

D1.5
Analyses choice methodology report

Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security

critical dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D1.5 / 1.0

Work package contributing to the

deliverable:
WP 1

Due date: Dec 2018 – M24

Actual submission date: 29th January, 2019

Responsible organisation: FOKUS

Editor: Jens Gerlach

Dissemination level: PU

Revision: 1.0

The project VESSEDIA has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:

This report presents the findings of Task 1.4

regarding a cost-efficient trade-off between

basic and sophisticated static analyses.

Keywords:
static analysis, abstract interpretation, deductive
verification, minimal contracts

VESSEDIA D1.5 Page I

Editor

Jens Gerlach (FOKUS)

Contributors (ordered according to beneficiary numbers)

Jochen Burghardt (FOKUS)
Marko Fabiunke (FOKUS)

Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability. This document has gone through the consortiums internal review
process and is still subject to the review of the European Commission. Updates to the content may be made
at a later stage.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page II

Executive Summary

This document presents a methodology for selecting and applying static analysis methods. Based
on a classification of static analysis methods into four classes (see Chapter 2) we propose a three-
level methodology as follows:

• The first level simply leverages the capabilities of readily available resources, namely
compilers. Their considerable capabilities to warn about suspicious or outright dangerous
code fragments present a very cost-effective way to greatly reduce the number of potential
vulnerabilities.

• Heuristic static analyses can provide more elaborate diagnostics but often come at a higher
cost. We explain on what basis these methods and the related tools are to be selected and
how they are best used in conjunction with the capabilities of compilers.

• Finally, we propose the use of sound static analyses in order to achieve a degree of
assurance that heuristic analyses usually cannot provide. As in the case of heuristic
analyses, sound analyses are best used after the capabilities of lower levels have been
exploited.

Since we are regularly referring to the cost of various methods, we want to emphasise that we only
do this this qualitatively. Deliverable D1.6 [1] will provide more specific cost models.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page III

Contents

Chapter 1 Introduction .. 1

1.1 Structure of this document .. 1

1.2 Background ... 1

1.3 Existing guidance for static analyses .. 2

Chapter 2 A four-level classification of static analyses ... 4

2.1 Some general remarks on the combination of static analyses 4

2.2 Basic static analyses ... 5

2.2.1 On strong type checking .. 5

2.3 Simple static analyses ... 5

2.4 Advanced static analyses .. 7

2.5 Formal static analyses .. 8

2.5.1 Abstract interpretation.. 8

2.5.2 Hoare-style verification .. 8

2.5.3 Hoare-style verification restricted to run-time errors ... 9

Chapter 3 Suggestion of a three-step methodology ... 10

3.1 Proper use of compiler diagnostics ... 10

3.1.1 Chose proper language version ... 10

3.1.2 Enable warning options ... 10

3.1.3 Discover more warning options .. 11

3.1.4 Enforce fixing reported warnings ... 11

3.2 Deployment of heuristic static analyses .. 12

3.2.1 Select and understand appropriate programming guidelines ... 12

3.2.2 Identify heuristic static analyses tools that support the selected guidelines 12

3.2.3 Enforce fixing reported problems ... 12

3.2.4 Reconcile with compiler diagnostics .. 12

3.3 Application of select sound static analyses ... 13

3.3.1 Understand scope of sound static analyses ... 13

3.3.2 Select appropriate analysis tools ... 13

3.3.3 Apply sound analyses after simpler analyses have been conducted 13

Chapter 4 Conclusions .. 14

Chapter 5 Bibliography ... 15

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page IV

List of Figures
Figure 1:Static Analyses and Formal Methods in EN 50128 .. 3

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 1 of 15

Chapter 1 Introduction

Software is written by means of programming languages which are formal languages in the sense
that they have a formal grammar that can be transformed into executable code. Using a formal
definition, however, does neither prevent the occurrence of software errors nor that the resulting
software product is hardened against various security attacks. There are two major approaches in
order to ascertain that software behaves correctly. The first approach is testing, also referred to as
dynamic analysis, where the software is executed with representative inputs while the output or other
observable behaviour of the software is compared with expected results. The second approach is
static analysis where the source code or binary code of a software is examined in various ways to
detect potential misbehaviour, often without the need to explicitly execute it.

