
D1.1
Security requirements for connected medium

security-critical applications
Project number: 731453

Project acronym: VESSEDIA

Project title:
Verification engineering of safety and security critical

dynamic industrial applications

Start date of the project: 1st January, 2017

Duration: 36 months

Programme: H2020-DS-2016-2017

Deliverable type: Report

Deliverable reference number: DS-01-731453 / D1.1/ V1.0

Work package contributing to the

deliverable:
WP1

Due date: September 2017 – M09

Actual submission date: 15th October, 2018

Responsible organisation: SLAB

Editor: Vendel Laszlo

Dissemination level: PU

Revision: 2.0

The project VESSEDIA has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 731453.

Abstract:

In this study, we provide a set of minimum

requirements for interconnected products, specifically

focusing on the IoT devices. To aid these

requirements, we also collected the most common

assets and threats related to the field of IoT. To

facilitate the future work in the VESSEDIA project, we

also present some risk assessment techniques and a

study on, how ASCL can be used to verify security

properties

Keywords:
Internet of Things, IoT security requirements, risk

assessment, threat modelling, minimal contracts

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page I

Editor

Vendel László (SLAB)

Contributors

Gergely Eberhardt (SLAB)

Jochen Burghardt, Jens Gerlach (FOKUS)

Felix Stornig (TEC)

Emmanuel Querrec (TUAS)

Igor Grueiro Santos (FD)

Allan Blanchard (INRIA)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page II

Executive Summary

IoT (Internet of Things), which denote connected devices and services are on a rapid increase, and
as they are gaining wider and wider adoption in the security critical fields, it becomes more urgent to
ensure the security of these devices. The VESSEDIA project aims to enhance the security of IoT
devices by improving already existing software analysis tools to help the manufacturers to develop
more secure devices.

The goal of this document is to outline the most important security requirements of the IoT. Our goal
was to determine these requirements at a higher level, so the final requirements can be applied to
different IoT systems. To set these requirements, we divided the IoT into different layers, and we
analysed these layers separately from the security perspective. Finally, we collected a set of
requirements and recommendations, which are required for an IoT device to ensure secure
functionality.

In requirements engineering, risk assessment is used to identify flaws in a given system, and
associate risks according to the severity and potential exploitability of these flaws. To facilitate of this
process, we outlined as well some common risk assessment technique, which can be applied in the
field of IoT. Finally, we analysed, how ACSL, the specification language of Frama-C can be used to
verify security related C libraries. This work will be utilized as a general estimation of the capabilities
of formal verification techniques in security requirement verification, and our findings can be used as
a direction of possible future development.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page III

Contents

Chapter 1 Introduction .. 6

1.1 VESSEDIA motivation and background .. 6

1.2 Structure of the document ... 6

1.3 Related deliverables .. 6

Chapter 2 Security objectives for IoT ... 7

2.1 IoT architecture ... 8

2.2 Attacker model for IoT ... 11

2.3 Security properties .. 12

2.3.1 The CIA triad ... 12

2.3.2 Parkerian Hexad .. 12

2.3.3 Complimentary attributes to define objectives .. 13

2.4 General assets of IoT .. 14

2.5 Regulations ... 15

2.5.1 General Data Protection Regulation .. 16

2.5.2 IoT Cybersecurity Improvement Act ... 16

Chapter 3 Threat modelling methodology ... 18

3.1 Attack trees ... 18

3.2 Misuse/abuse cases .. 19

3.3 SDL threat modelling ... 20

Chapter 4 Security requirements for IoT ... 22

4.1 Attack surface in the Internet of Things ... 23

4.2 Threats .. 26

4.2.1 Security of Endpoint Ecosystem .. 26

4.2.2 Security of the Network Layer .. 28

4.2.3 Security of Service layer .. 30

4.3 Security requirements for IoT .. 31

4.3.1 Requirements for Endpoint Ecosystem .. 31

4.3.2 Requirements for Network Layer ... 33

4.3.3 Requirements for Service Ecosystem .. 35

Chapter 5 Risk assessment techniques .. 37

5.1 Risk assessment for IoT applications .. 37

5.2 Risk assessment methods (based on ISO/IEC 31010:2009) 39

5.2.1 Introduction .. 39

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page IV

5.2.2 Risk identification tools .. 40

5.2.3 Risk analysis ... 40

5.2.4 Risk evaluation .. 44

5.2.5 Conclusion ... 46

Chapter 6 Formal specification of simple security requirements with ACSL 47

6.1 The concept of minimal contracts.. 47

6.2 Description of the software for annotation ... 48

6.3 Minimal-contract verification of selected files .. 49

6.4 Discussion ... 50

6.4.1 A methodology to obtain minimal contracts .. 50

6.4.2 Context dependency .. 51

6.4.3 Prover limitations ... 51

6.4.4 Visibility issues .. 51

6.4.5 Tacit prerequisites ... 52

6.4.6 Dispensible RTE programming .. 52

Chapter 7 Summary and Conclusion ... 53

Glossary ... 54

Chapter 8 Bibliography ... 58

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page V

List of Figures

Figure 1: The elements of risk and their relationships according to ISO 15408:2005 8

Figure 2 Three layer IoT architecture Source: Radio Frequency Identification from System to
Applications .. 9

Figure 3: A different version of the three layer IoT architecture ... 10

Figure 4: Comparison of proposed IoT architectures (a) Three-layer, (b) Middleware based, (c) SOA
based, (d) Five-layer Source: Al-Fuqaha et al. 2015, p.2349 ... 11

Figure 5: AND and OR parent nodes in attack trees ... 18

Figure 6: An example attack tree of an imaginary healthcare system .. 19

Figure 7: An example misuse case diagram .. 20

Figure 8: A list of attack surface areas for different IoT ecosystems and scenarios 25

Figure 9: ISO/IEC 31010:2009 risk assessment process .. 38

Figure 10: NIST SP 800-30 risk assessment process ... 38

List of Tables

Table 1: List of security objectives .. 13

Table 2: Connection between the threats in STRIDE model and security objectives 14

Table 3: Security objectives for common IoT assets ... 15

Table 4: Security concerns for the different IoT layers .. 26

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 6 of 58

Chapter 1 Introduction

1.1 VESSEDIA motivation and background

The VESSEDIA project aims to bring safety and security to the next generation of software
applications and internet connected devices. In our rapidly changing world, the Internet has been
the source of many benefits for individuals and companies alike, transforming entire industries. With
this new technology, capable of connecting billions of devices and people together, new threats have
also appeared – threats VESSEDIA will help software developers address in order to create
connected applications that are safe and secure. VESSEDIA proposes to enhance and scale up
modern software analysis tools, in particular the mostly open-source Frama-C analysis platform, to
make them useful and accessible to a wider audience of developers working on connected
applications. At the forefront of connected applications are the Internet of Things (or IoT for short),
where we have seen explosive growth and where security risks have become all too real. VESSEDIA
will focus on this domain to demonstrate the benefits our tools bring to the table when developing
connected applications. VESSEDIA will tackle this challenge by 1) developing a methodology that
makes it possible to adopt and use source code analysis tools as efficiently and with similar benefits
as it is already possible in the case of highly-critical applications, 2) enhancing the Frama-C toolbox
to enable efficient and fast implementation, 3) demonstrating the capabilities of the new toolbox on
typical IoT applications, including an IoT Operating System (Contiki), 4) developing a standardisation
plan for generalising the use of the toolbox, 5) contributing to the Common Criteria certification
process, and 6) defining a “Verified in Europe” label for validating software products with European
technologies such as Frama-C.

