 let option_name = "-eva-equality-domain"

 let help = "Use the equality domain of Eva."

 let default = false

 end)

module GaugesDomain = Domain_Parameter

 (struct

 let option_name = "-eva-gauges-domain"

 let help = "Use the gauges domain of Eva."

 let default = false

 end)

module SymbolicLocsDomain = Domain_Parameter

 (struct

 let option_name = "-eva-symbolic-locations-domain"

 let help = "Use a dedicated domain for symbolic equalities."

 let default = false

 end)

module BitwiseOffsmDomain = Domain_Parameter

 (struct

 let option_name = "-eva-bitwise-domain"

 let help = "Use the bitwise abstractions of Eva."

 let default = false

 end)

module NumerorsDomain = Domain_Parameter

 (struct

 let option_name = "-eva-numerors-domain"

 let help = "Experimental. Use the numerors domain of Eva. This domain \

 computes rounding error bounds for the floating point \

 computations"

 let default = false

 end)

let apron_help = "Experimental binding of the numerical domains provided \

 by the APRON library: http://apron.cri.ensmp.fr/library \n"

module ApronOctagon = Domain_Parameter

 (struct

 let option_name = "-eva-apron-oct"

 let help = apron_help ^ "Use the octagon domain of apron."

 let default = false

 end)

module ApronBox = Domain_Parameter

 (struct

 let option_name = "-eva-apron-box"

 let help = apron_help ^ "Use the box domain of apron."

 let default = false

 end)

module PolkaLoose = Domain_Parameter

 (struct

 let option_name = "-eva-polka-loose"

 let help = apron_help ^ "Use the loose polyhedra domain of apron."

 let default = false

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 79 of 104

 end)

module PolkaStrict = Domain_Parameter

 (struct

 let option_name = "-eva-polka-strict"

 let help = apron_help ^ "Use the strict polyhedra domain of apron."

 let default = false

 end)

module PolkaEqualities = Domain_Parameter

 (struct

 let option_name = "-eva-polka-equalities"

 let help = apron_help ^ "Use the linear equalities domain of apron."

 let default = false

 end)

module InoutDomain = Domain_Parameter

 (struct

 let option_name = "-eva-inout-domain"

 let help = "Compute inputs and outputs within Eva. Experimental."

 let default = false

 end)

module SignDomain = Domain_Parameter

 (struct

 let option_name = "-eva-sign-domain"

 let help = "Use the sign domain of Eva. For demonstration purposes only."

 let default = false

 end)

module PrinterDomain = Domain_Parameter

 (struct

 let option_name = "-eva-printer-domain"

 let help = "Use the printer domain of eva. Useful for the developpers \

 of new abstract domains, as it prints the domain functions \

 that are called by Eva during an analysis."

 let default = false

 end)

let () = Parameter_customize.set_group domains

module EqualityCall =

 String

 (struct

 let option_name = "-eva-equality-through-calls"

 let help = "Equalities propagated through function calls (from the caller

\

 to the called function): none, only equalities between formal

\

 parameters and concrete arguments, or all. "

 let default = "formals"

 let arg_name = "none|formals|all"

 end)

let () = add_precision_dep EqualityCall.parameter

let () = Parameter_customize.set_group domains

module EqualityCallFunction =

 Kernel_function_map

 (struct

 include Datatype.String

 type key = Cil_types.kernel_function

 let of_string ~key:_ ~prev:_ = function

 | None | Some ("none" | "formals" | "all") as x -> x

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 80 of 104

 | _ -> raise (Cannot_build "must be 'none', 'formals' or 'all'.")

 let to_string ~key:_ s = s

 end)

 (struct

 let option_name = "-eva-equality-through-calls-function"

 let help = "Equalities propagated through calls to specific functions. \

 Overrides -eva-equality-call."

 let default = Kernel_function.Map.empty

 let arg_name = "f:none|formals|all"

 end)

let () = add_precision_dep EqualityCallFunction.parameter

let () = Parameter_customize.set_group domains

module Numerors_Real_Size =

 Int

 (struct

 let default = 128

 let option_name = "-eva-numerors-real-size"

 let arg_name = "n"

 let help =

 "set <n> as the significand size of the MPFR representation \

 of reals used by the numerors domain (defaults to 128)"

 end)

let () = add_precision_dep Numerors_Real_Size.parameter

let () = Parameter_customize.set_group domains

module Numerors_Mode =

 String

 (struct

 let option_name = "-eva-numerors-interaction"

 let help = "defines how the numerors domain infers the absolute and the \

 relative errors:\n\

 - relative: the relative is deduced from the absolute;\n\

 - absolute: the absolute is deduced from the relative;\n\

 - none: absolute and relative are computed separately;\n\

 - both: reduced product between absolute and relative."

 let default = "both"

 let arg_name = "relative|absolute|none|both"

 end)

let () =

 Numerors_Mode.set_possible_values ["relative"; "absolute"; "none"; "both"]

let () = add_precision_dep Numerors_Mode.parameter

(* -- *)

(* --- Performance options --- *)

(* -- *)

let () = Parameter_customize.set_group performance

module NoResultsFunctions =

 Fundec_set

 (struct

 let option_name = "-eva-no-results-function"

 let arg_name = "f"

 let help = "do not record the values obtained for the statements of \

 function f"

 end)

let () = add_dep NoResultsFunctions.parameter

let () = NoResultsFunctions.add_aliases ["-no-results-function"]

let () = Parameter_customize.set_group performance

module ResultsAll =

 True

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 81 of 104

 (struct

 let option_name = "-eva-results"

 let help = "record values for any of the statements of the program."

 end)

let () = add_dep ResultsAll.parameter

let () = ResultsAll.add_aliases ["-results"]

let () = Parameter_customize.set_group performance

module JoinResults =

 Bool

 (struct

 let option_name = "-eva-join-results"

 let help = "precompute consolidated states once value is computed"

 let default = true

 end)

let () = JoinResults.add_aliases ["-val-join-results"]

let () = Parameter_customize.set_group performance

module EqualityStorage =

 Bool

 (struct

 let option_name = "-eva-equality-storage"

 let help = "Stores the states of the equality domain during \

 the analysis."

 let default = true

 end)

let () = add_precision_dep EqualityStorage.parameter

let () = Parameter_customize.set_group performance

module SymbolicLocsStorage =

 Bool

 (struct

 let option_name = "-eva-symbolic-locations-storage"

 let help = "Stores the states of the symbolic locations domain during \

 the analysis."

 let default = true

 end)

let () = add_precision_dep SymbolicLocsStorage.parameter

let () = Parameter_customize.set_group performance

module GaugesStorage =

 Bool

 (struct

 let option_name = "-eva-gauges-storage"

 let help = "Stores the states of the gauges domain during the analysis."

 let default = true

 end)

let () = add_precision_dep GaugesStorage.parameter

let () = Parameter_customize.set_group performance

module ApronStorage =

 Bool

 (struct

 let option_name = "-eva-apron-storage"

 let help = "Stores the states of the apron domains during the \

 analysis."

 let default = false

 end)

let () = add_precision_dep ApronStorage.parameter

let () = Parameter_customize.set_group performance

module BitwiseOffsmStorage =

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 82 of 104

 Bool

 (struct

 let option_name = "-eva-bitwise-storage"

 let help = "Stores the states of the bitwise domain during the \

 analysis."

 let default = true

 end)

let () = add_precision_dep BitwiseOffsmStorage.parameter

(* --- *)

(* --- Non-standard alarms --- *)