In this report we provide guidelines for the selection and use of static analyses for the verification of
the safety and security properties of software only. Testing approaches to achieve these goals are
beyond the scope of this document. However, this does not mean that static and dynamic analyses
are unrelated activities. In fact, often static analyses can unfold their true potential when combined
with corresponding testing activities. Some aspects of how testing and static analyses depend on
each other can be found in Deliverable D3.3 [2] of this project.

1.1 Structure of this document

In Chapter 2 we give an overview of static analyses and structure them into four levels. These levels
reflect both our and other experts experience in applying these methods. Based on these four levels
the methodology in Chapter 3 is derived as a simple methodology that consists of three main levels.

1.2 Background

The VESSEDIA project is bringing safety and security to many new software applications and
devices. In the fast-evolving world, we live in, the Internet has brought many benefits to individuals,
organisations and industries. With the capabilities offered now (such as IPv6) to connect billions of
devices and therefore humans together, the Internet brings new threats to the software developers
and VESSEDIA will allow connected applications to be safe and secure. VESSEDIA is proposing to
enhance and scale up modern software analysis tools, namely the mostly open-source Frama-C
Analysis platform, to allow developers to benefit rapidly from them when developing connected
applications. At the forefront of connected applications is the IoT, whose growth is exponential and
whose security risks are real (for instance in hacked smart phones). VESSEDIA is taking this domain
as a target for demonstrating the benefits of using our tools on connected applications. VESSEDIA
is tackling this challenge by:

1. developing a methodology that allows to adopt and use source code analysis tools efficiently
and produce similar benefits as already achieved for highly-critical applications (i.e. an
exhaustive analysis and extraction of faults),

2. enhancing the Frama-C toolbox to enable efficient and fast implementation,
3. demonstrating the new toolbox capabilities on typical IoT (Internet of Things) applications

including an IoT Operating System (Contiki),
4. developing a standardisation plan for generalising the use of the toolbox,
5. contributing to the Common Criteria certification process, and
6. defining a label “Verified in Europe” for validating software products with European

technologies such as Frama-C.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 2 of 15

Work package 1 of the VESSEDIA project is concerned with the development and assessment of
safety and security verification methodologies.

Whilst verifying properties on source code is necessary to ensure safety and security of industrial
applications, it is also necessary to express and verify properties on models and link them to the
code in order to ensure a high level of confidence in the whole industrial system. WP1 aims therefore
at designing languages able to express models of systems, scenarios and their associated system-
level properties. We are designing a high-level language and methodology for the specification of
safety and security properties as software requirements. Software analysis techniques have been
used for the quality assurance of security/safety critical systems. In order to achieve their widespread
adoption for IoT, we are identifying the following issues:

• Provide guidance on security threats for different classes of IoT.

• Achieve a better understanding and exploitation of the benefits and drawbacks of various
static analyses.

The cost structure of the developed methodology will be scalable in order to make it suitable for
application fields that are very cost sensitive.

Choosing which static analyses to apply to a given software usually depends on business constraints
(e.g., product risk classes and deadlines) as well as on the application domain. The aim of task 1.4
was to provide, with respect to benefits and efforts, a methodology to find a cost-efficient trade-off
between basic and sophisticated analyses.

1.3 Existing guidance for static analyses

In order to make the need for a methodology to choose appropriate analyses more apparent we
have a look at the standard EN 50128 for the development of safe software of railway systems. Static
Analyses and Formal Methods in EN 50128 shows the relationships between those parts of the
standard that are related to static analyses and in particular to formal methods. Items labelled with
“A” refer to tables of “Criteria for the Selection of Techniques and Measures”. Items labelled with “D”
refer to short descriptions of techniques.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 3 of 15

Figure 1:Static Analyses and Formal Methods in EN 50128

The standard explicitly recommends using various static analyses, depending on the intended
Software Safety Assurance Level (SSAS). The problem, however, is that the recommendations are
quite broad and that they are lacking clear guidance how they should be applied.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 4 of 15

Chapter 2 A four-level classification of static
analyses

We present in this chapter a classification of static analyses into the following four levels:
1. basic static analyses, such as compiler messages and warnings (strictest level)
2. simple static analyses, to find non-portable and suspicious program parts
3. advanced static analyses, explicitly enforcing given programming guidelines (beyond simple

syntax/semantic restrictions)
4. formal static analyses, e.g., provably establishing the absence of run-time errors

In the following, we discuss each level in detail, giving typical application examples, assessing its
usage of resources, both human and computational, and commenting on its main fields of impact.

