
D1.3
Modelling framework description

Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security critical

dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D1.3 / 1.0

Work package contributing to the

deliverable:
WP 1

Due date: Jun 2018– M18

Actual submission date: 29th June, 2018

Responsible organisation: CEA

Editor: Shuai Li

Dissemination level: PU

Revision: 1.0

The project VESSEDIA has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:

This document specifies the modelling framework for

secure software development within the VESSEDIA

project. It also proposes the usage of the framework

within a software/security co-engineering method.

Tool implementation specifications for D1.4 are

given. Early examples are shown on a simple ping

protocol.

Keywords:

Architecture framework, Architecture Description

Language, ISO 42010, UML, SysML, ACSL, xLIA,

Software/security co-engineering

D1.3 – Modelling framework description

VESSEDIA D1.3 Page I

Editor

Shuai Li (CEA)

Contributors (ordered according to beneficiary numbers)

Shuai Li (CEA)

Boutheina Bannour (CEA)

Imen Boudhiba (CEA)

Vincent Lorenzo (CEA)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page II

Executive Summary

In this document, the VESSEDIA modelling framework is proposed for the development of secure
software. The goal of the modelling framework is to bridge the gap between high-level textual
requirements in an architecture model and low-level properties in the code.

The particularity of the VESSEDIA modelling framework is that it does not propose new ADLs or
risk assessment methodologies. It rather aggregates existing approaches and uses generic
enough artefacts to be extended with new approaches in the future.

The VESSEDIA modelling framework is based on three major parts: the SecSoftML architecture
description language (ADL), the soft/security co-engineering method that uses and transforms the
elements of SecSoftML, and finally implementation with VESSEDIA tools.

SecSoftML is an ADL whose specification was done with respect to the ISO 42010 standard for
architecture description languages. SecSoftML aims to answer the classical software development
and security concerns of the software engineer and security analyst.

SecSoftML is used within the software/security co-engineering method proposed in this document.
The method has the advantage of parallelizing the classical software development process with the
security analysis process. The goal is to avoid as much as possible work product dependencies
and blocking among the two domains and tasks. A certain number of transformation and analysis
steps will exploit the models and artefacts produced during steps of the method.

An implementation for SecSoftML is proposed with Papyrus UML profiles, diagrams, Xtext editors,
and viewpoints developed within the architecture framework model of Papyrus. Implementation of
the transformations and analyses in the co-engineering method is proposed with existing tools like
the DIVERSITY symbolic execution engine, the Papyrus Software Designer code generator, and
the Frama-C static code analysis. The necessary extensions for these tools were specified in this
document. Implementation will be done in task T1.3 for deliverable D1.4.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page III

Contents

Chapter 1 Introduction .. 1

Chapter 2 ISO 42010 .. 4

Chapter 3 Secure Software Modelling Language .. 6

3.1 Stakeholders and concerns identified in SecSoftML ... 6

3.2 Viewpoints and model kinds of SecSoftML ... 7

3.2.1 Model kinds of SecSoftML ... 7

3.2.2 Viewpoints of SecSoftML ... 11

Chapter 4 Software/security co-engineering method ... 14

4.1 Compositional approach for software/security co-engineering 14

4.2 Mapping of steps to model kinds of viewpoints ... 15

Chapter 5 Implementation specification .. 17

5.1 SecSoftML implementation ... 17

5.1.1 Papyrus and Xtext ... 17

5.1.2 SecSoftML model kinds implementation .. 19

5.1.3 SecSoftML viewpoints implementation .. 20

5.2 Transformations and analyses implementation ... 21

5.2.1 Code generation with Papyrus Software Designer ... 21

5.2.2 ACSL program relational properties inference with DIVERSITY 21

5.2.3 Static code analysis with Frama-C ... 22

5.3 Integrated development environment .. 22

Chapter 6 VESSEDIA modelling framework applied on a ping-pong use-case 23

6.1 Software component modelling of ping-pong use-case ... 23

6.2 Risk modelling of ping-pong use-case .. 24

6.3 Inference of program relational properties of ping-pong use-case 26

6.3.1 Translation of UML interactions to xLIA ... 26

6.3.2 Translation to ACSL-expressed program relational properties 27

Chapter 7 Summary and conclusion .. 29

Chapter 8 List of abbreviations .. 30

Chapter 9 Bibliography ... 31

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page IV

List of Figures

Figure 1: ISO 42010 conceptual model of architecture description .. 4

Figure 2: Stakeholders and concerns of secure software development in VESSEDIA 6

Figure 3: Model kinds of SecSoftML and their framed concerns .. 8

Figure 4: Requirement analysis viewpoint ... 12

Figure 5: Security analysis viewpoint .. 12

Figure 6: Software design viewpoint ... 13

Figure 7: Software/security co-engineering method .. 14

Figure 8: Papyrus modelling environment, example of UML state machine diagram 18

Figure 9: Xtext integration in Papyrus ... 19

Figure 10: Early work-in-progress ACSL Xtext editor .. 19

Figure 11: Papyrus architecture framework model .. 20

Figure 12: Composite structure diagram representing ping-pong components 23

Figure 13: Class diagram representing ping-pong components... 24

Figure 14: Interaction between components of ping-pong ... 25

Figure 15: xLIA generated from UML interaction of ping-pong components 26

Figure 16: Inferred program relational property in ACSL for ping-pong components interaction 28

List of Tables

Table 1: Mapping of co-engineering steps to model kinds of viewpoints 16

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 1 of 31

Chapter 1 Introduction

The multiplication of stakeholders, with different non-orthogonal concerns, has increased the
complexity of system development. In the IoT domain, with more and more intrusive systems,
safety and security concerns have become crucial. Because of the criticality of such systems,
software engineers are prone to follow security methodologies and guidelines. The increased
complexity of systems, and their new constraints, imposes to R&D teams, of different industries,
to adopt new methods and their associated tools.

Context. Within VESSEDIA, IoT use-cases are developed with focus given to the safety and
security requirements and properties. In VESSEDIA, static code analysis is one of the
preconized technique that is used to verify the properties at code level. In such an approach,
software and security properties are expressed as annotations in the code, and are verified with
a static code analysis tool (e.g. Frama-C [Krichner15], Verifast [Jacobs11]). Such properties can
express functional properties at code level, or non-functional properties like the absence of
buffer overflows.

However, in order to reason about system correctness, it is important to have a global view of it.
Indeed, source code level properties only provide a local view that only allows a partial
understanding of the system. Global security requirements are often specified at the system
modelling level. Such requirements must be verified at code level. The challenge is to provide a
modelling framework to bridge the gap between local properties, associated to code, with global
system requirements, associated with system architecture and the knowledge of an appropriate
abstraction of its behaviours. The modelling framework must thus not only focus on the
expressivity of the modelling languages but also methodological issues like traceability and
conformance of requirements at different levels of abstraction.

Considering the context of VESSEDIA use-cases, the modelling framework must respect the
following requirements:

➔ The modelling framework must answer common software development concerns like
requirement specification, architecture modelling (structural and behavioural), and code
implementation.

➔ The modelling framework must answer safety/security concerns like requirement
specification, risk assessment, and analysis.

➔ The modelling framework must allow to deal with requirements expressed in a human
textual language.

➔ The modelling framework must allow to deal with architectures expressed in a graphical
language.

➔ The modelling framework must allow to deal with properties expressed in textual source
code annotations (e.g. ANSI/ISO C Specification Language (ACSL) [ACSLSpec]).

➔ The modelling framework must propose a generic method that can be adapted to
specific methodologies and tools.

➔ The modelling framework must be instantiable with VESSEDIA tools, i.e., Papyrus
modeller [Gerard07], DIVERSITY [Arnaud16] symbolic execution engine, Frama-C
[Krichner15] static C code analyser.

The goal of such requirements is to ensure that the modelling framework can bridge the gap
between high-level textual requirements in an architecture model and low-level properties
annotating the code.