1.2 Structure of the document

After these introductory sections, 0 defines the typical security objectives for IoT, starting with a
general overview of the IoT architecture. It then characterizes the possible attacker actors with their
strengths and motivations. After a quick overview of the security properties, it collects the general
assets along with the corresponding objectives. Chapter 3 gives an introduction to the threat
modelling methodologies such as attack trees, misuse cases and SDL (Security Development
Lifecycle) threat modelling. After an overview of the IoT attack surface in Chapter 4, the typical
threats and general IoT security requirements are detailed in the layered approach described in 2.1.
Security requirements may not applicable or worthwhile in every case. Chapter 5 describes some
risk analysis techniques that can help to find out the most serious threats and the corresponding
requirements. In Chapter 6 formal specifications of simple security requirements are presented
based on the minimal contract concept. Finally, Chapter 7 concludes the document and paves the
way for the subsequent work in the project.

1.3 Related deliverables

As it was mentioned previously this document serves as a baseline for the subsequent work by listing
the most common, high level security requirements for the IoT. More detailed security requirements
will be outlined in the D1.2, where the use cases from WP5 will have a more detailed analysis. These
requirements will be used in WP4, when we will carry out the security evaluation for the use cases
in D4.6.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 7 of 58

Chapter 2 Security objectives for IoT

As it is predicted by IHS technology1, the IoT market will grow from an installed base of 15.4 billion
devices in 2015 to 30.7 billion devices by 2020 and 75.4 billion by 2025. This many devices
connected to the internet raise many security risks, which have to be addressed in the future.
Securing data on the IoT ecosystem raises a lot of challenges, like accessibility of remote devices,
lack of processing power to use traditional security mechanisms, and the continuously growing attack
surface, as the number of devices and systems increase. Currently (and in the future), there is no
silver bullet for IoT to effectively mitigate these security issues2.

Determining security requirements for IoT can be approached similarly to any other target. In
information systems, providing security covers several aspects, such as defending information from
unauthorized access, usage, disclosure, disruption, modification, perusal, inspection, recording or
destruction. Security objectives are the high-level statement of intent and goals that are most
important to the stakeholders and to fulfill the requirements that must be met to comply with relevant
legislation, policies and standards.

The proposed methodology for determining the security requirements is the following:

1. Identify functional requirements and business goals: it is hard to determine the general
functional requirements for IoT. In the definition, IoT is an inter-networking device, which is
capable to collect and exchange data. In this study, we can separate the IoT architecture into
3 different layers, which can be analysed separately.

2. Collect assets, which should be protected in the system (e.g. sensitive user data). These
assets can vary from device to device, but we define some general ones.

3. Identify security objectives of each asset (e.g. confidentiality of sensitive user data should be
protected)

4. Perform threat modelling and identify threats to the security objectives of the assets.
5. Identify security requirements to cover, mitigate or reduce the risk associated with the

identified threats.
6. Evaluate/test/verify that the system fulfils the security requirements.

1 IHS TECHNOLOGY: IoT platforms: enabling the Internet of Things https://cdn.ihs.com/www/pdf/enabling-IOT.pdf March
2015
2 Wind River Systems SECURITY IN THE INTERNET OF THINGS https://www.windriver.com/whitepapers/security-in-the-
internet-of-things/wr_security-in-the-internet-of-things.pdf 2015

https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 8 of 58

Figure 1 illustrates the terms used in this document and their relationships between each other:

Owners

Attack vectors

Threat agents Threats Assets

Risks

Vulnerabilities

Countermeasures

use

give rise to

based on (set of)

that exploit

that increase

to

to

wish to minimise

value

that may

possess

reduce

that may be reduced by

may be aware of

impose

wish to abuse and/or may damage

Figure 1: The elements of risk and their relationships according to ISO 15408:2005

2.1 IoT architecture

Identifying security requirements for an ecosystem as complex as the Internet of Things is non-trivial
task. One way to simplify the problem is to break it down into smaller ones, by partitioning the whole
into smaller parts. In case of IoT devices and systems, a multitude of approaches exist in scientific
literature to identify and separate the different layers, thus helping us conduct security analysis on
each one separately, focusing on problems related to a smaller group of components.

One of the simpler models for identifying these layers is the three layer IoT architecture, as seen in
Figure 2. Those familiar with network stacks might recognize its structure being similar to the OSI
model. An advantage of this model for the purpose of security analysis is that the layers each have
very different types of devices and services, thus the number of overlapping requirements can be
minimized.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 9 of 58

Figure 2 Three layer IoT architecture
Source: Radio Frequency Identification from System to Applications 3

• Perception layer

The perception layer percieves the physical reality around us – a fact somewhat
foreshadowed by its aptly chosen name. Devices in this layer are tasked with being a bridge
between the analog and the digital world. Both data acquisition – using conventional sensors
or more complicated methods – and preliminary data processing are happening here, as the
data is being prepared for transmission to the layers above. The perception layer also
includes devices which are focused on making objects percievable – like RFID tags or even
barcodes.

• Network layer

The network layer includes both the components responsible for the transmission of the data
between the layer above and the layer below, and the storage of such data for later retreival.
A wide variety of technologies are in use today to facilitate the transmission of data gathered
by the perception layer: cellular networks, traditional wired networks, meshed wireless
networks and satellite communications can all serve as infrastructure for the transmission of
said data. A significant portion of the data gathered ends up being transmitted to and stored
in cloud computing systems. Many cloud service providers today have offerings targeting IoT
applications, offering cost effective transmission, storage and processing for busineses all
over the globe.

3 Elena de la Guía, María D. Lozano and Víctor M.R. Penichet (2013). Interacting with Objects in Games Through RFID
Technology, Radio Frequency Identification from System to Applications, Dr. M. I. B. Reaz (Ed.), InTech, DOI:
10.5772/53448. Available from: https://www.intechopen.com/books/radio-frequency-identification-from-system-to-
applications/interacting-with-objects-in-games-through-rfid-technology

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 10 of 58

• Application layer

The application layer analyzes the data coming from and stored in the network layer, and
presents the data in a way that is convenient and exploitable by end users or other services
building on the IoT architecture – and thus serves as the front end for the whole system. The
application layer also includes the devices that are capable of acting on the information
acquired – using such information to make decisions and control processes with or without
human interaction.