Note that other authors suggest somewhat different hierarchies, often putting more emphasis on
formal analyses.

Black et al. [NIST-8151, Sect. 2.1.1–2.1.4, p. 7–9] distinguish

1. Sound Static Program Analysis
2. Model Checkers, SAT Solvers and Other “Light Weight” Decision Algorithms
3. Assertions, Pre- and Postconditions, Invariants, Aspects and Contracts
4. Correct-by-Construction and Model-Based Development

All their levels are a refinement of our level 4.

For ADA SPARK1 code, Moy [Kosmatov et al.] uses:

1. Stone level — Ada code adheres to the stronger SPARK rules
2. Bronze level — initialization and data flows are correct
3. Silver level — no run-time error can occur
4. Gold level — key integrity properties are proven

His level 1 roughly comprises our levels 1 and 2, while his levels 2, 3, and 4, are a refinement of our
level 4.

2.1 Some general remarks on the combination of static analyses

Given a tool X, we define its domain to be the set of possible vulnerabilities that can be detected by
X, and can’t be detected by any other tool with less costs. Note that the domain of a tool also depends
on the availability of other tools and their costs. From an abstract point of view, it is obvious that
checking for each vulnerability using the cheapest tool will lead to minimum overall cost.

Similarly, from this abstract point of view, omission of any available tool with a non-empty domain
will result in higher overall costs, and possibly even in a blind spot for some kinds of vulnerabilities.
Particular care must be taken in order to have each vulnerability reported only by one tool, rather
than by all that can detect it. For this reason, e.g. running all tools in parallel is disadvantageous.
Instead, starting with the cheapest tool, each one has to be used individually, and all its findings
have to be fixed before proceeding continuous with the next (more expensive) tool. This way, a more
expensive tool won’t report vulnerabilities found already by a cheaper one, since they are no longer
present. Also, the amount of diagnostic tool output to be tracked down by the developer is reduced.
When the quality assurance process has to be redone after changes to the software, ideally none of
the vulnerability detection tools will report any new finding. In this case, the human effort is limited to
initiating the run once for each tool. This approach depends, however, on a clear understanding of
the capabilities and limitations of the used tools.

1 ADA SPARK is an analysis approach for Ada programs which is comparable to Frama-C

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 5 of 15

2.2 Basic static analyses

The cheapest analysis level consists in full exploitation of all features of common everyday
static analysis tools. Whatever information the employed compiler provides about the source
program should be used; hence the strictest checking level should be chosen when running
the compiler. This includes enabling all available kinds of warnings and hint messages. In
order to be of any use, these messages should be followed, that is, the source code should
be improved such that they disappear in subsequent compilation runs. The number of
unavoidable messages should be reduced as far as possible, in order to minimize the human
effort of reading through all messages after every compiler run. Ideally, there should be no
messages at all, such that a newly appearing one will attract attention immediately.

While these measures should go without saying, our experience implies that often they do
not, even in safety-critical software development projects. More specifically, we have often
encountered the situation where a customer tasked us with conducting a static analysis with
Frama-C. Once we started the analysis, we observed that the customer hadn’t been
bothered at all by the fair amount of compiler warnings!