The rest of this document focuses on security aspects of the VESSEDIA project considering
how they are intrinsically related to software designs and implementations that are verified in
VESSEDIA. For source code, this document focuses on the C language and its related
specification languages.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 2 of 31

Related approaches. For the time being, there are many methodologies that address the
concern of building a secure system. For example, in the case of risk management and risk
assessment methodologies, the European Union Agency for Network and Information Security
(ENISA) has generated an inventory of 17 methods in [ENISAMethods] and 18 tools in
[ENISATools]. For example, EBIOS [EBIOS] is a method proposed in 1995 to assess and
handle risks related to information system security.

These methodologies do not provide a language aimed by the VESSEDIA modelling framework,
as language definition is out of their scope. They propose methodological requirements and
recommendations that can be instantiated for a particular method used in a company. Therefore
their contributions are not incompatible with the VESSEDIA modelling framework which
proposes languages and methods.

In terms of Domain-Specific Modelling Languages (DSML) that support the design and security
analysis of a system, Unified Modelling Language-based languages have explored security
requirement modelling and risk assessment. UML is a graphical software modelling language
with a certain number of diagrams dedicated to structure and behaviour modelling. Through its
profile mechanism, UML can be extended for domain-specific needs. A UML profile has
stereotypes, with attributes, that extend UML meta-model elements. Once a profile is applied on
a UML model, its stereotypes can be applied on UML elements to give them new semantics.

Attack Modelling Language (AtML) [Bannour14] is a UML profile that proposes to model
architecture vulnerabilities and attack scenarios with re-usable patterns of attacks from the
threats. Most of the modelling work is done at the interaction level, using UML sequence
diagrams to assess the risks.

The AtML approach does not use static code analysis as a mean to verify the modelled security
requirements. Furthermore, it does not support behavioural modelling of the architecture.
However, as we shall see, AtML can be integrated into the VESSEDIA modelling framework.

Perhaps the approach that a priori suits the most the needs of VESSEDIA is System Modelling
Language for Security (SysML-Sec) [Roudier15]. SysML-Sec is an extension to the System
Modelling Language (SysML) [SysMLSpec] profile, itself an extension of UML for system
engineering purposes. The language proposes a taxonomy of security requirements, and
annotations for the hardware and software design, with the goal of verifying security, safety, and
performance in a co-engineering framework. Verification is based on formal modelling and
model-checking (e.g. UPPAAL and ProVerif).

However, SysML-Sec does not suit all requirements of the VESSEDIA modelling framework
because of the need to have low level enough languages that can bridge the gap with the
source code. Indeed, SysML-Sec is based on SysML which suits system engineering rather
than software implementation concerns. Furthermore, the analysis methods to use in
conjunction with SysML-Sec are based on model-checking while in VESSEDIA static code
analysis is performed to verify that the implementation of the system indeed respects its high
level security requirements.

Contributions. To face the challenges of VESSEDIA, we propose to use previous experience
and expertise in system and software design by Model-Driven Engineering (MDE) methods and
tools. MDE focuses on description and exploitation of domain-specific models to separate
concerns and promote representation of knowledge in a particular domain rather than
implementation details. Model transformation [Sendall03] is crucial to MDE. Model
transformation takes some input model conform to a meta-model, does some computations,
and produces some output model conform to a meta-model.

In this document a modelling framework is proposed for the design of secure software systems.
Considering the high number of security methodologies and DSMLs available, proposing a new
methodology or new DSML in VESSEDIA is not justified. Instead existing DSMLs will be
aggregated together and used in collaboration to answer different software/security concerns
and VESSEDIA use-case requirements. Aggregated languages shall also be generic enough for
them to be extended with specific DSMLs proposed in the future. A generic software/security

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 3 of 31

co-engineering method is also proposed to use the packaged languages within a same
framework. The steps of the generic method can be mapped to existing methodology activities.

In terms of tooling, this document proposes an Integrated Development Environment (IDE) that
implements the modelling framework with existing tools such as the Papyrus modeller and
model transformation tools [Pham16], the DIVERSITY symbolic execution engine, and the
Frama-C static code analyser.

The aggregation of DSMLs, the proposed generic co-engineering method, and tooling are the
core of the VESSEDIA modelling framework. It is thus composed of the following contributions:

− The specification of an Architecture Description Language (ADL) called Secure Software
Modelling Language (SecSoftML) that is conform to ISO 42010 [ISO42010], which
proposes a conceptual model for architecture description. This document shows how
SecSoftML can be conform to an ADL in the ISO 42010 sense, while being an
aggregation of existing ADLs.

− A generic software/security co-engineering method, with modelling, transformation, and
analysis steps. Elements of SecSoftML are used in the modelling steps and to represent
analysis results.

− A specification of the implementation of the modelling framework based on tools of
VESSEDIA: Papyrus, DIVERSITY, and Frama-C.

The rest of the paper is structured as follows. Chapter 2 describes the ISO 42010 standard on
which the ADL of the VESSEDIA modelling framework is built upon. Chapter 3 describes the
ADL conform to ISO 42010. Chapter 4 presents the software/security co-engineering method.
Chapter 5 gives and implementation specification for deliverable D1.4 produced by task T1.3.
Chapter 6 shows a case-study to illustrate the whole approach, with an early implementation of
the modelling framework. Chapter 7 concludes with some ideas for future works.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 4 of 31

Chapter 2 ISO 42010

In this chapter, the ISO 42010 standard for architecture description is explained. In particular,
we focus on the concept of architecture description language, given in the standard. Indeed, in
VESSEDIA an architecture description language is specified and used within its modelling
framework.

ISO 42010 addresses the creation, analysis and sustainment of architectures of systems
through the use of architecture descriptions. An architecture description, as defined by the ISO
42010 standard, is a “work product used to express an architecture”. The goal of the standard is
to homogenise architecture description by defining standard terms and providing a conceptual
foundation for expressing and exploiting architecture descriptions.

The standard specifies the required concepts of an architecture description. Such concepts are
introduced to codify conventions and common practices of architecture description. Based on
the concepts of architecture description specified in the standard itself, it establishes conceptual
models architecture description languages shown in Figure 1. Note that as it is a conceptual
model, it cannot be taken as a formally well-defined and consistent meta-model. Nevertheless,
we will try to be conform to this conceptual model in the definition of our architecture description
languages used within the VESSEDIA modelling framework.

Figure 1: ISO 42010 conceptual model of architecture description

In Figure 1, the conceptual model has a number of concepts that are defined in the standard as
follows:

− Stakeholder: Stakeholders are individuals, groups or organizations holding Concerns
for the System of Interest. Examples of stakeholders: client, owner, user, consumer,
supplier, designer, maintainer, auditor, CEO, certification authority, architect.

− Concern: A Concern is any interest in the system. The term derives from the phrase
“separation of concerns” as originally coined by Edsger Dijkstra. Examples of concerns:
(system) purpose, functionality, structure, behaviour, cost, supportability, safety,
interoperability.

− Architecture Viewpoint: An Architecture Viewpoint is a set of conventions for
constructing, interpreting, using and analysing one type of Architecture View. A
viewpoint includes Model Kinds, viewpoint languages and notations, modelling methods
and analytic techniques to frame a specific set of Concerns. Examples of viewpoints:
operational, systems, technical, logical, deployment, process, information.

− Model Kind: A Model Kind defines the conventions for one type of Architecture Model.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 5 of 31

− Architecture Description Language (ADL): An ADL is any form of expression for use
in architecture descriptions. An ADL might include a single Model Kind, a single
viewpoint or multiple viewpoints. Examples of ADLs: Rapide, SysML, ArchiMate, ACME,
xADL.

− Correspondence Rule: Correspondence Rules enforce relations within an Architecture
Description or between Architecture Descriptions.

Using the conceptual model of Figure 1, the VESSEDIA modelling framework will be specified in
the next two chapters. In Chapter 3, all concepts except correspondence rule will be specified
for the ADL of the VESSEDIA modelling framework. The correspondence rules will be specified
in Chapter 4, which focus on relations and transformations between the model kinds.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 6 of 31

Chapter 3 Secure Software Modelling Language

The ADL used in the VESSEDIA modelling framework is called SecSoftML. Contrary to classical
ADLs, the one in VESSEDIA is actually an aggregation of existing subsets of modelling and
specification languages that answer the different concerns of the stakeholders.

In the following sections, the concepts of stakeholders, concerns, model kinds, and viewpoints,
from ISO 42010, are used to specify SecSoftML, the VESSEDIA modelling framework.