Another version of this three layer architecture can be seen in Figure 3. While the nomenclature is
different, the layers themselves can be mapped to the three layer architecture described previously.

• Communications Network → Network Layer

• Endpoint Ecosystem → Perception Layer

Figure 3: A different version of the three layer IoT architecture

Source: IoT Security Guidelines Overview Document4

While this three-layered architecture will serve us well for the purposes of establishing security
requirements, it is important to mention that several other models exist for describing the architecture
of IoT systems, as seen of Figure 4.

4https://www.gsma.com/iot/wp-content/uploads/2016/11/CLP.11-v1.1.pdf

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 11 of 58

Application Layer

Application Layer Applications Business Layer

Middleware Layer
Service

Composition
Application Layer

Coordination

Layer

Service

Management
Service Layer

Backbone Network

Layer
Object Abstraction Object Abstraction

Objects Objects

Network Layer

Perception Layer
Application

System

Access

Layer
Edge

Technology

(a) (b) (c) (d)

Figure 4: Comparison of proposed IoT architectures (a) Three-layer, (b) Middleware based, (c) SOA based,
(d) Five-layer

Source: Al-Fuqaha et al. 2015, p.23495

These five or even six layered architectures try to address different methodologies for designing IoT
systems – by placing service composition or management into different layers, or by partitioning the
application layer even further. Nonetheless, we will be using the three-layered approach presented
in 0 to examine the security issues related to the different layers, analyzing them one by one to
identify threats and propose ways to neutralize them.

2.2 Attacker model for IoT

An important part of the threat modelling process is the development of an attacker profile. Such a
profile describes possible internal and external agents that might want to realize threats.

We have identified several different attacker profiles in a typical IoT ecosystem:

• The Rogue Employee works as tech support or customer service agent for a Manufacturer
or a Service Provider. In order to carry out his tasks, he has limited access to the backend
servers, including any functionality that allows him to access individual end-user devices
remotely. He may not necessarily be capable of creating exploits, but he has full knowledge
of the actual IoT platform, including possible access to its source code. He can abusethis
position mainly to steal user data for profit; with the objectiveto remove any traces of his
activities.

• The Hacker has access to debug and development tools, and has the resources necessary
to create and deploy exploits targeting all components of the IoT platform as well as individual
end-user devices. He also has reverse-engineering skills, and is assumed to have insider-
level knowledge of the inner workings of the IoT platform. His eventual goal is gaining money
by stealing valuable user data, taking over end-user devices (gaining access to the user's
other networked devices and their data through the local network if possible) and the IoT
platform servers, or building a botnet. In addition, a Hacker may be motivated to spy on a
particular high-value target by taking over their devices and stealing their user data.

• The Vandal has similar resources and expertise as the Hacker, but his motivation is
fundamentally different: instead of making money, he is interested in fame and prestige,
possibly due to hacktivist reasons. Thus, he is interested in disrupting the operation of the

5https://www.researchgate.net/publication/305222860_Impact_Analysis_of_the_Internet_of_Things_on_the_Value_Chai
n_in_Manufacturing_Industries

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 12 of 58

IoT platform as well as that of individual devices in visible ways and leaving his mark through
defacement of publically-accessible IoT platform web components. In addition, in case he
gains access to the user's local network through a compromised device, he can abuse the
user in various disruptive ways, e.g. yelling through a baby monitor's microphone.

• The Burglar is a professional criminal with access to high-tech equipment, and in-depth
knowledge about the workings of end-user surveillance devices connected to the IoT
platform. He has limited physical access to the building exterior – including the capability of
getting within Wi-Fi or Bluetooth transmission range of all connected surveillance devices
without being detected. His main goals are to subvert the operation of surveillance equipment
– or manipulate stored footage – preferably remotely in order to gain entrance to the building
without leaving evidence.

• Malware specializes in making malicious extensions and plug-ins for the IoT devices, and
tricking users into installing them. Once installed on a device, such a malicious extension
may have the ability to alter the basic operation of the device, spy on the device's user, and
compromise other devices as well (e.g. by giving the Malware owner access to the user's
account). In addition, the deployed malware can encrypt any data – such as video footage or
personal media data – stored on the device, and then extort the device's owner for the
encryption key.

• The Advanced Persistent Threat (APT) can be an individual or a group that specialises in
operative procedures involving physical presence, aiming at high value targets, and
specifically focusing on the IoT platform. Covert operations carried out by an APT can include
dumpster diving, phone theft, wiretapping, social engineering, and non-invasive scans of
biometric data.

The highest level of technical skill is possessed by the Hacker, Vandal and the Malware – and
potentially the APT – followed by the Burglar who may also need to resort to hacking methods in
order to gain unauthorized access to user’s accounts as well as the Rogue Employee who may be
able to install backdoors into the IoT service itself.

2.3 Security properties

In this section we review some of the most commonly used security properties to define the security
objectives of each asset.

2.3.1 The CIA triad

Generally speaking, the Confidentiality, Integrity and Availability triad is used to express security
objectives of an asset.

• Confidentiality: This property ensures that the information remains secret and will be
disclosed only to authorized entities.

• Integrity: Preserving the integrity of a system means that the information it holds remains
intact and complete. To preserve the integrity of information, modifications and data
manipulation by unauthorized parties have to be prevented.

• Availability: The availability of an information or an information system means that it is
accessible and available when it is needed. High availability systems aim to prevent service
disruptions. Ensuring availability involves preventing denial-of-service attacks.

2.3.2 Parkerian Hexad

The Parkerian Hexad extends the Confidentiality, Integrity and Availability triad with three more
security properties, which are extensions to the original CIA properties:

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 13 of 58

• Possession or Control: Possession means the ownership or control of the protected
information. In contrary to the confidentiality, possession does not require knowledge of the
information itself, just the ability to control it.

• Authenticity: This security property ensures that the information is original in the sense that
it was not tampered or altered. It extends the integrity property by providing evidence of the
origin or authorship of the information.

• Utility: Extends the avaliability property by describing the usefullness of it. For example
encrypted data without the correct key is not useful to anybody.

2.3.3 Complimentary attributes to define objectives

This list of main objectives can be extended6 to include a number of other security objectives, which
refine the CIA triad and the Parkerian Hexad.

Objective Description

access control Restricting access to resources to privileged entities.

adoption of content and intend A means to bind information to an entity, such as digital
signatures.

anonymity Concealing the identity of an entity involved in a process.

authorization In our context it typically means the process of specifying
access rights to certain resources.

certification Endorsement of information by a trusted entity.

entity authentication or
identification

Corroboration of the identity of an entity (e.g., a person, a
computer terminal, a credit card, etc.). In our context it usually
means the process of verifying the identity of the user or a
device in order to determine its accuracy and trustworthiness.

message authentication Corroborating the source of information; also known as data
origin authentication.

non-repudiation Preventing the denial of previous commitments or actions.

ownership A means to provide an entity with the legal right to use or
transfer a resource to others.

receipt confirmation Acknowledgement that information has been received.

revocation Retraction of certification or authorization.

service confirmation Acknowledgement that services have been provided.

validation Ensuring that data is safe prior to use.

witnessing Verifying the creation or existence of information by third
party.