2.2.1 On strong type checking

Strong type checking is called “one of the most pervasive applications” by a recent NIST3
report on software vulnerabilities to the White House Office of Science and Technology
Policy [BBGF16, Sect. 2.1.7, p.10]. Extensive application of user-defined types can help to
find “semantic errors” like e.g. a wrong parametrization order of an API call and wrong typing
of an array or pointer access.
Unfortunately, both the C and C++ programming language do not support this kind of typing.
Although “typedef” allows for user-defined types, they are handled in a transparent way.
Neither C or C++ will issue any warning on potential misuses of type aliases.
We therefore recommend to follow a strong typing approach in designing critical software.
For the application domain of embedded systems, it is of particular importance to deal with
physical units, such as meters, seconds, etc., and the usual combinations thereof, to
express e.g. velocity or acceleration figures. Concepts for strong type checking in such a
setting have been devised long ago [3], based on systems of dependent types. They allow
to detect that “v*t” has the length type if “v” and “t” has the velocity and time type,
respectively, while “v+t” is an erroneous expression in that case. This approach can also
help to prevent compatibility errors when using both SI and non-SI units. A (in)famous
example for such an error is the loss of the Mars Climate Orbiter2 in 1999. Nowadays there
are publicly available libraries that allow to incorporate the precise SI units into the
application code, for example the C++ Boost.Units library3.

2.3 Simple static analyses

The lint utility attempts to detect features of C program files that are likely to be
vulnerabilities, to be non-portable or to be wasteful. It also performs stricter type checking
than does the C compiler. The Lint tool flags some suspicious and non-portable constructs,
likely to be vulnerabilities, in C language source code. Meanwhile the term “lint” has been

2 See https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
3 See https://www.boost.org/doc/libs/1_69_0/doc/html/boost_units.html

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_units.html

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 6 of 15

generalized to arbitrary programming languages, meaning heuristic tools checking for
suspicious language usage.

According to its documentation, the FreeBSD lint4 checks for the following possible
problems:

• unreachable statements

• loops not entered at the top

• unused variables

• logical expressions with constant values

• assignments to variables of smaller types

• casts of “questionable portability”

• “unusual operations” on enums

• gcc extensions

• vulnerabilities (according to some heuristic tests)

• non-ANSI C

• non-traditional C

• undefined, but used functions and external variables

• undefined structs

Moreover, it checks function calls for inconsistencies, such as

• unused function arguments

• mixed returns with and without value

• functions called with varying numbers of arguments

• parameter type mismatch in function call

• unused function return values

• using the return value of a void function

Modern compilers can often detect many of the constructs traditionally warned about by lint. Writers
of lint-like tools have continued to improve the range of suspicious constructs that they detect. We
show here a simple example of where a “lint-like” program can detect suspicious code that appears
perfectly normal to a compiler.

int foo(int a)

{

 int b = 0;

 if (a > 4) {

 b = 0;

 } else {

 b = 1;

 }

 b = 5;

 return b;

}

4 See release 11.0 on https://www.freebsd.org/cgi/man.cgi

https://www.freebsd.org/cgi/man.cgi

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 7 of 15

When compiling this program with ‘cc -Wall -c foo.c’ no warning is reported. This is perfectly

right; the problem though is that the highlighted part of the function does not affect the function’s
return value ‘5’ at all. The analysis tool FlexeLint5, however, correctly points out the following:

Previously assigned value to variable 'b' has not been used

Such a message can be an important contribution to ensure a high degree of code quality.

2.4 Advanced static analyses

As mentioned in the beginning of this chapter, we consider methods as advanced static analyses,
when they are enforcing given programming guidelines that go beyond the most basic
syntax/semantic restrictions. Over the years, various domain-specific programming guidelines have
been published to document best programming practices to ensure the safety and/or security of
software.
Often it is not clear how certain syntactic checks can make the software more robust. For example,
some guidelines require that each occurrence of “{“ or “}” in the source code appears on a separate
line. On the other hand, it is known that explicitly requiring braces around certain code fragments as
shown in the following code fragment

// instead of

if (isFoo)

 isFoo = false;

// use braces

if (isFoo) {

 isFoo = false;

}

can help avoiding nasty errors. In particular, the well-known “goto fail” vulnerability6 in Apple’s SSL
implementation could have been prevented with this type of static analysis.7

Among the various programming guidelines that are used in industry we mention here

• High Integrity C++ Coding Standard [4]

• Joint Strike Fighter Air Vehicle C++ Standards [5]

• MISRA C and C++ Coding Standards [6]
AUTOSAR C++ 14, Guidelines for the use of the C++14 language in critical and safety-
related systems [7]

• SEI CERT C Coding Standard [8]

• SEI CERT C++ Coding Standard [9]

From a practical point of view, it can be said that the line between simple and advanced static
analyses becomes more and more blurred. This is the reason why in our methodology in Chapter 3
we will merge these two categories in a new one that we refer to as heuristic static analyses. This
terminology is in accordance with the one from the NIST report [9].