3.1 Stakeholders and concerns identified in SecSoftML

The stakeholders and concerns, within the context of VESSEDIA, have been identified with a
very practical approach, by working on the development of the use-cases, e.g., the 6LowPan
sensors network.

Figure 2 shows the stakeholders and concerns of secure software development in VESSEDIA
that need to be answered by SecSoftML. The figure is made with the UML use-case diagram
conventions.

Figure 2: Stakeholders and concerns of secure software development in VESSEDIA

To simplify this report, there are two identified stakeholders: the software engineer and the
security analyst. Obviously these two stakeholders can be specialized according to company
development methods. Within VESSEDIA, the two stakeholders are defined as follows:

− Software engineer: the software engineer’s role is to develop all required functionalities.
As such, this stakeholder covers all system development life-cycle phases from textual
description of requirements to executable runtime. The stakeholder makes sure the
functional requirements and properties are met so the system can accomplish its use-
cases.

− Security analyst: the security analyst’s role is to secure the developed product. As
such, this stakeholder brings security expertise inputs in all system development life-
cycle phases, starting at the requirements specification phase. The security analyst
makes sure non-functional security properties are met so the system can prevent
foreseen attacks.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 7 of 31

The software engineer has the following concerns:

− Software requirement: This concern consists in defining the software functional
requirements which are the needs, identified by the client or by the software engineers,
that the system must fulfil. Such requirements are expressed in a more or less abstract
manner, i.e., from textual descriptions to refined models of use-cases and interactions.

− Software component: This concern deals with the definition, assembly, and
composition of functional software components necessary for the system to meet its
requirements. The interfaces of components and possible collaborations between
components are of utmost interest. Verification of composability is recommended.

− Software implementation: This concern is the realization of the software components
so they are implementable. The implementation details, functions and their behaviours,
variables and their types and values, communication protocol realizations, etc…, are of
interest. Verification of correct functional behaviour is recommended.

The software analyst has the following concerns:

− Security objectives: This concern consists in defining the security requirements of the
software system to develop. Security requirements are defined in parallel with functional
requirements.

− Risk assessment: Risk assessment in security engineering consists in identifying the
assets, threats, and vulnerabilities of the system. The risk is computed from all three
factors.

− Protection: This concern aims at preventing attacks by specifying and implementing
countermeasures. A countermeasure can be a new watchdog component in the system,
or simply be security properties on software elements that must be respected during the
implementation.

The concerns identified in this section must be framed by some viewpoints, and their model
kinds, within SecSoftML. Such architecture description elements are described in the next
section.

3.2 Viewpoints and model kinds of SecSoftML

As a reminder, SecSoftML is an aggregation of subsets languages instead of a classical ADL. In
order to achieve this objective of not only aggregating languages but their subsets necessary for
our concerns, SecSoftML aggregates the representations of the languages as model kinds in
the ISO 42010 sense.

A representation of a language is a particular syntax of the language, e.g., it can be a particular
graphical diagram of that language (e.g., UML state-machine diagram), a tabular representation
(e.g., SysML Requirements table) or the simple textual form of the language (e.g., ACSL text).
Representations of languages already constrain the subset semantic elements of language that
can be represented. Therefore, by aggregating only representations, we already choose the
subset of a language that are used in our ADL.

Since model kinds are the atomic unit of aggregation in our ADL, in the next sections, the model
kinds in SecSoftML are first described, followed by its viewpoints. For each viewpoint, the list of
model kinds it aggregates will be given, as well as the rationale behind the viewpoint.

3.2.1 Model kinds of SecSoftML

As a reminder, model kinds in SecSoftML are representations of the different languages
aggregated by the ADL. In the following sections, we first present an overview of all model kinds
and their framed concerns. Afterwards, each of the following sections will describe the model
kinds of a language used in SecSoftML. The goal of this document is not to give the entire

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 8 of 31

specification of each model kind, but rather an overview of elements expressible in a model kind
that are of interest to SectSoftML, with respect to the identified concerns.

3.2.1.1 Summary of model kinds and framed concerns

Figure 3 sums up the model kinds of SecSoftML and the concerns they frame.

Figure 3: Model kinds of SecSoftML and their framed concerns

The next sections give more details on the model kinds in Figure 3.

3.2.1.2 SysML requirement model kinds

SysML is a generic language for system engineering, currently standardized by the OMG.
SysML is a specialization of UML for system specification, analysis, design, verification and
validation. SysML takes a subset of UML structural diagrams and specializes them for
requirements, allocations, blocks modelling, and parametric modelling, in order to have a
consistent and smaller sized language. For behavioural modelling, SysML imports UML
behavioural diagrams.

In the case of SecSoftML, only the SysML requirement model kinds are of interest. According to
the SysML specification, a requirement specifies a capability or condition that must (or should)
be satisfied. A requirement may specify a function that a system must perform or a performance
condition a system must achieve. SysML requirement model kinds frame the software
requirement concern of the software engineer.

3.2.1.2.1 SysML requirement diagram

In SysML requirement diagrams, the textual requirements are graphically modelled as classes
stereotyped <<Requirement>>. Each <<Requirement>> has an id and a text description.
Requirements can be packaged together within packages or other requirements to create some
hierarchical decomposition.

The graphical model is also ideal to represent traceability relationships between requirements
themselves and between requirements and other model elements. Such traceability
relationships are:

− Copy of a requirement by another requirement

− Derivation of a requirement by another requirement

− Satisfaction of a requirement by a model element

− Refinement of a requirement by a model element (usually a behavioural model element)

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 9 of 31

− Verification of a requirement by a model element (usually a model element representing
some test case)

3.2.1.2.2 SysML requirement table

Requirements and relationships can also be represented in tabular views. In SysML
requirement tables, the modelled requirements, and their packaging, are represented in a
hierarchical tabular view. This is to ease the analysis of the requirements decomposition.

3.2.1.2.3 SysML allocation table

In SysML allocation tables, the traceability relationships are represented in a tabular view. This
is to ease the analysis of, e.g., requirement satisfactions by the modelled solution.

3.2.1.3 SysML-Sec requirement model kinds

SysML-Sec is an extension of SysML to design safe and secure systems. Within SysML-Sec,
the security requirements model kinds are of interest to SecSoftML. Indeed, SysML-Sec has
specific stereotypes for security-related requirements (e.g., confidentiality, authenticity,
integrity). Such security requirements will be represented in SysML-Sec requirement diagrams
and SysML-Sec requirement tables. These model kinds are similar to those of SysML
requirement, except they are specialized to represent SysML-Sec requirements and traceability
relationships for SysML-Sec requirements.

The SysML-Sec requirement model kinds frame the security requirement concern of the security
analyst.

3.2.1.4 UML model kinds

UML [UMLSpec] is a generic language originally proposed for software engineering. Historically,
the goal of UML was to unify different languages and tools used in the software domain. UML
has a number of diagrams to fulfil the needs of requirement, analysis, design, verification, and
validation in software development. These diagrams are graphical representations of the model
elements. Therefore the diagrams are the model kinds to aggregate in SecSoftML.

3.2.1.4.1 UML sequence diagram

Among model kinds of UML, some are useful for requirement refinement. The UML sequence
diagram represents interactions between elements of the model. Such elements can be
components of the solution or external actors. Elements are represented as chronologically
ordered lifelines and they exchange messages among them. When a message is received by
an element, some operation (function) may be executed.

Messages and executed operations may be subject to constraints expressed in a domain-
specific textual language.

One of the main usage of the sequence diagram is to refine textually written requirements,
modelled in SysML requirement diagrams. Indeed, the sequence diagram formalizes the
behaviours that are textually described and add constraints that are expressed in a domain-
specific textual language.

This model kind frames the risk assessment and protection concerns of the security analyst.

3.2.1.4.2 UML composite structure diagram

Some model kinds are dedicated to the structural specification of the software system. The UML
composite structure diagram represents components as UML structured classes, and their
internal structure. Classes have ports, typed by interfaces, and parts that may be connected
with connectors. This diagram therefore shows how the components are composed and
assembled, and how functionalities are delegated. The goal of this kind of diagram is to focus
on the collaborations between components.