(* --- *)

let () = Parameter_customize.set_group alarms

module AllRoundingModesConstants =

 False

 (struct

 let option_name = "-eva-all-rounding-modes-constants"

 let help = "Take into account the possibility of constants not being

converted to the nearest representable value, or being converted to higher

precision"

 end)

let () = add_correctness_dep AllRoundingModesConstants.parameter

let () = AllRoundingModesConstants.add_aliases ["-all-rounding-modes-constants"]

let () = Parameter_customize.set_group alarms

module UndefinedPointerComparisonPropagateAll =

 False

 (struct

 let option_name = "-eva-undefined-pointer-comparison-propagate-all"

 let help = "if the target program appears to contain undefined pointer

comparisons, propagate both outcomes {0; 1} in addition to the emission of an

alarm"

 end)

let () = add_correctness_dep UndefinedPointerComparisonPropagateAll.parameter

let () =

 UndefinedPointerComparisonPropagateAll.add_aliases

 ["-undefined-pointer-comparison-propagate-all"]

let () = Parameter_customize.set_group alarms

module WarnPointerComparison =

 String

 (struct

 let option_name = "-eva-warn-undefined-pointer-comparison"

 let help = "warn on all pointer comparisons, on comparisons where \

 the arguments have pointer type (default), or never warn"

 let default = "pointer"

 let arg_name = "all|pointer|none"

 end)

let () = WarnPointerComparison.set_possible_values ["all"; "pointer"; "none"]

let () = add_correctness_dep WarnPointerComparison.parameter

let () = WarnPointerComparison.add_aliases ["-val-warn-undefined-pointer-

comparison"]

let () = Parameter_customize.set_group alarms

let () = Parameter_customize.is_invisible ()

module WarnLeftShiftNegative =

 True

 (struct

 let option_name = "-val-warn-left-shift-negative"

 let help =

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 83 of 104

 "Emit alarms when left-shifting negative integers"

 end)

let () = add_correctness_dep WarnLeftShiftNegative.parameter

let () = WarnLeftShiftNegative.add_update_hook

 (fun _ v ->

 warning "This option is deprecated. Use %s instead"

 Kernel.LeftShiftNegative.name;

 Kernel.LeftShiftNegative.set v)

let () = Parameter_customize.set_group alarms

module WarnSignedConvertedDowncast =

 False

 (struct

 let option_name = "-eva-warn-signed-converted-downcast"

 let help = "Signed downcasts are decomposed into two operations: \

 a conversion to the signed type of the original width, \

 then a downcast. Warn when the downcast may exceed the \

 destination range."

 end)

let () = add_correctness_dep WarnSignedConvertedDowncast.parameter

let () =

 WarnSignedConvertedDowncast.add_aliases

 ["-val-warn-signed-converted-downcast"]

let () = Parameter_customize.set_group alarms

module WarnPointerSubstraction =

 True

 (struct

 let option_name = "-eva-warn-pointer-subtraction"

 let help =

 "Warn when subtracting two pointers that may not be in the same \

 allocated block, and return the pointwise difference between the \

 offsets. When unset, do not warn but generate imprecise offsets."

 end)

let () = add_correctness_dep WarnPointerSubstraction.parameter

let () = WarnPointerSubstraction.add_aliases ["-val-warn-pointer-subtraction"]

let () = Parameter_customize.set_group alarms

module IgnoreRecursiveCalls =

 False

 (struct

 let option_name = "-eva-ignore-recursive-calls"

 let help =

 "Pretend function calls that would be recursive do not happen. Causes

unsoundness"

 end)

let () = add_correctness_dep IgnoreRecursiveCalls.parameter

let () = IgnoreRecursiveCalls.add_aliases ["-val-ignore-recursive-calls"]

let () = Parameter_customize.set_group alarms

module WarnCopyIndeterminate =

 Kernel_function_set

 (struct

 let option_name = "-eva-warn-copy-indeterminate"

 let arg_name = "f | @all"

 let help = "warn when a statement of the specified functions copies a \

 value that may be indeterminate (uninitialized or containing

escaping address). \

 Set by default; can be deactivated for function 'f' by '=-f',

or for all \

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 84 of 104

 functions by '=-@all'."

 end)

let () = add_correctness_dep WarnCopyIndeterminate.parameter

let () = WarnCopyIndeterminate.add_aliases ["-val-warn-copy-indeterminate"]

let () = WarnCopyIndeterminate.Category.(set_default (all ()))

let () = Parameter_customize.set_group alarms

module ReduceOnLogicAlarms =

 False

 (struct

 let option_name = "-eva-reduce-on-logic-alarms"

 let help = "Force reductions by a predicate to ignore logic alarms \

 emitted while the predicated is evaluated (experimental)"

 end)

let () = add_correctness_dep ReduceOnLogicAlarms.parameter

let () = ReduceOnLogicAlarms.add_aliases ["-val-reduce-on-logic-alarms"]

let () = Parameter_customize.set_group alarms

module InitializedLocals =

 False

 (struct

 let option_name = "-eva-initialized-locals"

 let help = "Local variables enter in scope fully initialized. \

 Only useful for the analysis of programs buggy w.r.t. \

 initialization."

 end)

let () = add_correctness_dep InitializedLocals.parameter

let () = InitializedLocals.add_aliases ["-val-initialized-locals"]

(* --- *)

(* --- Initial context --- *)

(* --- *)

let () = Parameter_customize.set_group initial_context

module AutomaticContextMaxDepth =

 Int

 (struct

 let option_name = "-eva-context-depth"

 let default = 2

 let arg_name = "n"

 let help = "use <n> as the depth of the default context for Eva. (defaults

to 2)"

 end)

let () = add_correctness_dep AutomaticContextMaxDepth.parameter

let () = AutomaticContextMaxDepth.add_aliases ["-context-depth"]

let () = Parameter_customize.set_group initial_context

module AutomaticContextMaxWidth =

 Int

 (struct

 let option_name = "-eva-context-width"

 let default = 2

 let arg_name = "n"

 let help = "use <n> as the width of the default context for Eva. (defaults

to 2)"

 end)

let () = AutomaticContextMaxWidth.set_range ~min:1 ~max:max_int

let () = add_correctness_dep AutomaticContextMaxWidth.parameter

let () = AutomaticContextMaxWidth.add_aliases ["-context-width"]

let () = Parameter_customize.set_group initial_context

module AllocatedContextValid =

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 85 of 104

 False

 (struct

 let option_name = "-eva-context-valid-pointers"

 let help = "only allocate valid pointers until context-depth, and then use

NULL (defaults to false)"

 end)

let () = add_correctness_dep AllocatedContextValid.parameter

let () = AllocatedContextValid.add_aliases ["-context-valid-pointers"]

let () = Parameter_customize.set_group initial_context

module InitializationPaddingGlobals =

 String

 (struct

 let default = "yes"

 let option_name = "-eva-initialization-padding-globals"

 let arg_name = "yes|no|maybe"

 let help = "Specify how padding bits are initialized inside global \

 variables. Possible values are <yes> (padding is fully

initialized), \

 <no> (padding is completely uninitialized), or <maybe> \

 (padding may be uninitialized). Default is <yes>."

 end)

let () = InitializationPaddingGlobals.set_possible_values ["yes"; "no"; "maybe"]

let () = add_correctness_dep InitializationPaddingGlobals.parameter

let () = InitializationPaddingGlobals.add_aliases ["-val-initialization-padding-

globals"]

(* --- *)

(* --- Tuning --- *)

(* --- *)

let () = Parameter_customize.set_group precision_tuning

let () = Parameter_customize.is_invisible ()

module DescendingIteration =

 String

 (struct

 let default = "no"

 let option_name = "-eva-descending-iteration"

 let arg_name = "no|exits|full"

 let help = "Experimental. After hitting a postfix point, try to improve \

 the precision with either a <full> iteration or an iteration

from loop \

 head to exit paths (<exits>) or do not try anything (<no>).