5 See http://www.gimpel-online.com/OnlineTesting.html
6 See https://nvd.nist.gov/vuln/detail/CVE-2014-1266
7 See https://dwheeler.com/essays/apple-goto-fail.html

http://www.gimpel-online.com/OnlineTesting.html
https://nvd.nist.gov/vuln/detail/CVE-2014-1266
https://dwheeler.com/essays/apple-goto-fail.html

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 8 of 15

2.5 Formal static analyses

The highest level of static analyses, with respect to both analytical power and cost, are formal
methods and tools. Their strength rests on rigorous mathematical reasoning. Nowadays more and
more tools are available that rely in one form or another on formal methods. One of several
challenges when applying formal methods is the need for a formal specification of the properties that
are supposed to be formally verified. Thus, formal methods are difficult to apply when the desired
properties are only vaguely understood. On the other hand, sometimes the necessary formal
problem description can be derived without too much involvement from the user. One example of
such a formal method is abstract interpretation for proving the absence of undefined behaviour. We
will discuss in some detail in Section 2.5.1.

2.5.1 Abstract interpretation

The abstract interpretation method performs symbolic execution of source code to accumulate
information about the set of possible values a variable may take [CC76, CC77]. Such a set is again
represented in a symbolic way, e.g. as an interval [l...h] of integers. Based on this information, it is
possible to warn about program constructs that may get input values beyond their domain of
definition, such as division by zero or out of bound array indices. In C or C++ programs, both
examples result in undefined behaviour and are a well-known source of security vulnerabilities. As
the conditions for these potentially dangerous program constructs are defined in the C/C++ standard
there is no need for the user to explicitly specify them. At the same time, the more precise the
program’s input data can be specified the more precise and faster the source code can be abstractly
interpreted.

When a set can’t be represented exactly, an appropriate superset is chosen; hence, an over
approximation is computed. As a consequence, this method is sound, i.e. when it doesn’t report a
possibly undefined operation, it is guaranteed that there is none. This behaviour distinguishes
abstract interpretation from all testing approaches, as well as from static analyses that merely rely
on heuristics.
According to Doyle, [[10] p.3], abstract interpretation is “superior to current software development
practices in terms of coverage, scalability and benefit for the effort. Within the VESSEDIA project,
the Frama-C EVA plug-in offers abstract interpretation functionality. As a drawback, due to its
reliance on over approximations abstract interpretation will usually report false positives, i.e. warn
about operations being possibly undefined which in fact are not. To avoid this kind of imprecision in
simple cases, Frama-C represents small sets explicitly, rather than as an interval.

Imprecisions may occur also due to variable dependencies when an own value range is computed
for each variable. As a consequence, a false positive about a possible read of an uninitialized
variable will be issued. To reduce the number of this kind of imprecisions, Frama-C and other tools
offers several forms of relational representations of variable dependencies.

2.5.2 Hoare-style verification

The postcondition verification method uses mathematical theorem proving to establish user-given
formal properties of a program [Hoa69].

This method differs from the abstract interpretation approach in needing extensive information from
the user; in exchange, it provides considerable expressive power with respect to the properties that
can be specified. As mentioned before, while abstract interpretation is done largely automatic, it can
handle only a limited set of pre-defined properties. As an example, given a program to sort database
records, abstract interpretation can demonstrate that no run-time exception can occur, but it needs

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 9 of 15

verification to establish that its output is always ordered ascendingly and neither longer nor shorter
than its input; the latter properties would have to be specified, in a formal language, by hand.

Within the Frama-C verification platform, the WP plug-in supports this verification approach. Besides
a specification (“contract”) for each function, a typically large number of formal annotations are
necessary in the source code to guide the verification process. For example, for every loop the
program loop invariants must be formulated. In addition, the employed theorem proving tools are
usually unable to verify sophisticated code properties, requiring them to be broken down manually
into simpler pieces; to this end, intermediate formulas (“assertions”) need to be placed in the code.
Note that none of these annotations influence the actual run-time behaviour of the software, contrary
to the C library assert mechanism they appear as (special) comments i.e. as invisible to a compiler
(but still recognizable by Frama-C).