Table 1: List of security objectives

The selection of security objectives strongly depends on the assumptions about the attacker and on
the general scenario and policies that the software is exposed to. The exact security objectives
relevant for VESSEDIA use-cases will be discussed in D1.2.

The table hereafter illustrates how security objectives can be related to threats in the STRIDE model.

Threats (STRIDE) CIA Parkerian Complementary

Spoofing identity of user Integrity Authenticity Authentication

Tampering with data Integrity Integrity Integrity

Repudiation of the action Integrity Integrity Non-repudiation

6 A. Menezes, P. van Oorschot, and S. Vanstone.Handbook of Applied Cryptography, CRC Press, 1996.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 14 of 58

Threats (STRIDE) CIA Parkerian Complementary

Disclosure of information Confidentiality Confidentiality Confidentiality

Denial of service Availability Availability Availability

Elevation of privilege for
user

Integrity Integrity Authentication and
Authorization

Table 2: Connection between the threats in STRIDE model and security objectives

2.4 General assets of IoT

Data assets

• Personally identifiable information7 (PII): Some IoT devices may store sensitive or
confidential user data, such as private photos, contacts, video recordings, log files, sensor
data and so on. The users expect that their files are not available to and cannot be tampered
by third parties, and that they would be available on demand.

• Credentials: IoT devices or the IoT ecosystem may require user credentials for device
administration or cloud service access. After providing the correct username and password,
all features and services of the device become available for administration. Thus, user
credentials are critical assets which are expected to remain secret.

• Device settings: Device configuration settings are mandatory parts of operation.
Configuration settings might include additional credentials as well and further access control
related rules. In case of a security breach, reconfigured devices might serve as a hop for
attackers to mount additional attacks.

• Application data: Applications running on IoT devices may use and store application related
data. These data pieces may not contain any sensitive information, but can be used to
understand application logic or to modify the state of the application in a malicious way.

• Device identification data: Device identification may rely on unique data stored in the
device, such as MAC address, serial number or other unique device identification number.

• Sensor data: Correct sensor data is essential for the proper operation of the IoT device.

Software assets

• Firmware: The software running in an IoT device generaly consist of a bootloader, kernal
and application software. Depending on the actual architecture the bootloader may contain
multiple stages and in case of real time operating systems (RTOS) the application part is
compiled along with the core OS.

• Server software: The server software provides backend services for the IoT devices and
may provide remote access to the devices via web or mobile user interfaces.

• Mobile application: Other than web based administrator interfaces, it is trending to access
the IoT device via a custom mobile application, which makes it the part of the IoT ecosystem.
Typically mobile applications access the IoT device via the IoT backend server or via local
access, such as using local network, bluetooth or other local wireless connections.

Hardware assets

7 https://en.wikipedia.org/wiki/Personally_identifiable_information

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 15 of 58

• JTAG key: The JTAG port is the standard debugging interface of embedded devices. In case
a production device provides debugging support, the JTAG interface has to be protected with
a JTAG key, which is fused to the hardware.

• Fused secrets: IoT devices typically contain a system on a chip (SoC), which integrates all
components of an electronic system. A modern SoC integrates secure processor and a
secure storage also. The secure storage is a one time programmable memory, which is
accessible only by the secure processor and only the secure processor can perform
operations with the secrets. In most cases the fused secrets form the root of trust and made
the chain of trust possible.

Cryptographic assets

• Private keys: SSL/TLS secured connections require public-key cryptography to securely
establish a shared session key between the two parties. Obtaining the private key
corresponding to the public party advertised in one of the server component’s x.509
certificate would allow an attacker to impersonate the server. In an IoT environment typically
the backend service, the web user interface in the cloud and the web administration interface
in the device supports SSL/TLS connections, which requrire the storeage of private keys.
With the private key obtained, a malicious third party could initiate man-in-the-middle attacks
and intercept communication between the parties.

• Certificates: Signature verification (e.g. firmware update) and the establishment of an
SSL/TLS connection require trusted certificates to make sure that the data sent by the other
party was not changed.

Using the CIA triad, the following security
objectives can be defined for the collected
assets

Confidentiality Integrity Availability

Personally identifiable information X

Credentials X X X

Device settings X X X

Application data X X X

Device identification data X X X

Sensor data X X

Firmware X X

Server software X X

Mobile application X X

JTAG key X

Fused secrets X

Private keys X X

Certificates X

Encryption keys X

Table 3: Security objectives for common IoT assets

2.5 Regulations

Security requirements should also be derived from regulations set by national authorities. These
regulations concern Digital Service Providers (DSP), Operators of Essential Services (OES),
Governing agencies, and all organizations which offer goods and services or monitoring of
individuals. There is no single international framework for cybersecurity law, but some multi-lateral

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 16 of 58

efforts have taken place. Two main regulations can be highlighted, one is the GDPR8 regulation in
the EU, which takes over the 95/46/EC directive, and a newly proposed legislation from the US9
“Internet of Things Cybersecurity Improvement Act 2017”.

2.5.1 General Data Protection Regulation

The GDPR aims to bring a single standard for data protection among all member states in the EU10.
Although it was not originally intended for IoT, many of its application affect this domain. To
complement the GDPR, a new proposal of the e-privacy directive (also known as the “cookie law”)
has been made in 2017 January, which replaces the current directive with a new legislation. The
new legislation standardises privacy rules between EU members, protects the people from
unsolicited electronic communication (aka. spam), and it sets a high level of privacy rules for
electronic communication.11

The GDPR applies to any company that controls or processes personal data of Europeans through
the offering of goods and services, even if the company itself has no physical presence in Europe.
In case of a security breach, the company would be required to pay fines of up to 4% of its annual
global revenue or €20 million for violations (whichever is greater).

The GDPR is strengthening the privacy rights of individuals, whose personal data is being
processed, including through12

• the need for the individual’s clear consent to the processing of personal data;

• the right to access by the subject to his or her personal data;

• the right to rectification, to erasure and ‘to be forgotten’;

• the right to object, including to the use of personal data for the purposes of ‘profiling’;

• the right to correct the data if it is out of date, incomplete, or incorrect;

• the right to be notified within 72 hours upon the company realizing a data breach that
compromised personal data;

• and the right to data portability from one service provider to another.

The new regulation obligates the companies to integrate security and privacy by design features in
their products. To support the companies, the European Union Agency for Network and Information
Security (ENISA) has released a report to provide a basis for better understanding of the current
state of the art concerning privacy by design with a focus on the technological side.13 However the
report specifies several methods for securing communication, private data and user anonymity, it
does not point out any recommendation for the actual implementation.