Default \

 is <no>."

 end)

let () = DescendingIteration.set_possible_values ["no" ; "exits" ; "full"]

let () = add_precision_dep DescendingIteration.parameter

let () = Parameter_customize.set_group precision_tuning

let () = Parameter_customize.is_invisible ()

module HierarchicalConvergence =

 False

 (struct

 let option_name = "-eva-hierarchical-convergence"

 let help = "Experimental and unsound. Separate the convergence process \

 of each levels of nested loops. This implies that the

convergence of \

 inner loops will be completely recomputed when doing another

iteration \

 of the outer loops."

 end)

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 86 of 104

let () = add_precision_dep HierarchicalConvergence.parameter

let () = Parameter_customize.set_group precision_tuning

module WideningDelay =

 Int

 (struct

 let default = 3

 let option_name = "-eva-widening-delay"

 let arg_name = "n"

 let help =

 "do not widen before the <n>-th iteration (defaults to 3)"

 end)

let () = WideningDelay.set_range ~min:1 ~max:max_int

let () = WideningDelay.add_aliases ["-wlevel"]

let () = add_precision_dep WideningDelay.parameter

let () = Parameter_customize.set_group precision_tuning

module WideningPeriod =

 Int

 (struct

 let default = 2

 let option_name = "-eva-widening-period"

 let arg_name = "n"

 let help =

 "after the first widening, widen each <n> iterations (defaults to 2)"

 end)

let () = WideningDelay.set_range ~min:1 ~max:max_int

let () = add_precision_dep WideningPeriod.parameter

let () = Parameter_customize.set_group precision_tuning

module ILevel =

 Int

 (struct

 let option_name = "-eva-ilevel"

 let default = 8

 let arg_name = "n"

 let help =

 "Sets of integers are represented as sets up to <n> elements. \

 Above, intervals with congruence information are used \

 (defaults to 8, must be between 4 and 128)"

 end)

let () = add_precision_dep ILevel.parameter

let () = ILevel.add_aliases ["-val-ilevel"]

let () = ILevel.add_update_hook (fun _ i -> Ival.set_small_cardinal i)

let () = ILevel.set_range 4 128

let () = Parameter_customize.set_group precision_tuning

module SemanticUnrollingLevel =

 Zero

 (struct

 let option_name = "-eva-slevel"

 let arg_name = "n"

 let help =

 "superpose up to <n> states when unrolling control flow. The larger n,

the more precise and expensive the analysis (defaults to 0)"

 end)

let () = add_precision_dep SemanticUnrollingLevel.parameter

let () = SemanticUnrollingLevel.add_aliases ["-slevel"]

let () = Parameter_customize.set_group precision_tuning

let () = Parameter_customize.argument_may_be_fundecl ()

module SlevelFunction =

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 87 of 104

 Kernel_function_map

 (struct

 include Datatype.Int

 type key = Cil_types.kernel_function

 let of_string ~key:_ ~prev:_ s =

 Extlib.opt_map

 (fun s ->

 try int_of_string s

 with Failure _ ->

 raise (Cannot_build ("'" ^ s ^ "' is not an integer")))

 s

 let to_string ~key:_ = Extlib.opt_map string_of_int

 end)

 (struct

 let option_name = "-eva-slevel-function"

 let arg_name = "f:n"

 let help = "override slevel with <n> when analyzing <f>"

 let default = Kernel_function.Map.empty

 end)

let () = add_precision_dep SlevelFunction.parameter

let () = SlevelFunction.add_aliases ["-slevel-function"]

let () = Parameter_customize.set_group precision_tuning

module SlevelMergeAfterLoop =

 Kernel_function_set

 (struct

 let option_name = "-eva-slevel-merge-after-loop"

 let arg_name = "f | @all"

 let help =

 "when set, the different execution paths that originate from the body \

 of a loop are merged before entering the next excution."

 end)

let () = add_precision_dep SlevelMergeAfterLoop.parameter

let () = SlevelMergeAfterLoop.add_aliases ["-val-slevel-merge-after-loop"]

let () = Parameter_customize.set_group precision_tuning

module MinLoopUnroll =

 Int

 (struct

 let option_name = "-eva-min-loop-unroll"

 let arg_name = "n"

 let default = 0

 let help =

 "unroll <n> loop iterations for each loop, regardless of the slevel \

 settings and the number of states already propagated. \

 Can be overwritten on a case by case basis by loop unroll annotations."

 end)

let () = add_precision_dep MinLoopUnroll.parameter

let () = MinLoopUnroll.set_range 0 max_int

let () = Parameter_customize.set_group precision_tuning

let () = Parameter_customize.argument_may_be_fundecl ()

module SplitReturnFunction =

 Kernel_function_map

 (struct

 (* this type is ad-hoc: cannot use Kernel_function_multiple_map here *)

 include Split_strategy

 type key = Cil_types.kernel_function

 let of_string ~key:_ ~prev:_ s =

 try Extlib.opt_map Split_strategy.of_string s

 with Split_strategy.ParseFailure s ->

 raise (Cannot_build ("unknown split strategy " ^ s))

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 88 of 104

 let to_string ~key:_ v =

 Extlib.opt_map Split_strategy.to_string v

 end)

 (struct

 let option_name = "-eva-split-return-function"

 let arg_name = "f:n"

 let help = "split return states of function <f> according to \

 \\result == n and \\result != n"

 let default = Kernel_function.Map.empty

 end)

let () = add_precision_dep SplitReturnFunction.parameter

let () = SplitReturnFunction.add_aliases ["-val-split-return-function"]

let () = Parameter_customize.set_group precision_tuning

module SplitReturn =

 String

 (struct

 let option_name = "-eva-split-return"

 let arg_name = "mode"

 let default = ""

 let help = "when 'mode' is a number, or 'full', this is equivalent \

 to -val-split-return-function f:mode for all functions f. \

 When mode is 'auto', automatically split states at the end \

 of all functions, according to the function return code"

 end)

module SplitGlobalStrategy = State_builder.Ref (Split_strategy)

 (struct

 let default () = Split_strategy.NoSplit

 let name = "Value_parameters.SplitGlobalStrategy"

 let dependencies = [SplitReturn.self]

 end)

let () =

 SplitReturn.add_set_hook

 (fun _ x -> SplitGlobalStrategy.set

 (try Split_strategy.of_string x

 with Split_strategy.ParseFailure s ->

 abort "@[@[incorrect argument for option %s@ (%s).@]"

 SplitReturn.name s))

let () = add_precision_dep SplitReturn.parameter

let () = SplitReturn.add_aliases ["-val-split-return"]

let () = Parameter_customize.set_group precision_tuning

let () = Parameter_customize.argument_may_be_fundecl ()

module BuiltinsOverrides =

 Kernel_function_map

 (struct

 include Datatype.String

 type key = Cil_types.kernel_function

 let of_string ~key:kf ~prev:_ nameopt =

 begin match nameopt with

 | Some name ->

 if not (!Db.Value.mem_builtin name) then

 abort "option '-val-builtin %a:%s': undeclared builtin '%s'@.\

 declared builtins: @[%a@]"

 Kernel_function.pretty kf name name

 (Pretty_utils.pp_list ~sep:",@ " Format.pp_print_string)

 (List.map fst (!Db.Value.registered_builtins ()))

 | _ -> abort

 "option '-val-builtin':@ \

 no builtin associated to function '%a',@ use '%a:<builtin>'"

 Kernel_function.pretty kf Kernel_function.pretty kf

 end;

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 89 of 104

 nameopt

 let to_string ~key:_ name = name

 end)

 (struct

 let option_name = "-eva-builtin"

 let arg_name = "f:ffc"

 let help = "when analyzing function <f>, try to use Frama-C builtin \

 <ffc> instead. \

 Fall back to <f> if <ffc> cannot handle its arguments."