Due to the high costs related with this formal verification approach, we don’t explain it here in more
detail. Our reason for mentioning it at all is that we will suggest a more cost-effective specialization
in Section 2.5.3.

2.5.3 Hoare-style verification restricted to run-time errors

It is of course good practice to address all diagnostic messages from analysis tools and, where
possible, to modify the software under analysis such that no warnings are issued by future tool runs.

Unfortunately, this is not always possible with respect to abstract interpretation tools. As a limited
means to help Frama-C avoiding false positives in future analysis runs, hints may be given by some
kinds of assertions. For example, asserting a disjunction may cause Frama-C to make an according
case distinction [[11]Sect.7.1.2, p.76]. However, not all kinds of false positives can be eliminated this
way.

As an alternative, we investigated the use of Hoare-style verification proofs (Section 2.5.2), restricted
to run-time errors. We refer to these method as minimal contracts because the corresponding Hoare-
style contracts would not address the full functionality of a function. The goal of this approach, we
wish to emphasize, is not to replace abstract interpretation tools but rather to complement them. Also
note that a big advantage of abstract interpretation tools is their good scalability with respect to
program size. In general, abstract interpretation is applied to complete programs, whereas Hoare-
style verification (including minimal contracts) works more on the level of individual software
components.

The Frama-C plug-in RTE (run-time errors) can be used to automatically generate the necessary
assertions, thus saving the user a lot of manual effort.

Additional loop invariants are, of course, needed whenever a variable’s value is influenced in a loop
and used therein or thereafter. However, we expect these invariants to be relatively simple, in many
cases just stating lower and upper bounds of variables. Ideally, Frama-C could suggest simple loop
invariants based on a run of its value analysis plug-in which computes this information, anyway. By
automatically inserting initial versions of such annotations into the source code, which the user later
could fine-tune in case this is needed by the WP plugin. We consider this kind of additional
annotations as helpful when trying to understand the code; therefore, we suggest to keep them
permanently as some additional documentation. If this doesn’t meet a user’s point of view, Frama-C
could easily provide functionality to remove them.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 10 of 15

Chapter 3 Suggestion of a three-step methodology

In this chapter we present our three-step methodology for applying a wide range of static analyses
to assure the security and safety of software. While the VESSEDIA project is mainly concerned with
software for IoT systems, this methodology is not necessarily restricted to it.

A particular challenge of the IoT domain, however, is that there is a strong emphasis on quick
development cycles and nifty system features and less so on quality. To be quite clear, whatever
static analysis is applied, it cannot be a remedy for badly understood requirements and
misconceptions on software security.

The three steps of our methodology address, nevertheless, cost concerns by starting with the proper
use of diagnostic messages of compilers (Section 3.1) and continues with tools for checking
established programming guidelines (Section 3.2). The final step consists in applying sound static
analyses (Section 3.3), a term that better reflects the essential aspect of what is also known as formal
methods.

An important idea is that these three steps can and should be applied one after another. Doing it this
way ensures that their increasing capabilities and cost of application are applied in the most
meaningful way.

3.1 Proper use of compiler diagnostics

The first step of our methodology relies, as trivial as it may sound, on the proper use of the diagnostic
messages of compilers. This step is also the easiest and cheapest step since developers are quite
familiar with the capabilities of compilers. Still, it is useful to mention some important points.

Regarding cost, we mention that in many cases compilers for popular programming languages are
available free of charge. However, using these free tools properly (for example following the points
mentioned below) is related with certain costs. These costs are mostly related with understanding
the proper usage of the tools and fixing the reported problems. On the other hand, compiling a file
with strict diagnostics does not really increase the build time.

3.1.1 Chose proper language version

In abuse of language, one often speaks of the C programming language or the C++ programming
language. However, both languages, and other programming languages as well, have evolved and
major evolution steps can be identified by respective language standards. There are often also
language dialects that are specific to certain application domains or compiler vendors. Specific
international standards are sometimes identified by the year in which a standard has been published.
As there are sometimes not only extension but also subtle changes in the semantics we highly
recommend to explicitly specify the language version. For the gcc and clang compilers, for example,
one can use the option -std=c++14 in order to refer the C++ ISO standard published in 2014.