This model kind frames the software component concern of the software engineer.

3.2.1.4.3 UML class diagram

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 10 of 31

Some model kinds are dedicated to detailed structural specification in SecSoftML, focusing on
implementation issues to refine the more abstract components. The UML class diagram
represents classes, their attributes (variables), and their operations (functions). Implementation
specific properties (e.g., programming language specificities) may also be specified as
annotations on these elements.

The elements may also have constraints expressed in a domain-specific textual language. Such
constraints may express, e.g., security properties on operations that must be respected by the
implementation. In other cases, the constraints may express security properties on the whole
program described by the modelled architecture.

This model kind frames the software component and software implementation concerns of the
software engineer. It also frames the protection concern of the security analyst since it is used
to represent elements that will have annotated security properties.

3.2.1.4.4 UML state machine diagram

Some model kinds are necessary for behavioural specification in SecSoftML. The UML state
machine diagram represents behaviours of components in an automata formalism. Classes
have states connected by transitions. Internal and external events trigger the transitions and
therefore changes of state. Operations (functions) and atomic behaviours may be executed in
states and in transitions.

The elements may also have constraints expressed in a domain-specific textual language. Such
constraints may express, e.g., security properties on states, transitions, and executed
operations and atomic behaviours that must be respected by the implementation.

This model kind frames the software component concern of the software engineer. It also
frames the protection concern of the security analyst since it is used to represent elements that
will have annotated security properties.

3.2.1.5 ACSL model kinds

ACSL allows to formally specify the properties of a C program, in order to be able to formally
verify that the implementation respects these properties.

The most important ACSL concept is the function contract. A function contract for a C function f

is a set of requirements over the arguments of f and/or a set of properties that are ensured at

the end of the function. The formula that expresses the requirements is called a pre-condition,
whereas the formula that expresses the properties ensured when f returns is a post-condition.

Together, these conditions form a contract between f and its callers: each caller must

guarantee that the pre-condition holds before calling f. In exchange, f guarantees that the post-

condition holds when it returns.

In VESSEDIA, ACSL relational properties on a program have also been developed. For
example a relational property can express the order in which a function should execute with
respect to another function. Such properties would allow users to specify the allowed execution
paths of a program.

For a full list of first-order logic expressions, predicates, axioms, etc… that can be written in
ACSL, the reader is invited to refer to the ACSL specification [ACSLSpec].

The model kind of ACSL is the ACSL specification which is expressed as textual comments. In
terms of integration with UML, constraints can be expressed in ACSL to represent properties
that the implementation must respect.

The ACSL specification frames the security protection concern.

3.2.1.6 xLIA model kinds

xLIA (executable Language for Interaction and Architecture) [Arnaud16] is the pivot language of
the DIVERSITY tool introducing a set of communication and execution primitives allowing one
to encode a wide class of dynamic model semantics, e.g., hierarchical timed communicating

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 11 of 31

Symbolic Transition Systems (STS), UML/SysML (UML state machine diagram, sequence
diagrams), Specification and Description Language (SDL), and abstractions of hybrid systems.
The root entity in an xLIA model is a so-called system. A system is an executable entity that can
be atomic (as STS), compositional, or hierarchical.

xLIA supports many communication and execution schemes which allows the specification of
reference system models which can be used to capture high level system concerns (e.g., sub-
systems can communicate asynchronously (over FIFO) with interleaving scheduling. More
operators exist in xLIA such as sequencing, parallel, choice.

We focus on a subset of DIVERSITY that we will be used in VESSEDIA to formalize semantics
of specialized UML interactions with symbolic data and function call constraints (by model
translation of UML interactions to xLIA models). This subset of xLIA allows the specification of
(1) STS where transitions are composed of a source and a target control state, (2) sequence of
instructions such as guards built from state variables, (3) some communication actions
(receptions of values stored on state variables or emissions of values through some ports), (4)
variable updates denoted by classical assignments, and (5) black-box function calls with explicit
parameter data. The latter constitutes an extension of xLIA done in VESSEDIA to support STS
enriched with function calls. xLIA is endowed with symbolic execution mechanisms which allows
to compute and reason about semantics of models in an efficient manner using a symbolic
representation of the state-space. On the basis of this symbolic representation, algorithms for
ACSL program relational properties inference, for called functions, are being developed in
DIVERSITY (T3.1).

The model kind of xLIA is the xLIA specification which is expressed in text. It frames the risk
assessment concern.

In following section, the model kinds described so far will be aggregated among viewpoints of
SecSoftML.

3.2.2 Viewpoints of SecSoftML

In SecSoftML there are three viewpoints dedicated to requirements analysis, security analysis,
and software design. Each viewpoint aggregates the model kinds described in Section 3.2 in
order to provide a single context dedicated to one concern, or several concerns if synergy
among concerns is recommended. Each of the following sections describes a viewpoint and the
rationale behind it.

3.2.2.1 Requirements analysis viewpoint

The requirements analysis viewpoint is used for requirements modelling and organization. As
such, the model kinds that frame both the software requirements and security objectives are
aggregated within the requirements analysis viewpoint. Note that model kinds that frame
software requirements and security objectives are both aggregated within a same viewpoint
because it is usually necessary to have a holistic view of all system requirements for co-
engineering purposes.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 12 of 31

Figure 4: Requirement analysis viewpoint

Figure 4 shows the requirement analysis viewpoint with the model kinds it aggregates.

3.2.2.2 Security analysis viewpoint

The security analysis viewpoint is used to assess assets, threats, and vulnerabilities. As such,
the model kinds that frame the risk assessment and protection concerns are aggregated. The
risk assessment is done in xLIA-annotated UML sequence diagrams where it is possible to
represent the assets, threats, and vulnerabilities through attack scenarios. Protection is done by
specifying security properties as ACSL annotations in UML class diagrams, UML state machine
diagrams, and inferring security properties as ACSL from UML sequence diagrams.

Figure 5: Security analysis viewpoint

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 13 of 31

Figure 5 shows the security analysis viewpoint with the model kinds it aggregates.

3.2.2.3 Software design viewpoint

The software design viewpoint is used for classical software development steps. As such, the
model kinds that frame the software component and software implementation concerns are
aggregated.

Figure 6: Software design viewpoint

Figure 6 shows the software design viewpoint with the model kinds it aggregates.

The next chapter relates the model kinds presented in this chapter, through a software/security
co-engineering method.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 14 of 31

Chapter 4 Software/security co-engineering
method

In traditional security and safety methodologies, there may exist work-product dependencies
between steps of a method. Such dependencies can slow down the software development.
Therefore, an innovative and efficient way to implement such methodologies recommendations
is to parallelize steps when possible.

The method is based on a generic compositional approach where traditional software
development steps are done in parallel to security analysis steps, before they converge at
synchronization points. Since the method is generic, its steps can be mapped to existing
methodologies.

In the next sections, first the co-engineering method is described. Afterwards its steps are
mapped to model kinds of viewpoints of SecSoftML described in Section 3.2. Finally, the
transformations and relationships between model kinds, within the proposed co-engineering
method, will be described as correspondence rules of ISO 42010.

4.1 Compositional approach for software/security co-engineering

The proposed co-engineering method, for the VESSEDIA modelling framework, is shown in
Figure 7.

Figure 7: Software/security co-engineering method

In Figure 7 there are two processes running in parallel, the software development process
highlighted in white, and the security process highlighted in violet. The advantage of such an
approach is that security steps do not block software development steps.

The proposed co-engineering method contains a certain number of steps. Steps with a hand
icon are modelling and specification steps. Steps with a cog icon are transformation and
analysis steps. Arrows indicate dependencies between steps, i.e., a step must wait for all of its
input to be available before it can start.

The steps in the software development process are the following:

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 15 of 31

− 1.1 Software requirement specification: the software functional requirements are
specified textually and modelled as behaviours refining the textual requirements.

− 1.2 Software component modelling: the software components are modelled.

− 1.3 Software implementation modelling: the modelled software components are
refined with low level implementation details, and eventually decomposed in low level
implementation classes.

− 1.4 Code generation: from the implementation model, code is generated. This
generated code is a skeleton that must be completed later on. The generated code also
contains ACSL annotations that correspond to ACSL-expressed properties in the model,
which are the results of steps 2.3 and 2.4, in the security process, described below.