 let default = Kernel_function.Map.empty

 end)

let () = add_precision_dep BuiltinsOverrides.parameter

let () = BuiltinsOverrides.add_aliases ["-val-builtin"]

let () = Parameter_customize.set_group precision_tuning

module BuiltinsAuto =

 True

 (struct

 let option_name = "-eva-builtins-auto"

 let help = "When set, builtins will be used automatically to replace \

 known C functions"

 end)

let () = add_correctness_dep BuiltinsAuto.parameter

let () = BuiltinsAuto.add_aliases ["-val-builtins-auto"]

let () = Parameter_customize.set_group precision_tuning

module BuiltinsList =

 False

 (struct

 let option_name = "-eva-builtins-list"

 let help = "Lists the existing builtins, and which functions they \

 are automatically associated to (if any)"

 end)

let () = BuiltinsList.add_aliases ["-val-builtins-list"]

let () = Parameter_customize.set_group precision_tuning

module LinearLevel =

 Zero

 (struct

 let option_name = "-eva-subdivide-non-linear"

 let arg_name = "n"

 let help =

 "Improve precision when evaluating expressions in which a variable \

 appears multiple times, by splitting its value at most n times. \

 Defaults to 0."

 end)

let () = add_precision_dep LinearLevel.parameter

let () = LinearLevel.add_aliases ["-val-subdivide-non-linear"]

let () = Parameter_customize.set_group precision_tuning

let () = Parameter_customize.argument_may_be_fundecl ()

module UsePrototype =

 Kernel_function_set

 (struct

 let option_name = "-eva-use-spec"

 let arg_name = "f1,..,fn"

 let help = "use the ACSL specification of the functions instead of their

definitions"

 end)

let () = add_precision_dep UsePrototype.parameter

let () = UsePrototype.add_aliases ["-val-use-spec"]

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 90 of 104

let () = Parameter_customize.set_group precision_tuning

module SkipLibcSpecs =

 True

 (struct

 let option_name = "-eva-skip-stdlib-specs"

 let help = "skip ACSL specifications on functions originating from the \

 standard library of Frama-C, when their bodies are evaluated"

 end)

let () = add_precision_dep SkipLibcSpecs.parameter

let () = SkipLibcSpecs.add_aliases ["-val-skip-stdlib-specs"]

let () = Parameter_customize.set_group precision_tuning

module RmAssert =

 True

 (struct

 let option_name = "-eva-remove-redundant-alarms"

 let help = "after the analysis, try to remove redundant alarms, so that

the user needs inspect fewer of them"

 end)

let () = add_precision_dep RmAssert.parameter

let () = RmAssert.add_aliases ["-remove-redundant-alarms"]

let () = Parameter_customize.set_group precision_tuning

module MemExecAll =

 True

 (struct

 let option_name = "-eva-memexec"

 let help = "Speed up analysis by not recomputing functions already \

 analyzed in the same context. Forces -inout-callwise. \

 Callstacks for which the analysis has not been recomputed \

 are incorrectly shown as dead in the GUI."

 end)

let () = MemExecAll.add_aliases ["-memexec-all"]

let () =

 MemExecAll.add_set_hook

 (fun _bold bnew ->

 if bnew then

 try

 Dynamic.Parameter.Bool.set "-inout-callwise" true

 with Dynamic.Unbound_value _ | Dynamic.Incompatible_type _ ->

 abort "Cannot set option -eva-memexec. Is plugin Inout registered?"

)

let () = Parameter_customize.set_group precision_tuning

module ArrayPrecisionLevel =

 Int

 (struct

 let default = 200

 let option_name = "-eva-plevel"

 let arg_name = "n"

 let help = "use <n> as the precision level for arrays accesses. \

 Array accesses are precise as long as the interval for the

index contains \

 less than n values. (defaults to 200)"

 end)

let () = add_precision_dep ArrayPrecisionLevel.parameter

let () = ArrayPrecisionLevel.add_aliases ["-plevel"]

let () = ArrayPrecisionLevel.add_update_hook

 (fun _ v -> Offsetmap.set_plevel v)

(* Options SaveFunctionState and LoadFunctionState are related

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 91 of 104

 and mutually dependent for sanity checking.

 Also, they depend on BuiltinsOverrides, so they cannot be defined before it.

*)

let () = Parameter_customize.set_group initial_context

module SaveFunctionState =

 Kernel_function_map

 (struct

 include Datatype.String

 type key = Cil_types.kernel_function

 let of_string ~key:_ ~prev:_ file = file

 let to_string ~key:_ file = file

 end)

 (struct

 let option_name = "-eva-save-fun-state"

 let arg_name = "function:filename"

 let help = "save state of function <function> in file <filename>"

 let default = Kernel_function.Map.empty

 end)

let () = SaveFunctionState.add_aliases ["-val-save-fun-state"]

let () = Parameter_customize.set_group initial_context

module LoadFunctionState =

 Kernel_function_map

 (struct

 include Datatype.String

 type key = Cil_types.kernel_function

 let of_string ~key:_ ~prev:_ file = file

 let to_string ~key:_ file = file

 end)

 (struct

 let option_name = "-eva-load-fun-state"

 let arg_name = "function:filename"

 let help = "load state of function <function> from file <filename>"

 let default = Kernel_function.Map.empty

 end)

let () = LoadFunctionState.add_aliases ["-val-load-fun-state"]

let () = add_correctness_dep SaveFunctionState.parameter

let () = add_correctness_dep LoadFunctionState.parameter

(* checks that SaveFunctionState has a unique argument pair, and returns it. *)

let get_SaveFunctionState () =

 let is_first = ref true in

 let (kf, filename) = SaveFunctionState.fold

 (fun (kf, opt_filename) _acc ->

 if !is_first then is_first := false

 else abort "option `%s' requires a single function:filename pair"

 SaveFunctionState.name;

 let filename = Extlib.the opt_filename in

 kf, filename

) (Kernel_function.dummy (), "")

 in

 if filename = "" then abort "option `%s' requires a function:filename pair"

 SaveFunctionState.name

 else kf, filename

(* checks that LoadFunctionState has a unique argument pair, and returns it. *)

let get_LoadFunctionState () =

 let is_first = ref true in

 let (kf, filename) = LoadFunctionState.fold

 (fun (kf, opt_filename) _acc ->

 if !is_first then is_first := false

 else abort "option `%s' requires a single function:filename pair"

 LoadFunctionState.name;

 let filename = Extlib.the opt_filename in

 kf, filename

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 92 of 104

) (Kernel_function.dummy (), "")

 in

 if filename = "" then abort "option `%s' requires a function:filename pair"

 LoadFunctionState.name

 else kf, filename

(* perform early sanity checks to avoid aborting the analysis only at the end *)

let () = Ast.apply_after_computed (fun _ ->

 (* check the function to save returns 'void' *)

 if SaveFunctionState.is_set () then begin

 let (kf, _) = get_SaveFunctionState () in

 if not (Kernel_function.returns_void kf) then

 abort "option `%s': function `%a' must return void"

 SaveFunctionState.name Kernel_function.pretty kf

 end;

 if SaveFunctionState.is_set () && LoadFunctionState.is_set () then begin

 (* check that if both save and load are set, they do not specify the

 same function name (note: cannot compare using function ids) *)

 let (save_kf, _) = get_SaveFunctionState () in

 let (load_kf, _) = get_LoadFunctionState () in

 if Kernel_function.equal save_kf load_kf then

 abort "options `%s' and `%s' cannot save/load the same function `%a'"

 SaveFunctionState.name LoadFunctionState.name

 Kernel_function.pretty save_kf

 end;

 if LoadFunctionState.is_set () then

 let (kf, _) = get_LoadFunctionState () in

 BuiltinsOverrides.add (kf, Some "Frama_C_load_state");

)

(* --- *)

(* --- Messages --- *)