3.1.2 Enable warning options

We recommend using a reasonable strict set of compiler warnings when compiling the source code.
The gcc8 and clang9 compilers, for example, provides the option Wall to enable many useful
warnings. This is in many cases a reasonable choice. Note, however, that the Wall option does not
cover all warning options. Thus, it makes sense to explore the manual and look for warning options

8 GCC, the GNU Compiler Collection, https://gcc.gnu.org
9 Clang, A C language family frontend for LLVM, https://clang.llvm.org

https://gcc.gnu.org/
https://clang.llvm.org/

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 11 of 15

that are useful for the product under development. Some other useful options outside the scope of
Wall are covered by the options Wextra and pedantic.

3.1.3 Discover more warning options

The clang compiler provides an option Weverything that enables all warnings. This option can be
used to search for useful warning options and enable those for later production runs. In other words,
it is not recommended to use this option as default warning option.10

3.1.4 Enforce fixing reported warnings

Next, it must be ensured that the code is actually fixed when warnings are reported, so that finally,
no warnings occur at all. One way to enforce this is to turn warnings into errors. The clang and gcc
compilers provide the option Werror to achieve this goal.

10 See https://quuxplusone.github.io/blog/2018/12/06/dont-use-weverything/ /

https://quuxplusone.github.io/blog/2018/12/06/dont-use-weverything/

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 12 of 15

3.2 Deployment of heuristic static analyses

When we speak of heuristic static analyses, we mean it in the sense as it is used by the authors of
NIST-8151 [9]. We also use this term to merge the two categories of simple static analyses (Section
2.3) and advanced static analyses (Section 2.4).

Using these tools is for several reasons more expensive than just using the diagnostic capabilities
of compilers. First, tools that rely on heuristic static analyses are often not freely available. Second,
it can take more time to understand and properly configure the tools. Thirdly, conducting the analyses
often takes more time than a simple compilation. Finally, the diagnostic messages of a heuristic
analysis tool might be inconclusive because the specific heuristics flag issues that are not really
problems. Heuristic analyses share this reporting of false alarms with sound analyses. However, the
problem is more prevalent with sound analyses.

As we explained in Section 2.4, heuristic methods are often regularly applied to enforce certain
programming guidelines. Our methodology therefore requires that one decides which programming
guidelines should be followed.

3.2.1 Select and understand appropriate programming guidelines

The first and most important task when using heuristic static analyses is to select and understand
the underlying programming guidelines or properties to be analysed. It does not make much sense
to analyse whether the source code follows MISRA-C [6] rules if the developers do not know what
these rules mean and imply. On the other hand, it might well happen that new set of rules become
suddenly important, for example because security becomes suddenly an issue in domains that were
mainly concerned with safety.

3.2.2 Identify heuristic static analyses tools that support the selected guidelines

Once the rules have been understood and taught it is important to select appropriate tools. This step
must include sufficient training in using the tools in order to ensure that developers and quality
assurance experts can use the tools properly. These costs can be considered to be higher than
those related to the proper use of compiler diagnostics.

3.2.3 Enforce fixing reported problems

As in the case of Section 3.1.4, it might sound trivial to demand that problems discovered during a
heuristic analysis are indeed addressed and resolved. We explicitly mention this step in our
methodology in order to prevent that these more advanced static analyses are used merely as a fig
leaf.

3.2.4 Reconcile with compiler diagnostics

At the same time, tool users should be aware that there can be an overlap between the capabilities
of stricter compiler diagnostics and heuristic static analyses. If this is the case, we recommend to
use the corresponding compiler options as early as possible. Here again it might be necessary to
explore which warning options are provide by the compiler (see Section 3.1.3).

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 13 of 15

3.3 Application of select sound static analyses

The final and most challenging step of our methodology consists in applying sound static analyses
to ensure the various safety or security properties of software. We use here the term sound analyses
instead of formal analyses for several reasons. Formal methods, that is methods that are based on
logic and mathematical theories, are around for decades. One of their most important features is that
they can provide assurance that comes from a chain of logical reasoning [[9], Sect. 2.1.1, p.7]. This
is the meaning of sound. The term formal, on the other hand, can have in everyday usage a fairly
negative meaning in the sense of ritualistic or inflexible.