2.5.2 IoT Cybersecurity Improvement Act

This legislation was proposed by the US Senate to establish minimum requirements for federal
procurements of connected devices. The regulation would force the internet-connected device
vendors to provide certification ensuring that the device:

• Is capable of accepting properly authenticated and trusted updates from the vendor

• Does not contain any hardware, software, or firmware components with any known security
vulnerabilities or defects listed in the National Vulnerability Database (NVD) or similar
databases.

• Uses only non-deprecated industrial standards.

8 http://eur-lex.europa.eu/eli/reg/2016/679/oj
9 https://www.scribd.com/document/355269230/Internet-of-Things-Cybersecurity-Improvement-Act-of-2017
10 https://en.wikipedia.org/wiki/Cyber-security_regulation
11 https://ec.europa.eu/digital-single-market/en/proposal-eprivacy-regulation
12 https://blog.nxp.com/security/protecting-the-i-in-the-iot-gdpr-and-future-challenges
13 https://www.enisa.europa.eu/publications/privacy-and-data-protection-by-design

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 17 of 58

• Does not use any hard-coded credentials (passwords, user names, keys etc.).

The legislation also requires the vendors to notify government customers of newly discovered
vulnerabilities and defects and provide updates to address these vulnerabilities in a timely manner.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 18 of 58

Chapter 3 Threat modelling methodology

The aim of threat modelling is identifying threats, which are then rated and classified, then
countermeasures are proposed to reduce risks. Several techniques exist for a systematic approach
to cover as many aspects of the system as possible for revealing threats. Threat modelling is usually
preceded by understanding the system and gathering information about it, typically by identifying
stakeholders, assets to be protected and relevant security objectives. We may also need to specify
a selection of attacker profiles, describing both internal and external actors in order to understand
their motivation. Many methodologies exist to systematically enlist and describe threats to a system.
In the following sections we describe the three most common approaches: attack trees, misuse
cases and the STRIDE per element approach, defined in the Security Development Lifecycle (SDLC)
methodology by Microsoft.

3.1 Attack trees

Attack trees were first proposed by Schneier [12] as a systematic way to look at threats. Attack trees
are conceptual diagrams which reflect the anticipated options of attackers to achieve their goals.

An attack tree consists of a root node, and some internal and leaf nodes. The root node on the top
symbolizes the ultimate goal of the attackers. From the bottom up, nodes represent the conditions
which must be satisfied in order to make the direct parent node true.

Equivalently, these trees (which are actually acyclic directed graphs) can be seen as monotonous
logical expressions on the leaf actions (see Figure 5), where necessary actions are joined by AND
clauses and sufficient actions are joined by OR clauses as their common parent nodes. In the first
case, every child node must be satisfied; in the other, even one is enough.

An actual attack consists of actions for which the logical expression corresponding to the attack tree
is true. In short, when the root node is satisfied the attack is complete.

Goal

OR

Action

Action

Goal

AND

Action

Action

Figure 5: AND and OR parent nodes in attack trees

Such a representation of threat modelling with attack trees, being an iterative process, allows a lot
more than just saving work on enumerating threats – it enables continuous incorporation of new
information to the nodes based on lessons learned from past incidents that happened to different
systems, like the possibility of an attack or the associated resources for a successful attack (for
instance time needed to accomplish a certain step, associated costs or the preparedness of the
adversary).

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 19 of 58

Accessing

Patient

Information

Obtain application

user passwords

Access information

from the DB

Exploit a vulnera-

bility in the appl.

Exploit a

vulnerability in OS

Read patient info

from memory

Exploit a vulnera-

bility in the appl.

Execute code with

admin rights

Eavesdrop

communication

Expl. a vulnerability

in remote access

Man-in-the-middle

attack

Exploit a local OS

vulnerability

Exploit a remote

OS vulnerability

Obtain admin

access

...

Install keyboard

sniffer

Exploit a local OS

vulnerability

Modify an appl.

component

Brute force user

passwords

Change appl. user

passwords in DB

Access information

from the DB

...

Exploit a local

privilege escalation

Obtain direct

access to the OS ...

Obtain the

Administrator

password

Exploit a local OS

vulnerability ...

...

Obtain the

necessary access

rights

Access the DB

directly

...

...

Figure 6: An example attack tree of an imaginary healthcare system

Attack trees express an inherent property of a given system and are thus implementation
independent. This property allows reusing attack trees, such as including results from past work or
use present ideas in the future.

Examples from literature regarding IoT include Nurse et al.’s [13] work of categorizing possible IoT
insider attack vectors of 16 (8+8) different types, ranging from classic memory exploitation to data
leaks. Later, Kammüller et al. [14] performed a threat analysis in IoT scenarios using the attack tree
methodology. They mostly focused on insider threats that may affect the IoT system (calling them
“smart insiders”). They focused on two of Nurse et al.’s 16 possible attack vectors: (I) using the
storage system of the device for copying sensitive data, and (ii) compromising the communication
channel for misconfiguration. These two vectors were later formally analysed and which resulted in
a conclusion that they may be exploitable by many possible attacks.

3.2 Misuse/abuse cases

During requirements engineering, use cases have become increasingly widespread to describe and
verify normal and correct ways of using a system for a certain purpose. Similarly, we can define
misuse and abuse cases which are most commonly used for security perspectives. Misuse cases
intend to describe unexpected usage or abnormal behaviour of the system, i.e. a selection of
conditions, when the system does not work. Abuse cases are similar, but they describe intentional
abnormal behaviour, i.e. what a hacker would intend to do with the system and define his or her
requirements for a successful attack.

First suggested by Sindre and Opdahl [15], it goes beyond describing regular actors and use cases
by shifting from the perspective of the owner’s to the adversary’s, and the ways use cases can be
threatened, exploited or hindered. In addition, these diagrams also include countermeasures to
mitigate the threats, thus one can be prepared for abnormal behavior and see if all applied protection
techniques are sufficient. Misuse cases can be used together with attack trees.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 20 of 58

Misuse/abuse case diagrams usually include textual description, which provide more details about
these cases and the relationships between them, along with the appropriate requirements and
sequences of actions.

0 below shows an example of a misuse case having a simple web shop, where the attacker’s goal
is to obtain specific data about a user: either the user’s credentials or other confidential data specified
during registration (such as credit card number).

Register

Perform

transaction

Logout

Encrypt

comm.

Eavesdrop

comm.

Steal user

data

in
c
lu

d
e

s

threatens

threatens

m
iti

ga
te

s
includes

includes

includes

Figure 7: An example misuse case diagram

In the above described scenario, an attacker can eavesdrop (sniff) communication over the network,
or can obtain some data of his or her interest from the user registration or user transactions.
Defending against an attacker with these objectives is also relatively simple: by encrypting
communication properly the eavesdropping attack is mitigated.