(* --- *)

let () = Parameter_customize.set_group messages

module ValShowProgress =

 False

 (struct

 let option_name = "-eva-show-progress"

 let help = "Show progression messages during analysis"

 end)

let () = ValShowProgress.add_aliases ["-val-show-progress"]

let () = Parameter_customize.set_group messages

let () = Parameter_customize.is_invisible ()

module ValShowInitialState =

 True

 (struct

 let option_name = "-val-show-initial-state"

 (* deprecated in Silicon *)

 let help = "[deprecated] Show initial state before analysis starts. \

 This option has been replaced by \

 -value-msg-key=[-]initial-state and has no effect anymore."

 end)

let () =

 ValShowInitialState.add_set_hook

 (fun _ new_ ->

 if new_ then

 Kernel.warning "@[Option -val-show-initial-state has no effect, \

 it has been replaced by -eva-msg-key=initial-state@]"

 else

 Kernel.warning "@[Option -no-val-show-initial-state has no effect, \

 it has been replaced by -eva-msg-key=-initial-state@]"

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 93 of 104

)

let () = Parameter_customize.set_group messages

module ValShowPerf =

 False

 (struct

 let option_name = "-eva-show-perf"

 let help = "Compute and shows a summary of the time spent analyzing

function calls"

 end)

let () = ValShowPerf.add_aliases ["-val-show-perf"]

let () = Parameter_customize.set_group messages

module ValPerfFlamegraphs =

 String

 (struct

 let option_name = "-eva-flamegraph"

 let help = "Dumps a summary of the time spent analyzing function calls \

 in a format suitable for the Flamegraph tool \

 (http://www.brendangregg.com/flamegraphs.html)"

 let arg_name = "file"

 let default = ""

 end)

let () = ValPerfFlamegraphs.add_aliases ["-val-flamegraph"]

let () = Parameter_customize.set_group messages

module ShowSlevel =

 Int

 (struct

 let option_name = "-eva-show-slevel"

 let default = 100

 let arg_name = "n"

 let help = "Period for showing consumption of the alloted slevel during

analysis"

 end)

let () = ShowSlevel.add_aliases ["-val-show-slevel"]

let () = ShowSlevel.set_range ~min:1 ~max:max_int

let () = Parameter_customize.set_group messages

module PrintCallstacks =

 False

 (struct

 let option_name = "-eva-print-callstacks"

 let help = "When printing a message, also show the current call stack"

 end)

let () = PrintCallstacks.add_aliases ["-val-print-callstacks"]

let () = Parameter_customize.set_group messages

let () = Parameter_customize.is_invisible ()

module AlarmsWarnings =

 True

 (struct

 let option_name = "-val-warn-on-alarms"

 let help = "[DEPRECATED: use warning key alarm to manage alarms] \

 if set (default), possible alarms are printed in \

 the analysis log as warnings, otherwise as plain feedback"

 end)

let () =

 AlarmsWarnings.add_set_hook

 (fun _ f ->

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 94 of 104

 match get_warn_status wkey_alarm with

 | Log.Wabort | Log.Werror | Log.Werror_once ->

 warning "alarms already set to produce an error. \

 Ignoring -val-warn-on-alarms"

 | Log.Winactive | Log.Wactive | Log.Wfeedback ->

 set_warn_status wkey_alarm (if f then Log.Wactive else Log.Wfeedback)

 | Log.Wonce | Log.Wfeedback_once ->

 (* Keep the 'once' status. Note that this will only happen if user

 is mixing old and new style of warning management, thus it becomes

 difficult to interpret the desired action.

 *)

 set_warn_status wkey_alarm

 (if f then Log.Wonce else Log.Wfeedback_once))

let () = Parameter_customize.set_group messages

module ReportRedStatuses =

 String

 (struct

 let option_name = "-eva-report-red-statuses"

 let arg_name = "filename"

 let default = ""

 let help = "output the list of \"red properties\" in a csv file of the \

 given name. These are the properties which were invalid for \

 some states. Their consolidated status may not be invalid, \

 but they should often be investigated first."

 end)

let () = Parameter_customize.set_group messages

module NumerorsLogFile =

 String

 (struct

 let option_name = "-eva-numerors-log-file"

 let help = "The Numerors Domain will save each call to the DPRINT \

 function in the given file"

 let arg_name = "file"

 let default = ""

 end)

let () = Parameter_customize.set_group alarms

let () = Parameter_customize.is_invisible ()

module WarnBuiltinOverride =

 True(struct

 let option_name = "-val-warn-builtin-override"

 let help = "[DEPRECATED: use warning category key '" ^

 (wkey_name wkey_builtins_override) ^

 "' to control] Warn when Eva built-ins will override function \

 definitions"

 end)

let () = add_correctness_dep WarnBuiltinOverride.parameter

let () = WarnBuiltinOverride.add_update_hook

 (fun _ v ->

 warning "Option %s is deprecated. \

 Use warning category key '%a' instead"

 WarnBuiltinOverride.option_name

 pp_warn_category wkey_builtins_override;

 set_warn_status wkey_builtins_override

 (if v then Log.Wonce else Log.Winactive))

(* --- *)

(* --- Interpreter mode --- *)

(* --- *)

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 95 of 104

let () = Parameter_customize.set_group interpreter

module InterpreterMode =

 False

 (struct

 let option_name = "-eva-interpreter-mode"

 let help = "Stop at first call to a library function, if main() has \

 arguments, on undecided branches"

 end)

let () = InterpreterMode.add_aliases ["-val-interpreter-mode"]

let () = Parameter_customize.set_group interpreter

let () = Parameter_customize.is_invisible ()

module ObviouslyTerminatesFunctions =

 Fundec_set

 (struct

 let option_name = "-obviously-terminates-function"

 let arg_name = "f"

 let help = "deprecated"

 end)

let () = add_dep ObviouslyTerminatesFunctions.parameter

let () = ObviouslyTerminatesFunctions.add_update_hook

 (fun _ _ ->

 warning "Option -obviously-terminates-function is no longer supported. \

 Ignoring.")

let () = Parameter_customize.set_group interpreter

let () = Parameter_customize.is_invisible ()

module ObviouslyTerminatesAll =

 False

 (struct

 let option_name = "-obviously-terminates"

 let help = "undocumented and deprecated"

 end)

let () = add_dep ObviouslyTerminatesAll.parameter

let () = ObviouslyTerminatesAll.add_update_hook

 (fun _ _ ->

 warning "Option -obviously-terminates is no longer supported. \

 Ignoring.")

let () = Parameter_customize.set_group interpreter

module StopAtNthAlarm =

 Int(struct

 let option_name = "-eva-stop-at-nth-alarm"

 let default = max_int

 let arg_name = "n"

 let help = "Aborts the analysis when the nth alarm is emitted."

 end)

let () = StopAtNthAlarm.add_aliases ["-val-stop-at-nth-alarm"]

(* -- *)

(* --- Ugliness required for correctness --- *)

(* -- *)

let () = Parameter_customize.is_invisible ()

module InitialStateChanged =

 Int (struct

 let option_name = "-eva-new-initial-state"

 let default = 0

 let arg_name = "n"

 let help = ""

 end)

(* Changing the user-supplied initial state (or the arguments of main) through

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 96 of 104

 the API of Db.Value does reset the state of Value, but *not* the property

 statuses that Value has positioned. Currently, statuses can only depend

 on a command-line parameter. We use the dummy one above to force a reset

 when needed. *)

let () =

 add_correctness_dep InitialStateChanged.parameter;

 Db.Value.initial_state_changed :=

 (fun () -> InitialStateChanged.set (InitialStateChanged.get () + 1))

(* -- *)

(* --- Eva options --- *)

(* -- *)

let () = Parameter_customize.set_group precision_tuning

module EnumerateCond =

 Bool

 (struct

 let option_name = "-eva-enumerate-cond"

 let help = "Activate reduce_by_cond_enumerate."