3.3.1 Understand scope of sound static analyses

Applying sound static analyses can require a considerably deeper knowledge of mathematical logic
than simpler static analyses. Before these analyses are applied, it is important to understand and
evaluate the potential of these methods.

3.3.2 Select appropriate analysis tools

Once, appropriate methods have been identified it is necessary to select suitable tools that rely on
these methods. Note that in practice it can appear as if it is the other way around because often tools
are sold, not methods.

3.3.3 Apply sound analyses after simpler analyses have been conducted

The application of sound static analyses requires usually considerably more time than heuristic static
analysis. One reason for this are false positive alarms which often occur at a considerably higher
rate than when using purely heuristic methods. For this reason, it is highly advisable that sound
methods are only applied once the potential of compiler diagnostics and heuristic methods have
been exhausted.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 14 of 15

Chapter 4 Conclusions

This document presents a three-level methodology for applying static code analyses to ensure the
safety and security of software on IoT devices. The three levels group together related techniques
for static source code analysis of increasing capabilities. At the same time, the various levels also
roughly reflect the different costs related with these methods. Our methodology, thus, also allows
to weigh up to a limited degree the strength of a static analysis method against its cost of
application. For a more detailed analysis of the cost of applying static analyses we refer to

Deliverable 1.6 [1].

While this report only considers static analysis techniques it is important to keep in mind that a proper
quality assurance strategy for IoT systems must combine static analyses and dynamic analyses (i.e.
testing techniques). These issues are addressed in Deliverable 3.3 [2] of the VESSEDIA project.

D1.5 – Analyses choice methodology report

VESSEDIA D1.5 Page 15 of 15

Chapter 5 Bibliography

[1] VESSEDIA Deliverable D1.6, Economic rational and metrics report of the effectiveness and
efficiency of the use of VESSEDIA outcomes

[2] VESSEDIA Deliverable D3.3, Guidelines for combination of static and dynamic analyses
[3] Jochen Burghardt. Concepts for an extended type checker for the Z specifi- cation language.

Arbeitspapier 995, GMD, Jun 1996.
[4] Integrity C++ Coding Standard, https://www.perforce.com/resources/qac/high-integrity-cpp-

coding-standard
[5] Joint Strike Fighter Air Vehicle C++ Standards, http://www.stroustrup.com/JSF-AV-rules.pdf
[6] MISRA C and C++ Coding Standards, https://www.misra.org.uk
[7] AUTOSAR C++ 14, Guidelines for the use of the C++14 language in critical and safety-

related systems, https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-
03/AUTOSAR_RS_CPP14Guidelines.pdf

[8] SEI CERT C Coding Standard, https://resources.sei.cmu.edu/downloads/secure-
coding/assets/sei-cert-c-coding-standard-2016-v01.pdf

[9] SEI CERT C++ Coding Standard, https://resources.sei.cmu.edu/downloads/secure-
coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf

[10] NIST-8151: Dramatically Reducing Software Vulnerabilities: Report to the White
House Office of Science and Technology Policy

[11] Richard Doyle. Formal methods, including model-based verification and correct-by-
construction. In Software and Supply Chain Assurance (SSCA) Working Group Summer,
McLean/VA, Jul 2016

[12] David Bühler, Pascal Cuoq, and Boris Yakobowski. EVA — the evolved value
analysis plug-in. User’s Manual Silicon-20161101, CEA LIST, Software Reliability
Laboratory, 2016.

[13] N. Kosmatov, C.Marché, Y. Moy, J. Signoles: Static versus Dynamic Verification in
Why3, Frama-C and SPARK 2014

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
http://www.stroustrup.com/JSF-AV-rules.pdf
https://www.misra.org.uk/
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf
https://dblp.org/pers/hd/k/Kosmatov:Nikolai
https://dblp.org/pers/hd/m/March=eacute=:Claude
https://dblp.org/pers/hd/s/Signoles:Julien