− 1.5 Coding: in this step, the generated skeleton is completed with, e.g., function bodies.
Since the ACSL annotations are generated, they must be respected by the manually
written code.

The steps in the security process are the following:

− 2.1 Security requirement specification: the security requirements are specified
textually.

− 2.2 Risk modelling: the security requirements are refined as scenarios, including attack
scenarios. The assets, threats, and vulnerabilities are identified during the definition of
such scenarios to manage the risk.

− 2.3 Inference of relational properties: from the scenarios it is possible to infer program
relational properties. An example of a relational property is, e.g., a chain of functions that
must execute and only execute at runtime.

− 2.4 Specification of function pre/post conditions: pre/post conditions of functions
may also be manually specified as ACSL annotations.

− 2.5 Static code analysis: the completed code is analysed to verify that it respects the
properties written as ACSL annotations. In particular, the properties for security need to
be verified since their conformance represents protections.

Finally there are a certain number of traceability steps whose purposes are all the same:

− 3.1.X Trace refinement: when any requirement is refined, the refining element must be
traced back to the original requirement.

− 3.2.X Trace satisfaction: when any requirement is satisfied by a design element or
analysis result, the satisfying artefact must be traced back to the requirement.

In the next section, the steps described here will be mapped to existing model kinds of
viewpoints when appropriate.

4.2 Mapping of steps to model kinds of viewpoints

The software/security co-engineering method has several modelling steps. Other steps produce
specifications. Such steps will use or represent their results in the model kinds of the viewpoints
of SecSoftML defined in Section 3.2. Table 1 shows the mapping of the steps to model kinds of
viewpoints.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 16 of 31

Step Viewpoint Model kind

1.1 Software requirement
specification

Requirements analysis SysML requirement diagram,
SysML requirement table

1.2 Software component
modelling

Software design UML composite structure
diagram, UML state machine
diagram

1.3 Software implementation
modelling

Software design UML class diagram

2.1 Security requirement
specification

Requirements analysis SysML-Sec requirement
diagram, SysML-Sec
requirement table

2.2 Risk modelling Security analysis UML sequence diagram, xLIA
specification

2.3 Inference of rational
properties for security

Security analysis ACSL specification

2.4 Specification of function
pre/post conditions for
security

Security analysis UML class diagram, ACSL
specification

3.1 Trace refinement Requirements analysis SysML requirement diagram,
SysML allocation table,
SysML-Sec requirement
diagram

3.2 Trace satisfaction Requirements analysis SysML requirement diagram,
SysML allocation table,
SysML-Sec requirement
diagram

Table 1: Mapping of co-engineering steps to model kinds of viewpoints

Note that the software/security co-engineering method, and its mapping to proposed security
viewpoints and model kinds, can be easily adapted to safety concerns. The only difference is
the viewpoints and model kinds which need to be those framing safety concerns. The co-
engineering method itself is generic enough so it does not need adaptation.

The next chapter gives an instantiation of the software/security co-engineering method, through
its implementation with tools.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 17 of 31

Chapter 5 Implementation specification

In order to provide a streamlined experience for the modelling framework of VESSEDIA, several
of its major parts must be implemented as tools and packaged: SecSoftML, transformations and
analyses, packaging in an IDE.

The role of this chapter is to provide an implementation specification for the modelling
framework and therefore identify existing tools that can be re-used and others that must be
developed in VESSEDIA. The next sections propose implementation specifications for the
different mentioned parts of the VESSEDIA modelling framework.

5.1 SecSoftML implementation

The implementation of SecSoftML is based on the implementation of modellers for its model
kinds and viewpoints. The following sections first give an overview of the technology enablers
that let us implement SecSoftML. Afterwards, we specify the implementation of the model kinds.
Finally, the specifications of the viewpoints implementations are given.

5.1.1 Papyrus and Xtext

The majority of the ADL is implemented with Papyrus and Xtext. The following sections give an
overview of these tools and explain how they are customizable for the needs of SecSoftML.

5.1.1.1 Papyrus

Papyrus is an open-source UML modeller that implements the whole UML language
specification and its representations. Papyrus also provides a framework to implement new
UML profiles and a customization of Papyrus modelling UI for the profile. Such is the case for
SysML, whose whole language specification and representations are implemented in Papyrus.

Figure 8 shows the Papyrus modelling environment with its different UI elements.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 18 of 31

Figure 8: Papyrus modelling environment, example of UML state machine diagram

In Figure 8, there are UI elements for the edition of the diagram. In the following, when a
diagram must be implemented, the following UI elements must be implemented:

− 1) CSS-enabled diagram editor: the editor shows the diagram representing elements of
the model. The editor enables applying CSS style sheets to customize visualisation.

− 2) Diagram palette: the diagram palette contains tools to create model elements in the
diagram.

− 3) New diagram/table: the new diagram/table menu allows to create diagrams specific to
the language.

In Figure 8, there are also UI elements for the edition of the model itself. In the following, when
a profile must be implemented, the following UI elements must be implemented:

− 4) Model explorer: the model explorer shows a hierarchical view of the model elements
that are not graphically represented in diagrams.

− 5) New child: the new child menu allows to directly create model elements of a language
without using diagrams.

− 6) Properties view: the properties view of a language allows to edit the properties of an
element selected in a diagram or the model explorer.

Papyrus is not only a graphical modeller but it also supports textual modelling through Xtext,
which is described in the next section.

5.1.1.2 Xtext

Xtext [Xtext] is a framework to write domain-specific textual languages. By defining the syntax
and grammar of a textual language, and visual specifications for the text editor, the Xtext
framework generates a text editor in which coloured expressions can be written in the particular

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 19 of 31

domain-specific textual language. Papyrus supports integration of Xtext editors to edit textual
expressions.

For example in Figure 9, an UML element is specified textually, instead of graphically, with a
UML Xtext editor integrated in a Papyrus diagram.

Figure 9: Xtext integration in Papyrus

The next section shows how Papyrus and Xtext were combined to implement SecSoftML model
kinds.

5.1.2 SecSoftML model kinds implementation

The model kinds of SecSoftML are in majority implemented as UML profiles with
representations (diagrams, tables) in Papyrus.

5.1.2.1 SysML requirement model kinds implementation

The SysML requirement profile is already implemented in Papyrus. Its requirement diagram,
table, and allocation table are already implemented. All UI elements are also implemented.
Therefore the Papyrus implementation of SysML will be re-used as is.

5.1.2.2 SysML-Sec requirement model kinds implementation

The SysML-Sec requirement profile must be implemented in Papyrus. UI elements to edit the
model in SysML-Sec requirement must be implemented (see Section 5.1.1.1). The SysML-Sec
requirement diagram and table must be implemented with their UI elements (see Section
5.1.1.1). The SysML allocation table will be re-used.

5.1.2.3 UML model kinds implementation

UML and all of its diagrams required by SecSoftML are already implemented in Papyrus. They
will therefore be re-used.

5.1.2.4 ACSL model kinds implementation

ACSL must be implemented as an Xtext editor to be integrated into Papyrus. The ACSL Xtext
editor is attached to any menu where ACSL must be expressed, e.g., menus where constraints
are written. The ACSL Xtext editor must also show coloured text of the ACSL expression.

Figure 10 gives an example of the early work-in-progress ACSL Xtext editor integrated in the
Papyrus model explorer.

Figure 10: Early work-in-progress ACSL Xtext editor

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 20 of 31

5.1.2.5 xLIA model kinds implementation

xLIA is implemented as an Xtext editor and a Properties view editor, both integrated into
Papyrus. Therefore the editors will be re-used.

Once all model kinds are implemented, they must be aggregated within the implemented
viewpoints of SecSoftML, described in the next section.

5.1.3 SecSoftML viewpoints implementation

Papyrus has an architecture framework to develop ADLs that are ISO 42010 compliant. The
framework is implemented as an Ecore meta-model [EMF] in Eclipse. The developer can then
implement the ADL by modelling it in the dedicated Eclipe Modelling Framework (EMF) [EMF]
modelling editor. SecSoftML and its viewpoints, as specified in Chapter 3, must be implemented
with this Papyrus architecture framework.