 let default = true

 end)

let () = add_precision_dep EnumerateCond.parameter

let () = Parameter_customize.set_group precision_tuning

module OracleDepth =

 Int

 (struct

 let option_name = "-eva-oracle-depth"

 let help = "Maximum number of successive uses of the oracle by the domain

\

 for the evaluation of an expression. Set 0 to disable the \

 oracle."

 let default = 2

 let arg_name = ""

 end)

let () = add_precision_dep OracleDepth.parameter

let () = Parameter_customize.set_group precision_tuning

module ReductionDepth =

 Int

 (struct

 let option_name = "-eva-reduction-depth"

 let help = "Maximum number of successive backward reductions that the \

 domain may initiate."

 let default = 4

 let arg_name = ""

 end)

let () = add_precision_dep ReductionDepth.parameter

(* -- *)

(* --- Dynamic allocation --- *)

(* -- *)

let () = Parameter_customize.set_group malloc

module MallocFunctions=

 Filled_string_set

 (struct

 let option_name = "-eva-malloc-functions"

 let arg_name = "f1,...,fn"

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 97 of 104

 let help = "The malloc builtins use the call site of malloc() to know \

 where to create new bases. This detection does not work for \

 custom allocators or wrappers on top of malloc, unless they \

 are listed here. By default, only contains malloc."

 let default = Datatype.String.Set.singleton "malloc"

 end)

let () = MallocFunctions.add_aliases ["-val-malloc-functions"]

let () = Parameter_customize.set_group malloc

module AllocReturnsNull=

 True

 (struct

 let option_name = "-eva-alloc-returns-null"

 let help = "Memory allocation built-ins (malloc, calloc, realloc) are \

 modeled as nondeterministically returning a null pointer"

 end)

let () = AllocReturnsNull.add_aliases ["-val-alloc-returns-null"]

let () = Parameter_customize.set_group malloc

module MallocLevel =

 Int

 (struct

 let option_name = "-eva-mlevel"

 let default = 0

 let arg_name = "m"

 let help = "sets to [m] the number of precise dynamic allocation for any \

 given callstack"

 end)

let () = MallocLevel.add_aliases ["-val-mlevel"]

(* -- *)

(* --- Freeze parameters. MUST GO LAST --- *)

(* -- *)

let parameters_correctness =

 Typed_parameter.Set.elements !parameters_correctness

let parameters_tuning =

 Typed_parameter.Set.elements !parameters_tuning

let parameters_abstractions =

 Typed_parameter.Set.elements !parameters_abstractions

(*

Local Variables:

compile-command: "make -C ../../.."

End:

*)

- File compute_functions.ml

(**)

(* *)

(* This file is part of Frama-C. *)

(* *)

(* Copyright (C) 2007-2018 *)

(* CEA (Commissariat à l'énergie atomique et aux énergies *)

(* alternatives) *)

(* *)

(* you can redistribute it and/or modify it under the terms of the GNU *)

(* Lesser General Public License as published by the Free Software *)

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 98 of 104

(* Foundation, version 2.1. *)

(* *)

(* It is distributed in the hope that it will be useful, *)

(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)

(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)

(* GNU Lesser General Public License for more details. *)

(* *)

(* See the GNU Lesser General Public License version 2.1 *)

(* for more details (enclosed in the file licenses/LGPLv2.1). *)

(* *)

(**)

open Cil_types

open Eval

let dkey = Value_parameters.register_category "callbacks"

let floats_ok () =

 let u = min_float /. 2. in

 let u = u /. 2. in

 assert (0. < u && u < min_float)

let need_assigns kf =

 let spec = Annotations.funspec ~populate:false kf in

 match Cil.find_default_behavior spec with

 | None -> true

 | Some bhv -> bhv.b_assigns = WritesAny

let options_ok () =

 (* Check that we can parse the values specified for the options that require

 advanced parsing. Just make a query, as this will force the kernel to

 parse them. *)

 let check f = try ignore (f ()) with Not_found -> () in

 check Value_parameters.SplitReturnFunction.get;

 check Value_parameters.BuiltinsOverrides.get;

 check Value_parameters.SlevelFunction.get;

 check Value_parameters.EqualityCallFunction.get;

 let check_assigns kf =

 if need_assigns kf then

 Value_parameters.error "@[no assigns@ specified@ for function '%a',@ for \

 which@ a builtin@ or the specification@ will be

used.@ \

 Potential unsoundness.@]" Kernel_function.pretty

kf

 in

 Value_parameters.BuiltinsOverrides.iter (fun (kf, _) -> check_assigns kf);

 Value_parameters.UsePrototype.iter (fun kf -> check_assigns kf)

(* Do something tasteless in case the user did not put a spec on functions

 for which he set [-val-use-spec]: generate an incorrect one ourselves *)

let generate_specs () =

 let aux kf =

 if need_assigns kf then begin

 let spec = Annotations.funspec ~populate:false kf in

 Value_parameters.warning "Generating potentially incorrect assigns \

 for function '%a' for which option %s is set"

 Kernel_function.pretty kf Value_parameters.UsePrototype.option_name;

 (* The function populate_spec may emit a warning. Position a loc. *)

 Cil.CurrentLoc.set (Kernel_function.get_location kf);

 ignore (!Annotations.populate_spec_ref kf spec)

 end

 in

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 99 of 104

 Value_parameters.UsePrototype.iter aux

let pre_analysis () =

 floats_ok ();

 options_ok ();

 Split_return.pretty_strategies ();

 generate_specs ();

 Widen.precompute_widen_hints ();

 if Value_parameters.WarnBuiltinOverride.get () then

 Builtins.warn_definitions_overridden_by_builtins ();

 Value_perf.reset ();

 (* We may be resuming Value from a previously crashed analysis. Clear

 degeneration states *)

 Value_util.DegenerationPoints.clear ();

 Cvalue.V.clear_garbled_mix ();

 Value_util.clear_call_stack ();

 Db.Value.mark_as_computed ()

let post_analysis_cleanup ~aborted =

 Value_util.clear_call_stack ();

 (* Precompute consolidated states if required *)

 if Value_parameters.JoinResults.get () then

 Db.Value.Table_By_Callstack.iter

 (fun s _ -> ignore (Db.Value.get_stmt_state s));

 if not aborted then begin

 (* Keep memexec results for users that want to resume the analysis *)

 Mem_exec.cleanup_results ();

 if not (Value_parameters.SaveFunctionState.is_empty ()) then

 State_import.save_globals_state ();

 end

let post_analysis () =

 (* Garbled mix must be dumped here -- at least before the call to

 mark_green_and_red -- because fresh ones are created when re-evaluating

 all the alarms, and we get an unpleasant "ghost effect". *)

 Value_util.dump_garbled_mix ();

 (* Mark unreachable and RTE statuses. Only do this there, not when the

 analysis was aborted (hence, not in post_cleanup), because the

 propagation is incomplete. Also do not mark unreachable statutes if

 there is an alarm in the initializers (bottom initial state), as we

 would end up marking the alarm as dead. *)

 Eval_annots.mark_unreachable ();

 (* Try to refine the 'Unknown' statuses that have been emitted during

 this analysis. *)

 Eval_annots.mark_green_and_red ();

 Eval_annots.mark_rte ();

 post_analysis_cleanup ~aborted:false;

 (* Remove redundant alarms *)

 if Value_parameters.RmAssert.get () then !Db.Value.rm_asserts ()

(* Register a signal handler for SIGUSR1, that will be used to abort Value *)

let () =

 let prev = ref (fun _ -> ()) in

 let handler (_signal: int) =

 !prev Sys.sigusr1; (* Call previous signal handler *)

 Value_parameters.warning "Stopping analysis at user request@.";