There are several extensions to the misuse/abuse case approach, for instance Røstad [16]
complemented the diagrams with model elements representing insider threats and vulnerable
functionalities of the system.

3.3 SDL threat modelling

The STRIDE14 model assumes that attackers will follow one or more of the following attack vectors.

• Spoofing identity. An attacker will try to hide his identity or take another user’s or platforms
ID. Examples are illegally accessing and then using another user's authentication data or
tokens or faking a network address.

• Tampering with data. The attacker might perform a malicious modification of data. This can
be done on persistent data or on data flows in the network.

• Repudiation. The attacker will try to deny having performed an action, and make sure that
other parties cannot prove otherwise.

• Information disclosure. Attackers will attempt to breach the confidentiality of information,
i.e, disclose data to individuals who are not supposed to have access to it.

• Denial of service. Denial of service (DoS) attacks prevent valid user the access to a service,
either by intercepting the communication paths or disabling the services itself (for instance
by overloading it with bogus tasks).

14 Microsoft, The STRIDE Thread Model, http://msdn.microsoft.com/library/ms954176.aspx, 2005

http://msdn.microsoft.com/library/ms954176.aspx

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 21 of 58

• Elevation of privilege. Unprivileged users or processes will attempt to gain privileged
access, especially root or administrator rights. Through this access, the entire system could
potentially be compromised.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 22 of 58

Chapter 4 Security requirements for IoT

Security requirements can be defined as “non-ambiguous and verifiable statements implementing
security objectives”; yet other definition state them being “constraints on the functions [that] …
operationalize … security goals”15; whichever way, they should express the correct, intended system
behaviour, rather than just enumerating undesired actions. There are several methods to define
security requirements for a given information system, however, there is no universally accepted
approach to define their extent16. In the following, we sketch the two main approaches:

Building requirements

The first approach consists in building requirements from the objectives, using elicitation techniques.

The CERT Coordination Center defined a methodology for requirements building and elicitation,
called Security Quality Requirements Engineering (SQUARE)17, which is referenced by US
Department of Homeland Security18. Besides including rules for the prior threat analysis, this method
recommends:

• the use of elicitation techniques, three of them being recommended19;

• categorization of requirements (however SQUARE does not provide a definite method on this
topic);

• prioritization of requirements, using Analytic Hierarchy Process (AHP);

• peer reviewing of requirements.

Selecting requirements

The second approach consists in selecting requirements from a standard catalogue in order to cover
the objectives, and define ad-hoc requirements only whenever an objective is not completely covered
by existing requirements. The most standard requirements catalogue is Common Criteria20.

There is also a method called Security Requirements Engineering Process (SREP), which is a kind
of cross-process including SQUARE and Common Criteria, including notions of reuse21.

Setting security requirements is a challenging task, where the high level requirements should be
considered during the design phase to achieve appropriate level of security. However, often the
vulnerabilities are not found in the security architecture but instead inside the actual implementation
of a given functionality. On the other hand, low level security requirements can be defined, but such
requirements lose their portability, because a specific requirement for a system depends on the
architecture and the applied technologies.

To achieve a middle ground, we inspected the IoT systems from a layered perspective. This way,
we can set more detailed requirements for the IoT without being too specific. We applied this layered

15 Ch. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security Requirements Engineering: A Framework for Representation
and Analysis. IEEE Trans. Softw. Eng. 34, 1. January 2008

16 I. Tondel, M. Jaatun, P. Meland. Security Requirements for the Rest of Us: A Survey. IEEE Software, vol. 25, no. 1, pp.
20-27, January/February, 2008

17 Nancy R. Mead, Eric D. Hough, Theodore R. Stehney II. Security Quality Requirements Engineering (SQUARE)
Methodology, Carnegie Mellon SEI - 2005

18 See DHS - BSI website at https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/232-BSI.html
19 Issue-Based Information System (IBIS), Joint Application Development (JAD), and Accelerated Requirements Method

(ARM)
20 Common Criteria for Information Technology Security Evaluation - part 2 : Security functional components - September

2012 - Version 3.1 Revision 4 – www.commoncriteriaporta.org
21 Daniel Mellado, Eduardo Fernández-Medina, Mario Piattini. A common criteria based security requirements engineering

process for the development of secure information systems – Elsevier - 2006

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 23 of 58

approach during the threat analysis and during writing the security requirements. We also
investigated an approach of choosing some minimum requirements for the IoT, which have to be
applied to ensure sufficient security. The latter approach led some additional recommendations for
the actual implementations, how these requirements can be fulfilled.

4.1 Attack surface in the Internet of Things

Aligned with the approach of OWASP, the attack surface of a system can be defined as the boundary
through which an attacker can interact with it, like feeding malicious input or extract information. It
includes all inputs and outputs through which a user can influence and reach the system - application
arguments and parameters, user interfaces, APIs, network connections, files from the file system,
system settings, databases, inter-process communications, and so on. More formally, the OWASP
approach defines the attack surface of an application22 as:

1. the sum of all paths for data/commands into and out of the application, and
2. the code that protects these paths (including resource connection and authentication,

authorization, activity logging, data validation and encoding); and
3. all confidential and sensitive data used in the application, including secrets and keys, critical

business data and Personally Identifiable Information, and
4. the code that protects this data (including encryption and checksums, access auditing, and

data integrity and operational security controls).

One can substantially increase security by reducing the attack surface. Given that all possible
interfaces can be used by various actors, each with different roles and privilege levels, the complexity
of the attack surface is usually enormous. This is why the usual approach is to group such vulnerable
areas into categories based on their functionality, design, and the technologies utilized – such as
administrative, transactional, or monitoring interfaces, authentication, forms, and so on.

Understanding the attack surface of the system is essential before source code analysis can be used
to search for potential vulnerabilities. After the inputs and outputs have been identified, data can be
followed from its initial point throughout the code to find ways it can cause undesired behavior by
doing data flow analysis – using the same principle, such analysis can also show how sensitive
information can be leaked from the system.

Possibly vulnerable areas should be categorized by risk level, especially when dealing with a
performance and power-critical IoT environment. Even though the entire attack surface of the system
may have been correctly identified, due to performance requirements, the countermeasures that
have been deployed may not be complete and focus only on the most critical parts of the system
(access to sensitive data, privilege escalation, or memory errors). Even these measures may be
optimized for the resource constrained environment, and as such have significant limitations. In
summary, whatever the scenario, our goal is to find a balance between covering all possible security
threats and guaranteeing the functionality and availability of the system.

The attack surface in the domain of IoT systems is diverse and comprises numerous potential points
of vulnerability, including software and data that reside with the product, communication channels,
as well as remote data storage and processing, amongst others. Securing these pose a major
challenge to organizations.