The model must contain the stakeholders, the concerns, the ADL, and its aggregated
viewpoints. The model kinds are also modelled as references to existing diagrams.

Figure 11 shows an early modelling of SecSoftML with the framework. For example, it contains
the requirement analysis viewpoint, which itself refers to SysML requirement model kinds.

Figure 11: Papyrus architecture framework model

In the current architecture framework of Papyrus, only diagram-implemented model kinds (e.g.,
UML, SysML, and SysML-Sec) can be referenced. Therefore Xtext-implemented model kinds

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 21 of 31

(e.g , xLIA, ACSL) will not be referenced by their respective viewpoint. However this only means
that the Xtext-implemented model kinds will be available in all viewpoints.

After implementation of SecSoftML, several model transformation and analysis tools must be
implemented for the co-engineering method where model kinds of viewpoints of SecSoftML are
used.

5.2 Transformations and analyses implementation

In the software/security co-engineering method, described in Section 4.1, there are a certain
number of steps dedicated to model transformation and analysis. For the implementation of
these steps, existing Papyrus-based MDE tools, and existing Frama-C-based static code
analysers, will be re-used. The implementation of these steps, and what needs to be
modified/added in the tools, will be specified in the following sections.

5.2.1 Code generation with Papyrus Software Designer

In step 1.4, code with properties in ACSL must be generated. For code generation, we propose
to use existing Papyrus Software Designer code generator frameworks to develop new
generators necessary for the modelling framework of VESSEDIA.

Papyrus Software Designer is a plugin for Papyrus which generates code in different
programming languages from UML-based models. Currently the tool supports C++ code
generation for software components and state machines modelled in UML.

For VESSEDIA, a C code generator for UML structured classes and state machines must be
developed. The new and existing code generators must also be updated to consider constraints
expressed in ACSL, and generate the equivalent ACSL property in the code.

5.2.2 ACSL program relational properties inference with DIVERSITY

DIVERSITY is model analysis tool based on symbolic execution. DIVERSITY is extensible
allowing customizing the basic symbolic treatments to implement specific Formal Analysis
Modules (FAM) (e.g., Model-based Testing (MBT), algorithms, exploration strategies and
heuristics). DIVERSITY is connected with SMT solvers, e.g., CVC4, Z3 and YICES which can
be easily used to implement new FAMs.

In fact, DIVERSITY provides "hooks" into the basic symbolic execution algorithm which
customize the construction of the symbolic tree. These "hooks" allow FAMs – by implementing
specific functions – to pre-process or post-process current reached symbolic states and to
manage the queue of the remaining symbolic states to be processed. This mechanism provides
developers with extension mechanisms to instrument and specialize the traditional symbolic
execution algorithm without having to re-implement the basic symbolic treatments.

The ACSL program relational properties contract inference FAM (inference FAM in short) must
be developed in VESSEDIA using those facilities. As glimpsed previously, DIVERSITY provides
a pivot language called xLIA. UML interactions, with symbolic data and function call constraints,
are translated to xLIA. This way, we endow the interactions with symbolic semantics used to
infer ACSL program relational properties. Specific xLIA patterns and extensions must be
developed in VESSEDIA to support in particular black-box functions calls. The inference FAM
must take as input such models together with a specific user coverage goal in order to compute
ACSL program relational properties contracts. The inference FAM must post process the
symbolic states/paths and compute, by another FAM, the “reachability heuristics”. This latter
FAM must compute a set of symbolic states targets of some paths satisfying a coverage goal
such as covering (successively) some transitions, states, I/O actions, function calls, or satisfying
logical formulas on the model state variables. Hence the inference FAM is meant to be used
intertwined with the reachability heuristics in order to infer contracts for a cooperation of function

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 22 of 31

calls which implement specific safe high level system scenarios. More details on the inference
FAM can be found in deliverable D3.1.

5.2.3 Static code analysis with Frama-C

In step 2.3, static code analysis must be performed on the ACSL-annotated C code. We
propose to use the existing Frama-C static code analyse to develop new analysis.

The ACSL++ specification language for C++ is described in deliverable D.2.3. The relational
properties analysis is specified in D.3.1.

A new Frama-C launcher can be developed to be integrated within the same IDE as the
transformation tools.

The next section describes how the modellers of SecSoftML, and the transformation and
analysis tools are packaged, are packaged within a same IDE.

5.3 Integrated development environment

The SecSoftML modellers and the transformation and analysis tools are to be packaged within
an IDE. To build the IDE, we propose to use the Eclipse Rich Client Platform (RCP) framework.

Eclipse [EclipseIDE] is a modular IDE application. Eclipse RCP supports reusing components of
the Eclipse platform to build stand-alone applications based on the same technology as the
Eclipse IDE. The Eclipse platform is used as a basis to create feature-rich stand-alone
applications.

For the VESSEDIA modelling framework, the IDE must obviously contain the developed
SecSoftML modellers described in Section 5.1, and the developed transformation and analysis
tools described in Section 5.2. For such features, the following dependencies must be packaged
in the IDE: Papyrus, Papyrus Software Designer, Xtext, DIVERSITY, Eclipse CDT (C/C++
tools).

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 23 of 31

Chapter 6 VESSEDIA modelling framework applied
on a ping-pong use-case

In this chapter, we show how an early implementation of the VESSEDIA modelling framework is
used to design a simple use-case called “ping-pong”. We will also model and verify its
requirements at architecture model and code levels. In particular, model kinds and steps related
to software component modelling, risk modelling, and inference of program relational properties
will be shown.

In the next sections, first we mainly present our usage of the UML sequence diagram, depicting
interactions, including opaque function calls. Since we are using sequence diagrams for
specification purposes of the context in which functions are called, we have introduced
primitives to control (and hence reason about) exchanged data and function parameters in an
abstract manner. We use as well other kinds of UML diagrams: the class diagram allows to
define for each system component in an interaction its computation variables, and functions
signatures. Also, we use the composite structure diagram which gives a static view of the
interconnected system components using connectors. The modelling concepts are introduced in
this chapter by means of a toy example: a simple “ping-pong” protocol.

We then explain the attribution to such models of an operational semantics by translation into
xLIA, the entry language of the Diversity tool. This will enable the usage of the DIVERSITY
formal analysis module developed in T3.1 (D3.1) which infers contracts for a cooperation of
function calls that implement specific critical interactions captured by the UML sequence
diagram. These contracts are then translated as program relational properties expressed in
ACSL.

6.1 Software component modelling of ping-pong use-case

The software components of the ping-pong use-case are modelled in Figure 12 with a
composite structure diagram, focusing on their collaborations, and in Figure 13 with a class
diagram, focusing on their interfaces.

Figure 12: Composite structure diagram representing ping-pong components

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 24 of 31

Figure 13: Class diagram representing ping-pong components

Parts c1, c2 and c3 are represent the components C1, C2 and C3 respectively. Note that
variables are defined over common data types: e.g. the variable myid of Class C1 is an integer
denoting the identity of C1 in the network which is set to the identifier ID1 by default (ID1
together with ID2 and ID3 is a literal member of the enumeration ID). The composite structure
diagram shows two connectors joining c1 respectively to c2 and c3. The connectors specify the
communication channels used to exchange messages between components or the environment
represented in the composite structure diagram as distinguished part in dashed line. Signals,
e.g., PING, PONG, etc…, are used to model asynchronous communication between
components. Their attributes represent data exchanged between components. In our case, data
is handled in an abstract manner as first order structures using variables, functions and
predicates together with associated terms and formulas. The latter are built using the usual
logical connectives. We distinguish a subset of functions in the component signature which
represent the targeted user programs for which contract will be inferred in order to verify their
actual code. They are treated in an abstract manner, i.e., as a black box functions without their
internal behaviour modelled. Two of such functions are defined in C3, foo() and bar() together
with their parameters(‘s types).

The next section shows how requirements of these components are modelled as interactions in
a sequence diagram.