 Partitioned_dataflow.signal_abort ()

 in

 try

 match Sys.signal Sys.sigusr1 (Sys.Signal_handle handler) with

 | Sys.Signal_default | Sys.Signal_ignore -> ()

 | Sys.Signal_handle f -> prev := f

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 100 of 104

 with Invalid_argument _ -> () (* Ignore: SIGURSR1 is not available on Windows,

 and possibly on other platforms. *)

module Make

 (Abstract: Abstractions.S)

 (Eva: Evaluation.S with type value = Abstract.Val.t

 and type origin = Abstract.Dom.origin

 and type loc = Abstract.Loc.location

 and type state = Abstract.Dom.t)

= struct

 module Domain = struct

 include Abstract.Dom

 let enter_scope kf vars state = match vars with

 | [] -> state

 | _ -> enter_scope kf vars state

 let leave_scope kf vars state = match vars with

 | [] -> state

 | _ -> leave_scope kf vars state

 end

 module PowersetDomain = Powerset.Make (Domain)

 module Transfer =

 Transfer_stmt.Make (Abstract.Val) (Abstract.Loc) (Domain) (Eva)

 module Logic = Transfer_logic.Make (Domain) (PowersetDomain)

 module Spec =

 Transfer_specification.Make

 (Abstract.Val) (Abstract.Loc) (Domain) (PowersetDomain) (Logic)

 module Init = Initialization.Make (Abstract.Dom) (Eva) (Transfer)

 module Computer =

 Partitioned_dataflow.Computer

 (Domain) (PowersetDomain) (Transfer) (Init) (Logic) (Spec)

 let initial_state = Init.initial_state

 let get_cvalue =

 match Domain.get Cvalue_domain.key with

 | None -> fun _ -> Cvalue.Model.top

 | Some get -> fun state -> get state

 let get_cval =

 match Abstract.Val.get Main_values.cvalue_key with

 | None -> fun _ -> assert false

 | Some get -> fun value -> get value

 let get_ploc =

 match Abstract.Loc.get Main_locations.ploc_key with

 | None -> fun _ -> assert false

 | Some get -> fun location -> get location

 (* Compute a call to [kf] in the state [state]. The evaluation will

 be done either using the body of [kf] or its specification, depending

 on whether the body exists and on option [-val-use-spec]. [call_kinstr]

 is the instruction at which the call takes place, and is used to update

 the statuses of the preconditions of [kf]. If [show_progress] is true,

 the callstack and additional information are printed. *)

 let compute_using_spec_or_body call_kinstr call state =

 (* ABP add the following block *)

 begin

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 101 of 104

 let kf_name = Kernel_function.get_name call.kf in

 if (String.equal kf_name "gets") || (String.equal kf_name "toto") then

 Value_parameters.warning ~once:true ~current:true

~wkey:Value_parameters.wkey_dangerous_functions "calling dangerous function'%a"

Kernel_function.pretty call.kf

 end;

 let kf = call.kf in

 Value_results.mark_kf_as_called kf;

 let global = match call_kinstr with Kglobal -> true | _ -> false in

 let pp = not global && Value_parameters.ValShowProgress.get () in

 let call_stack = Value_util.call_stack () in

 if pp then

 Value_parameters.feedback

 "@[computing for function %a.@\nCalled from %a.@]"

 Value_types.Callstack.pretty_short call_stack

 Cil_datatype.Location.pretty (Cil_datatype.Kinstr.loc call_kinstr);

 let use_spec =

 if call.recursive then

 `Spec (Recursion.empty_spec_for_recursive_call kf)

 else

 match kf.fundec with

 | Declaration (_,_,_,_) -> `Spec (Annotations.funspec kf)

 | Definition (def, _) ->

 if Kernel_function.Set.mem kf (Value_parameters.UsePrototype.get ())

 then `Spec (Annotations.funspec kf)

 else `Def def

 in

 let cvalue_state = get_cvalue state in

 let resulting_states, cacheable = match use_spec with

 | `Spec spec ->

 Db.Value.Call_Type_Value_Callbacks.apply

 (`Spec spec, cvalue_state, call_stack);

 if Value_parameters.InterpreterMode.get ()

 then Value_parameters.abort "Library function call. Stopping.";

 Value_parameters.feedback ~once:true

 "@[using specification for function %a@]" Kernel_function.pretty kf;

 let vi = Kernel_function.get_vi kf in

 if Cil.hasAttribute "fc_stdlib" vi.vattr then

 Library_functions.warn_unsupported_spec vi.vorig_name;

 Spec.compute_using_specification ~warn:true call_kinstr call spec state,

 Value_types.Cacheable

 | `Def _fundec ->

 Db.Value.Call_Type_Value_Callbacks.apply (`Def, cvalue_state,

call_stack);

 Computer.compute kf call_kinstr state

 in

 if pp then

 Value_parameters.feedback

 "Done for function %a" Kernel_function.pretty kf;

 Transfer.{ states = resulting_states; cacheable; builtin=false }

 (* Mem Exec *)

 module MemExec = Mem_exec.Make (Abstract.Val) (Domain)

 let compute_and_cache_call stmt call init_state =

 let default () = compute_using_spec_or_body (Kstmt stmt) call init_state in

 if Value_parameters.MemExecAll.get () then

 let args =

 List.map (fun {avalue} -> Eval.value_assigned avalue) call.arguments

 in

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 102 of 104

 match MemExec.reuse_previous_call call.kf init_state args with

 | None ->

 let call_result = default () in

 let () =

 if not (!Db.Value.use_spec_instead_of_definition call.kf)

 && call_result.Transfer.cacheable = Value_types.Cacheable

 then

 let final_states = call_result.Transfer.states in

 MemExec.store_computed_call call.kf init_state args final_states

 in

 call_result

 | Some (states, i) ->

 let stack_with_call = Value_util.call_stack () in

 Db.Value.Call_Type_Value_Callbacks.apply

 (`Memexec, get_cvalue init_state, stack_with_call);

 (* Evaluate the preconditions of kf, to update the statuses

 at this call. *)

 let spec = Annotations.funspec call.kf in

 if not (Value_util.skip_specifications call.kf) &&

 Eval_annots.has_requires spec

 then begin

 let ab = Logic.create init_state call.kf in

 ignore (Logic.check_fct_preconditions

 (Kstmt stmt) call.kf ab init_state);

 end;

 if Value_parameters.ValShowProgress.get () then begin

 Value_parameters.feedback ~current:true

 "Reusing old results for call to %a" Kernel_function.pretty call.kf;

 Value_parameters.debug ~dkey

 "calling Record_Value_New callbacks on saved previous result";

 end;

 let stack_with_call = Value_util.call_stack () in

 Db.Value.Record_Value_Callbacks_New.apply

 (stack_with_call, Value_types.Reuse i);

 (* call can be cached since it was cached once *)

 Transfer.{states; cacheable = Value_types.Cacheable; builtin=false}

 else

 default ()

 let get_cvalue_call call =

 let lift_left left = { left with lloc = get_ploc left.lloc } in

 let lift_flagged_value value = { value with v = value.v >>-: get_cval } in

 let lift_assigned = function

 | Assign value -> Assign (get_cval value)

 | Copy (lval, value) -> Copy (lift_left lval, lift_flagged_value value)

 in

 let lift_argument arg = { arg with avalue = lift_assigned arg.avalue } in

 let arguments = List.map lift_argument call.arguments in

 let rest = List.map (fun (e, assgn) -> e, lift_assigned assgn) call.rest in

 { call with arguments; rest }

 let join_states = function

 | [] -> `Bottom

 | [state] -> `Value state

 | s :: l -> `Value (List.fold_left Domain.join s l)

 let compute_call_or_builtin stmt call state =

 match Builtins.find_builtin_override call.kf with

 | None -> compute_and_cache_call stmt call state

 | Some (name, builtin, spec) ->

 Value_results.mark_kf_as_called call.kf;

 let kinstr = Kstmt stmt in

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 103 of 104

 let kf_name = Kernel_function.get_name call.kf in

 if Value_parameters.ValShowProgress.get ()

 then

 Value_parameters.feedback ~current:true "Call to builtin %s%s"

 name (if kf_name = name then "" else " for function " ^ kf_name);