Atamli & Martin23 were one of the first to identify possible attackers and attack vectors in IoT generic
environments. In particular, they identified different sources of threats, viz: (I) malicious actors who
own the IoT device willing to gain restricted role of the manufacturer; (ii) bad manufacturers, who

22 https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

23 Atamli, A. W., & Martin, A. (2014, September). Threat-based security analysis for the internet of things. In Secure
Internet of Things (SIoT), 2014 International Workshop on (pp. 35-43). IEEE.

https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 24 of 58

have the ability to exploit the devices gaining information about users; or (iii) external adversaries
that are not part of the system but are capable of exploiting it.

In addition, Atamli and Martin presented different attack vectors for these systems including: device
tampering, information disclosure, privacy breaches, (D)DoS (Denial of Service or Distributed Denial
of Service) attacks, spoofing, or privilege escalation. All these possible attacks coming from the
aforementioned sources can target several kinds of systems, depending on the particular
environment, such as actuators, sensors, RFID tags, and Network (conventional, NFC(Near Field
Communication), or the Web).

Furthermore, OWASP IoT project24 offers a comprehensive list of vulnerabilities for different attack
surface areas:

24 https://www.owasp.org/index.php/IoT_Attack_Surface_Areas

https://www.owasp.org/index.php/IoT_Attack_Surface_Areas

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 25 of 58

Figure 8: A list of attack surface areas for different IoT ecosystems and scenarios

These vulnerabilities offer a generic approach for IoT systems, and can be used to derive security
properties, which will be studied afterwards.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 26 of 58

4.2 Threats

Using the three layer architecture described in section 2.1, we can discuss the security aspects of
each layer separately. As every layer has different security concerns (described in the table below),
we can focus on the most important problems at each layer separately. In the following table, we
grouped the most common security concerns listed by OWASP. Although this is not a
comprehensive list of possible vulnerabilities, covering these issues greatly improves the overall
security of an IoT product.25

Security concerns
IoT Service
Ecosystem

Communicatio
ns Network

Endpoint
Ecosystem

Insecure web interface X

X

Insufficient
authentication/authorization

X

X

Insecure network services X

Lack of transport encryption

X

Privacy concerns X X X

Insecure cloud/service interface X

Insecure device interface

X

Insecure security configuration X X X

Insecure software/firmware X

X

Poor physical security X X

Table 4: Security concerns for the different IoT layers

4.2.1 Security of Endpoint Ecosystem

The basis underlying an IoT network generally comprises of a variety of interconnected endpoint
devices that acquire, process and exchange data. On this layer a number of technology-related
challenges affect the security of the network and make the implementation of sophisticated security
features difficult. These include, but are not limited to:

• Heterogeneity: The IoT connects devices that may tremendously vary in terms of complexity
and capabilities, may come from different vendors, and may have been designed for different
overall functions. Also, a number of heterogeneous wireless technologies, such as WiFi,
Bluetooth, Zigbee, GSM, etc., may be used to connect the devices.

• Resource constraints: IoT devices are normally subject to technical constraints in terms of
processing power, memory, power consumption, and cost, bearing negative implications on
eventual security features.

• Homogeneity: When deployed in batches, IoT devices may consist of similar or identical
devices, with any security related vulnerabilities being common to all devices.

• Deployment and updates: IoT devices may be deployed with an intended service life-time
that is significantly longer than the life cycle normally anticipated for electronic devices. This
can pose a substantial challenge to providing long-term support, for example when a device
outlives its own manufacturer. Furthermore, the circumstances of deployment might allow
reconfiguring or updating a device only with difficulties, or not at all.

• Scalability: IoT devices can be deployed on a massive scale, and networks can consist of a
large number of individual nodes. Any security measures that are applied in such networks
must be appropriately scalable and take into account the potential quantity of interconnected
links.

25 https://www.owasp.org/index.php/IoT_Security_Guidance

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 27 of 58

Said technological factors pose a challenge when it comes to addressing multiple security-related
threats and potential attacks that concern IoT endpoint devices. A selection of those will be briefly
identified in the following and some hints on potential mitigation strategies will be given.

Physical Capture or Tampering: IoT endpoint devices may be deployed in public or generally
untrusted areas where the implementation of physical security is difficult or impossible and direct
access to the device cannot be effectively restricted. The attacker may obtain full control over the
captured device and the information stored on it. Among others, the following threat scenarios may
arise:

• Attackers may read and manipulate the internal memory and firmware of a device. This can
be achieved by accessing debugging and programming interfaces that have been left
enabled on the board (e.g. JTAG). A possible countermeasure would be to disable such
interfaces before the deployment of the device. However, it may still be possible to unsolder
certain parts of the device, such as flash memory chips, and access them independently of
the rest of the system. Accessing a device’s memory and firmware also commonly facilitates
reverse engineering which may enable the attacker to discover and exploit additional
vulnerabilities. In addition, secrets and cryptographic material may be extracted from the
device, which potentially enables the attacker to access communication infrastructure (e.g.
WiFi) or web services provided for the IoT device. Here, the implementation of measures that
physically protect the information on the device will be necessary. Examples of these include
hardware-accelerated flash encryption, Trusted Platform Modules (TPMs) and storing
secrets not directly in the device’s flash memory but securely using, among others, One-
Time-Programmable (OTP) fuses or Physically Unclonable Functions (PUFs).

• Side channel attacks may enable the attacker to gain information about secrets that are
stored or processed on the device without directly accessing its memory. This can be done
by monitoring physical effects of the device, such as power consumption, electromagnetic
radiation, and even sound, amongst others, which may let the attacker gain information about
the data processed. Special algorithms that avoid the leakage of such information can be
used as countermeasures to these attacks, and further physical shielding is required to
ensure sufficient security.

Attacks on Availability: Attacks on availability include any actions that are physically or logically
applied to the IoT end node by a malicious party in order to make it stop working, the most prominent
of which include Denial-of-Service (DoS), Distributed-Denial-of-Service (DDoS). Those will be
discussed in more detail in the next subsection, which deals with network layer threats. Physical
capture of a node may also compromise its availability at the attacker’s convenience. Another attack
on availability that directly applies to IoT endpoint devices is the Sleep Deprivation Attack. As IoT
endpoint devices usually have constraints on their desired power consumption or are battery-
powered, they potentially implement a power conserving sleep mode which they routinely enter.
During a Sleep Deprivation attack the attacked device is interacted with in an apparently legitimate
manner that, however aims to break scheduled sleep cycles or keep the device from entering them.
This causes an excessive power consumption which can result in failure or shut down of the device.

Eavesdropping/Interception/Hijacking: Most IoT devices communicate using wireless networks,
with adversaries being able to eavesdrop and intercept the data transmitted. The peculiar aspects
of IoT endpoint devices, such as constraints on processing power or memory, large-scale
deployments and heterogeneous devices, however hinder the implementation of security features
such as encryption and make key management difficult.