6.2 Risk modelling of ping-pong use-case

Consider the UML sequence diagram of Figure 14 showing interactions between the three
components previously modelled. The interaction elements are annotated with constraints
expressed in xLIA. This model shows the required ping-pong protocol behaviour that must be
respected by the communicating components.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 25 of 31

Figure 14: Interaction between components of ping-pong

Components c1, c2, and c3 are associated each with a vertical lifeline where time evolves from
top to bottom. Communications are based on asynchronous passing of messages message0 to
message5, represented by arrows connecting the lifelines. The (communication) events in the
sequence diagrams are partially ordered. Thus, receptions of message1 and message2
respectively by components c2 and c3 may come in any order.

Locally, events along a given lifeline come in sequence. However, the co-region operator allows
to specify arbitrarily ordered events as for receptions of message3 and message4 by
component c1. The co-region operator delimits an area on the lifeline between square brackets
where these receptions are situated.

The connector architecture given in the UML composite structure diagram allows component c1
to emit PING signals by sending the messages message1 and message2 respectively to
components c2 and c3.

A single message may convey multiple pieces of data as an abstraction of all kinds of signal
parameter values that can be exchanged between components and represented by abstract
terms. For example, message3 is the response of component c2 by sending the PONG(myid,
y+1) signal where “myid” and “y+1” are terms representing respectively the identity of
component c2 and the variable “y” being incremented. Here “y” is a kind of nonce associating a
response to its issued request thus ensuring that both messages are newly made.

When a message is received, reception variables may be specified: e.g. upon the reception of
message1 the values of “myid” and “x” are stored respective in the variables “y” and “id”. In
case no reception variables are specified theses values will be stored in an implicit structure
“message2.params” of the same typed as PING, i.e., having hence two integer attributes
message2.params.sender and message2.params.token which are handled as usual variables
as well. Note that handling variables as first-order-structures which can be used in
computations, or as parameters to signals and function calls is a particular feature of our
modelling framework which is not clearly well stated in the UML norm.

Consequently, we will see next that iterations (as UML sequence diagram) can hence be
associated unambiguous semantics using symbolic execution. We take into consideration more

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 26 of 31

complex interactions combined with the following operators: the loop operator defines repetitive
interaction, the alt operator defines alternative interactions, and the strict operator defines a
strict sequencing of interactions which enforces the executions of all message exchanges in
every interaction before any message of the following interaction. The first models of the
6LowPAN use-case, discussed in D3.1, make use of such combining operators.

The next section shows how to infer program relational properties from the interaction model
presented so far.

6.3 Inference of program relational properties of ping-pong use-case

The inference of program relational properties is a two steps process where first the
requirements expressed as interactions in UML sequence diagrams are translated to xLIA
automatas in DIVERSITY. The tool then computes contracts which are then translated to ACSL-
expressed program relational properties.

The next sections first present the translation of the interactions to xLIA automatas and
computation of contracts. Afterwards the translation to ACSL program relational properties is
given.

6.3.1 Translation of UML interactions to xLIA

We overview the operational semantics of sequence diagrams computed by a model
transformation. The transformation takes as input a specialized UML Interaction and produces
its equivalent set of STS communicating over FIFO buffers in xLIA format. An excerpt of the
generated xLIA is given in Figure 15.

@xlia< system , 1.0 >:
system< and > PingPongWithFunctionCalls {
@property:
…
type PONG struct {
var string signature;
var integer sender;
var integer token;
…
signal message4(PONG);
signal message5;
@composite:
 machine C1#c1Lifeline {…}
 machine C2#c2Lifeline {…}
 machine C3#c3Lifeline {
 @property:
 public var ID myid = ID.ID3;
 public var integer z;
 public var integer r_foo;
 public var integer r_bar;
 @routine:
 macro routine foo(integer x, return integer y) {}
 macro routine bar(integer a, integer b, return integer c) {}
 @behavior:
 statemachine< or > c3Lifeline {
 @region:
 state BhExec#BehaviorExecSpec1 {
 transition BehaviorExecSpec1 {
 guard(0 <= r_foo < 5);
 bar(r_foo, z, r_bar) ;
 AllCallsStack <=< currentCall;
 } --> MsgOcc#message4Send;
 }
 state MsgOcc#message4Send {
 transition tr_message4Send {
 output message4({ "PONG", ID3 , r_bar }) --> C1#c1Lifeline;
 } --> final_c3Lifeline;
 }
 }
@com:
 …
 route<fifo> [message4];
 route<fifo> [message5];
}

Figure 15: xLIA generated from UML interaction of ping-pong components

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 27 of 31

Each UML lifeline’s component is translated into an STS and is able to communicate with each
other using input-output communication actions. Messages in the UML Interaction represent
data exchanged between lifelines. As we consider asynchronous messages: i.e., the sender
lifeline of a message is not blocked while the message has not been received. We capture this
by routing each message when it is sent in dedicated FIFO buffer. Note that routing all
messages between the same two lifelines in the same FIFO does not allow message overtake
which is allowed in sequence diagrams in order to capture a wide range of system protocols
and communication mechanisms. About data, xLIA provides seemingly different concepts from
UML signals, datatypes, enumerations that we have used to capture their usage in UML: xLIA
concepts are handled as first-order structures. Finally black box functions such as foo() and
bar() are translated into xLIA routines without their internal behaviour modelled (not effect on
input parameters), yet each time they are called their formal input parameters and return values
are stored in a call stack. This allows the application of specific symbolic treatments to their calls
unlike usual functions with explicit behaviour.

The next section gives the translation of xLIA to program relational properties in ACSL.

6.3.2 Translation to ACSL-expressed program relational properties

As explained in the previous section, we use xLIA enriched with data variables to abstractly
denote system states (we call them data variables) and we keep track of black box function
calls (stored in the call stack) in order to associate them with specific symbolic treatments which
is the extension proposed in the scope of VESSEDIA. The resulting xLIA is associated with
efficient semantics computation using symbolic execution techniques. Symbolic execution main
principle is to reason about all the possible executions of the model by studying how the
assignments of its variables evolve when transitions are executed. In practice the variables are
assigned with formal parameters. Besides return values of function calls are represented as well
in a symbolic manner using dedicated formal parameters. Then constraints on those formal
parameters are computed in order to characterize the effect on the global executions of the
guards, instructions and function calls occurring in transitions. Those constraints are called Path
Conditions, PC in short and will be processed together with the accumulated function calls to
infer the relational properties (more details on the inference process can be found in D3.1). This
an example of a PC computed for the ping-pong example:

x1 ≥ 0  0 ≤ r_foo1 < 5  x1 < r_bar1 ≤ x1+5

and the accumulated function calls for PC is:

{ (“foo”, x1+1, r_foo1), (“bar”, r_foo1, x1+1, r_bar1) }

where x1, r_foo1, r_bar1 are the formal parameters introduced by the symbolic execution.

Finally we give in Figure 16 the inferred relational property based on both information expressed
in the format acceptable by Frama-C (ASCL/RPP plugin).

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 28 of 31

/* @ relational

\forall int x1;
\callset(
 \call(foo, x1+1, id1) ,
 \call(bar, \callresult(id1), x1+1, id2)
)
=>
(x1 >= 0 =>
 (\callresult(id1) >= 0 && \callresult(id1) <5
 =>
 (\callresult(id2) > x1 && \callresult(id2) <= x1 +5)));
*/

Figure 16: Inferred program relational property in ACSL for ping-pong components interaction

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 29 of 31

Chapter 7 Summary and conclusion

In this document, the VESSEDIA modelling framework was proposed for the development of
secure software. The goal of the modelling framework is to bridge the gap between high-level
textual requirements in an architecture model and low-level properties annotating the code.

The particularity of the VESSEDIA modelling framework is that it does not propose new ADLs or
risk assessment methodologies. It rather aggregates existing approaches and uses generic
enough artefacts to be extended with new approaches in the future.

The VESSEDIA modelling framework is based on three major parts: the SecSoftML architecture
description language, the soft/security co-engineering method that uses and transforms the
elements of SecSoftML, and finally implementation with VESSEDIA tools.

SecSoftML is an ADL whose specification was done with respect to the ISO 42010 standard for
architecture description languages. SecSoftML aims to answer the classical software development
and security concerns of the software engineer and security analyst. It contains a number of
viewpoints for requirements analysis, security analysis, and software design. The viewpoints will
aggregate model kinds which are diagrams and tables of SysML, SysML-Sec, and UML. They also
aggregate textual specification languages such as ACSL and xLIA.