 (* Do not track garbled mixes created when interpreting the specification,

 as the result of the cvalue builtin will overwrite them. *)

 Locations.Location_Bytes.do_track_garbled_mix false;

 let states =

 Spec.compute_using_specification ~warn:false kinstr call spec state

 in

 Locations.Location_Bytes.do_track_garbled_mix true;

 let final_state = states >>- join_states in

 let cvalue_state = get_cvalue state in

 match final_state with

 | `Bottom ->

 let cs = Value_util.call_stack () in

 Db.Value.Call_Type_Value_Callbacks.apply (`Spec spec, cvalue_state, cs);

 let cacheable = Value_types.Cacheable in

 Transfer.{states; cacheable; builtin=true}

 | `Value final_state ->

 let cvalue_call = get_cvalue_call call in

 let cvalue_states, cacheable =

 Builtins.apply_builtin builtin cvalue_call cvalue_state

 in

 let insert (cvalue_state, clobbered_set) =

 Domain.set Locals_scoping.key clobbered_set

 (Domain.set Cvalue_domain.key cvalue_state final_state)

 in

 let states = Bottom.bot_of_list (List.map insert cvalue_states) in

 Transfer.{states; cacheable; builtin=true}

 let compute_call =

 if Domain.mem Cvalue_domain.key

 && Abstract.Val.mem Main_values.cvalue_key

 && Abstract.Loc.mem Main_locations.ploc_key

 then compute_call_or_builtin

 else compute_and_cache_call

 let () = Transfer.compute_call_ref := compute_call

 let store_initial_state kf init_state =

 Domain.Store.register_initial_state (Value_util.call_stack ()) init_state;

 let cvalue_state = get_cvalue init_state in

 Db.Value.Call_Value_Callbacks.apply (cvalue_state, [kf, Kglobal])

 let compute kf init_state =

 try

 Value_util.push_call_stack kf Kglobal;

 store_initial_state kf init_state;

 let call =

 {kf; arguments = []; rest = []; return = None; recursive = false}

 in

 let final_result = compute_using_spec_or_body Kglobal call init_state in

 let final_states = final_result.Transfer.states in

 let final_state = PowersetDomain.(final_states >>-: of_list >>- join) in

 Value_util.pop_call_stack ();

 Value_parameters.feedback "done for function %a" Kernel_function.pretty

kf;

 post_analysis ();

 Domain.post_analysis final_state;

 with

 D1.7 - Vulnerability discovery methodology

VESSEDIA D1.7 Page 104 of 104

 | Db.Value.Aborted ->

 post_analysis_cleanup ~aborted:true;

 (* Signal that a degeneration occurred *)

 if Value_util.DegenerationPoints.length () > 0 then

 Value_parameters.error

 "Degeneration occurred:@\nresults are not correct for lines of code \

 that can be reached from the degeneration point.@."

 let compute_from_entry_point kf ~lib_entry =

 pre_analysis ();

 Value_parameters.feedback "Analyzing a%scomplete application starting at %a"

 (if lib_entry then "n in" else " ")

 Kernel_function.pretty kf;

 let initial_state =

 try Init.initial_state_with_formals ~lib_entry kf

 with Db.Value.Aborted ->

 post_analysis_cleanup ~aborted:true;

 Value_parameters.abort "Degeneration occurred during initialization,

aborting."

 in

 match initial_state with

 | `Bottom ->

 Value_parameters.result "Eva not started because globals \

 initialization is not computable.";

 Eval_annots.mark_invalid_initializers ()

 | `Value init_state ->

 compute kf init_state

 let compute_from_init_state kf init_state =

 pre_analysis ();

 Domain.Store.register_global_state (`Value init_state);

 compute kf init_state

end

(*

Local Variables:

compile-command: "make -C ../../../.."

End:

*)

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 VESSEDIA motivation and background
	1.2 Role of the deliverable
	1.3 Structure of the document
	1.4 Related deliverables

	Chapter 2 Security evaluation by source code auditing
	2.1 Code analysis in security evaluation
	2.1.1 What is it and how it differs from code review in development?
	2.1.2 It should be all about context
	2.1.3 On using automation tools for security review
	2.1.4 On the conduct of a source code security evaluation
	2.1.5 On the methodology used

	2.2 A general methodology for code analysis
	2.2.1 Requirements for the reviewer
	2.2.2 Methodology overview
	2.2.3 Methodology phases
	2.2.3.1 Discovery phase
	2.2.3.1.1 Functional review
	2.2.3.1.2 Contextual review
	2.2.3.1.3 On mixing those two reviews
	2.2.3.1.4 The first report phase
	2.2.3.1.5 A practical approach

	2.2.3.2 Review phase
	2.2.3.2.1 Automated review phase
	2.2.3.2.2 Results triaging
	2.2.3.2.3 Manual Review phase
	2.2.3.2.4 Reporting phase

	2.2.3.3 Vulnerability analysis phase
	2.2.3.3.1 Exploitability determination phase
	2.2.3.3.2 Risks analysis phase
	2.2.3.3.3 Countermeasures definition phase
	2.2.3.3.4 Report phase

	2.2.3.4 Closure phase
	2.2.3.4.1 Final report phase
	2.2.3.4.2 Ending meeting phase (optional)

	2.2.4 Quick Summary

	Chapter 3 Most Common Vulnerabilities in C
	3.1 Technical background
	3.2 C language intrinsic vulnerabilities
	3.2.1 Buffer Overflow
	3.2.2 Null pointer dereference
	3.2.3 Uninitialized variable utilization
	3.2.4 Double free
	3.2.5 Use-after-free
	3.2.6 Integer Overflow
	3.2.7 Off-by-one
	3.2.8 Format String
	3.2.9 Type confusion

	3.3 Cryptographic vulnerabilities
	3.3.1 Non-respect to cryptographic standards
	3.3.2 Misuse of cryptographic algorithms

	3.4 C vulnerabilities depending on the environment
	3.4.1 Race condition
	3.4.2 Path manipulation
	3.4.3 SQL Injection
	3.4.4 Command Injection
	3.4.5 Logic bugs
	3.4.6 Contextual vulnerabilities

	Chapter 4 On using Frama-C within the proposed methodology
	4.1 What is Frama-C?
	4.1.1 Description
	4.1.2 Frama-C’s intended use
	4.1.3 A brief discussion on using Frama-C for security code review

	4.2 Integration of the modified Frama-C into the proposed methodology
	4.2.1 Using Frama-C on the automated review part
	4.2.1.1 Modifying Frama-C to support more codes
	4.2.1.2 Generic methodology to make Frama-C analyses
	4.2.1.2.1 Compiling project with GCC
	4.2.1.2.2 Preprocessing files with Frama-C
	4.2.1.2.3 Frama-C in-depth analysis
	4.2.1.2.4 Triaging results
	4.2.1.2.5 Analyzing results
	4.2.1.2.6 Refining results

	4.2.2 Using Frama-C on the manual review part of the analysis phase

	Chapter 5 Applying Frama-C’s use on an example
	5.1 Choosing a sample
	5.2 Quick discovery phase
	5.3 Review phase
	5.3.1 Automated review
	5.3.2 Manual review phase

	Chapter 6 Summary and Conclusion
	Chapter 7 List of Abbreviations
	Chapter 8 Bibliography
	Chapter 9 Annex