SecSoftML’s viewpoints and model kinds are used within the software/security co-engineering
method proposed in this document. The method has the advantage of parallelizing the classical
software development process with the security analysis process. The goal is to avoid as much as
possible work product dependencies and blocking among the two domains and tasks. A certain
number of transformation and analysis steps will exploit the models and artefacts produced during
steps of the method. Relational ACSL-expressed properties are inferred from interactions in UML
sequence diagrams. ACSL-expressed pre/post-conditions of functions and function behaviour
properties are generated from ACSL-expressed constraints on elements in UML class and state
machine diagrams. Final program code, with ACSL-expressed properties, are analysed with
Frama-C.

An implementation for SecSoftML was proposed with Papyrus UML profiles, diagrams, Xtext
editors, and viewpoints developed within the architecture framework model of Papyrus.
Implementation of the transformations and analyses in the co-engineering method was proposed
with existing tools like DIVERSITY for ACSL-expressed program relational properties inference,
Papyrus Software Designer for ACSL-annotated C code generation, and Frama-C for static code
analysis. The necessary extensions for these tools were specified in this document. All
implementation works will be done within task T1.3 for deliverable D1.4.

An early implementation of the VESSEDIA modelling framework was applied for a ping-pong use-
case. The use-case is a simple ping and acknowledgement (“pong”) protocol. The use-case’s
components were modelled in UML composite structure and class diagrams. The required protocol
behaviour was modelled as an interaction in a UML sequence diagram. Program relational
properties were then inferred with a two steps process where first the interactions are translated to
xLIA automatas so DIVERSITY can compute program relational properties contracts. The
computed contracts are then translated to ACSL-expressed program relational properties. The
properties need to be respected by the implementation to guarantee the ping-pong protocol’s
required behaviour.

In the future, we would like to integrate in SecSoftML other textual constraint specification
languages like OCL [Warmer98] and Verifast [Jacobs11] for Java. The UML diagrams in
SecSoftML are also generic so they can be specialized with profiles adding new taxonomy to
simplify the modelling. For example we would like to explore the FormalML profile developed in
VESSEDIA for formal properties modelling, and the AtML profile for attack modelling.

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 30 of 31

Chapter 8 List of abbreviations

Abbreviation Translation

ADL Architecture Description Language

ACSL Ansi C Specification Language

AtML Attack Modelling Language

CSS Cascading Style Sheets

DSML Domain-Specific Modelling Language

EMF Eclipse Modelling Framework

ENISA European Union Agency for Network and Information Security

FAM Formal Analysis Module

IDE Integrated Development Environment

MBT Model-Based Testing

MDE Model-Driven Engineering

SDL Specification and Description Language

SecSoftML Secure Software Modelling Language

STS Symbolic Transition System

SysML System Modelling Language

SysML-Sec System Modelling Language for Security

UML Unified Modelling Language

xLIA executable Language for Interaction and Architecture

D1.3 – Modelling framework for secure software development

VESSEDIA D1.3 Page 31 of 31

Chapter 9 Bibliography

[Arnaud16] M. Arnaud, B. Bannour, A. Lapitre. "An illustrative use case of the DIVERSITY platform
based on UML interaction scenarios". Electronic Notes in Theoretical Computer Science, vol. 320,
pp 21-34, Febraury 2016.

[Bannour14] B. Bannour, J. Escobedo, C. Gaston, P. Le Gall, G. Pedroza. "Security weaknesses
detection by symbolic analysis of scenarios". Proceedings of APSEC, 2014.

[EBIOS] https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-
risk/risk-management-inventory/rm-ra-methods/m_ebios.html

[EclipseIDE] https://www.eclipse.org/

[EMF] https://www.eclipse.org/modeling/emf/

[ENISAMethods] https://www.enisa.europa.eu/topics/threat-risk-management/risk-
management/current-risk/risk-management-inventory/rm-ra-methods

[ENISATools] https://www.enisa.europa.eu/topics/threat-risk-management/risk-
management/current-risk/risk-management-inventory/rm-ra-tools

[Gerard07] S. Gérard, C. Dumoulin, P. Tessier, B. Selic. "Papyrus: a UML2 tool for domain-specific
language modeling". Proceedings of MBEERTS, 2007.

[ISO42010] https://www.iso.org/standard/50508.html

[Jacobs11] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, F. Piessens. "Verifast:
a powerful, sound, predictable, fast verified for C and Java". Proceedings of NASA Formal
Methods, 2011.

[Kirchner15] F. Kirchner, N. Kosmatov, V. Provosto, J. Signoles, B. Yakobowski. "Frama-C: a
software analysis perspective". Formal Aspects of Computing, vol. 27:3, pp 573-609, May 2015.

[Pham16] V.C. Pham, S. Li, A. Radermacher, S. Gérard, C. Mraidha. "Fostering software architect
and programmer collaboration". Proceedings of ICECCS, 2016.

[Roudier15] Y. Roudier, L. Apvrille. "SysML-Sec: A model driven approach for designing safe and
secure systems". Proceedings of MODELSWARD, 2015.

[Sendall03] S. Sendall, W. Kozaczynski. "Model transformation: the heart and soul of model-driven
software development". IEEE Software, vol. 20:5, pp 42-45, September 2003.

[SysMLSpec] https://www.omg.org/spec/SysML/1.4/PDF

[UMLSpec] https://www.omg.org/spec/UML/2.5.1/PDF

[Warmer98] J.B. Warmer, A.G. Kleppe. "The Object Constraint Language: Precise Modeling With
Uml". Addison-Wesley Object Technology Series, 1998.

[Xtext] https://www.eclipse.org/Xtext/

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 ISO 42010
	Chapter 3 Secure Software Modelling Language
	3.1 Stakeholders and concerns identified in SecSoftML
	3.2 Viewpoints and model kinds of SecSoftML
	3.2.1 Model kinds of SecSoftML
	3.2.1.1 Summary of model kinds and framed concerns
	3.2.1.2 SysML requirement model kinds
	3.2.1.2.1 SysML requirement diagram
	3.2.1.2.2 SysML requirement table
	3.2.1.2.3 SysML allocation table

	3.2.1.3 SysML-Sec requirement model kinds
	3.2.1.4 UML model kinds
	3.2.1.4.1 UML sequence diagram
	3.2.1.4.2 UML composite structure diagram
	3.2.1.4.3 UML class diagram
	3.2.1.4.4 UML state machine diagram

	3.2.1.5 ACSL model kinds
	3.2.1.6 xLIA model kinds

	3.2.2 Viewpoints of SecSoftML
	3.2.2.1 Requirements analysis viewpoint
	3.2.2.2 Security analysis viewpoint
	3.2.2.3 Software design viewpoint

	Chapter 4 Software/security co-engineering method
	4.1 Compositional approach for software/security co-engineering
	4.2 Mapping of steps to model kinds of viewpoints

	Chapter 5 Implementation specification
	5.1 SecSoftML implementation
	5.1.1 Papyrus and Xtext
	5.1.1.1 Papyrus
	5.1.1.2 Xtext

	5.1.2 SecSoftML model kinds implementation
	5.1.2.1 SysML requirement model kinds implementation
	5.1.2.2 SysML-Sec requirement model kinds implementation
	5.1.2.3 UML model kinds implementation
	5.1.2.4 ACSL model kinds implementation
	5.1.2.5 xLIA model kinds implementation

	5.1.3 SecSoftML viewpoints implementation

	5.2 Transformations and analyses implementation
	5.2.1 Code generation with Papyrus Software Designer
	5.2.2 ACSL program relational properties inference with DIVERSITY
	5.2.3 Static code analysis with Frama-C

	5.3 Integrated development environment

	Chapter 6 VESSEDIA modelling framework applied on a ping-pong use-case
	6.1 Software component modelling of ping-pong use-case
	6.2 Risk modelling of ping-pong use-case
	6.3 Inference of program relational properties of ping-pong use-case
	6.3.1 Translation of UML interactions to xLIA
	6.3.2 Translation to ACSL-expressed program relational properties

	Chapter 7 Summary and conclusion
	Chapter 8 List of abbreviations
	Chapter 9 Bibliography