• Data sniffing: Sniffing is usually used in network traffic context, however this method is not
limited to this domain. Sniffing is also feasible on a hardware level, monitoring internal system
buses and chip interconnections. These channels are assumed to be protected from the
software developer perspective, since these are implemented in the hardware.
Countermeasures against this kind of attack can include encrypted transmission on the
sensitive channels, or using hardware components (BGA package, 4 layer PCB), where
sniffing is unfeasible.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 28 of 58

• Surveillance: Surveillance is a specific type of access to information that combines the basic
information access with a focus on personal/private data and the use of hardware to gather
information from the physical world, for example by (ab-)using microphones, cameras, or
location data. Typical personal mobile computing environments comprise various sensors
that can be abused to provide strong surveillance capabilities.

• Data tampering/Spoofing: Comparable to surveillance threats, the tampering or spoofing
of data on mobile computing devices can have wider impact than typical data tampering:
Spoofed location, audio or visual data can lead to a variety of abuse scenarios.

Access control: IoT devices often have to provide some kind of administration access. Depending
on the IoT platform, this can be a physical connection, a specific network protocol, remote
administration via a cloud platform, or a web interface via HTTP. In every case, proper authentication
and authorization is necessary to prevent threats such as private data leakage and unauthorized
modification of settings.

Web interface security: Web administration interfaces are tending to be common in IoT devices,
especially for complex ones such as routers, IP-cameras, but even in thermostats26. Any web
interface may contain common web vulnerabilities (see the OWASP top ten27 for most critical web
application security risks). Since IoT devices have limited resources, most of the code handling
HTTP requests, including the web server and the application logic, are written in low-level languages.
Therefore classic security issues, such as buffer overflow28, integer overflow, command injection [5],
and even format string29 vulnerabilities may be present in the IoT device.

Attacks against sensors: The behaviour of an IoT device depends on the data collected from the
physical world by the various sensors. If the sensor data is faked or spoofed somehow, the IoT
system will make wrong decision based on the modified data.

• In some special cases, e.g. activity trackers, a malicious user (owner) of the device might
want to fake sensor data to gain financial advantages from it, for example by saving from
insurance or gaining rewards30 based on the collected data.

• To influence sensor data the attacker needs physical access to the sensor. Since sensors
have to collect data from the physical world, attackers generally have a chance to access
them. Moreover, some sensors can be influenced from distance also. For example, Trippel
et al. [2] demonstrated an attack against accelerometers with acoustic injection. They could
inject faked sensor data with acoustic waves to accelerometers from 5 different
manufacturers. A similar attack was shown by Zhang et al. [3] by sending inaudible voice
commands to a speech recognition system. Besides acoustic waves, electromagnetic
interferences can cause false sensor data, as shown by Park et al. [4] for medical devices.

4.2.2 Security of the Network Layer

The purpose of this layer is to transmit data between the end nodes inside an IoT network. These
connections can be between two devices, between the device and a server, or between the device
and the user (user’s PC or mobile phone). There are some specific challenges that have to be
addressed in the scope of the IoT, particularly in case of low-resource devices, and that have an
impact on the overall security of the whole network. These challenges include:

• Network energy efficiency (UDP protocol is favoured over TCP)

• Low bandwidth network

26 https://blog.newskysecurity.com/iot-thermostat-bug-allows-hackers-to-turn-up-the-heat-948e554e5e8b
27 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
28 https://courk.fr/index.php/2017/09/10/reverse-engineering-exploitation-connected-
clock/#Bluetooth_Communications_Reverse_Engineering
29 http://defensecode.com/whitepapers/From_Zero_To_ZeroDay_Network_Devices_Exploitation.txt
30 https://www.tomsguide.com/us/fitness-trackers-insurance,news-23053.html

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 29 of 58

• Network outages

To achieve a secure IoT system, the following threats should be addressed in the scope of network
layer:

Eavesdropping/Interception/Hijacking: Most IoT devices communicate using wireless networks,
which are vulnerable against adversaries, who are capable of intercepting the data transmission. For
this purpose, it is important to provide secure communication channels between the parties to ensure
data confidentiality. However, the keys which are used for encryption must be secured as well, since
if these keys are compromised, the security of these channels cannot be granted. Even in case of
low-resource devices, the encryption should rely on public key cryptography or derived keys from
configurable secrets, otherwise the attacker will be able to obtain the encryption key and eavesdrop
the communication, such as in the case of Linx light bulbs31.

Spoofing of Identity and Data: During network spoofing, an attacker masquerades network
information (IP, MAC address etc.) in order to gain illegitimate advantage on a given network. This
type of threat includes the following attacks:

• ARP poisoning: The attack is achieved when an attacker poisons the ARP cache of two
devices with the (48-bit) MAC address of their Ethernet NIC (Network Interface Card). Once
the ARP cache has been successfully poisoned, each of the victim devices sends all their
packets to the attacker when trying to communicate to the other device32. This kind of attack
opens up for other malicious activity, like MITM or session hijacking attack initiated from the
same network.

• DNS cache poisoning: The DNS server translates domain names into IP addresses. With
DNS cache poisoning the attacker wants to redirect users from a specific domain to an
attacker’s controlled one. To perform the cache poisoning attack, the address record of the
attacker’s domain contains information related to the target domain, which may be cached
by the DNS server.

• IP address spoofing: The attacker may want to use forged IP address to impersonate other
system or perform Denial-of-Service type attacks. The attack can be performed easily by
overwriting the source address in an IP packet; however it has different effects with different
protocols. For example, in case of the UDP protocol, the attacker can send data with spoofed
address, but won’t receive the answer. But in case of the TCP protocol, which requires a
simple handshake, the modified source address can be used only to cause DoS attacks.

Countermeasures against identity and data spoofing can involve different authentication methods,
where trust is given based on the unique identifier of the device or the usage of public key
cryptography, e.g. in the case of TLS/SSL or DTLS.

Attacks on sensor network routing: A lot of attack potential arises with the custom communication
protocols introduced in the IoT network. General ad-hoc routing protocols are often susceptible to
different kinds of attack. When an IoT network is designed, it is recommended to choose an
appropriate network protocol to prevent this kind of attack. The following attacks are the most
common against sensor networks according to Raymond et al. [6] and Karlof et al. [7]:

• Spoofed, altered, or replayed routing information: The most direct attack against a
routing protocol is to target the routing information exchanged between nodes. By spoofing,
altering, or replaying routing information, adversaries may be able to create routing loops,
attract or repel network traffic, extend or shorten source routes, generate false error
messages, partition the network, increase end-to-end latency, etc.

• Selective forwarding: Multi-hop networks are often based on the assumption that
participating nodes will faithfully forward messages received. In a selective forwarding attack,

31 https://www.contextis.com/blog/hacking-into-internet-connected-light-bulbs
32https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-
switches/white_paper_c11_603839.html

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 30 of 58

malicious nodes may refuse to forward certain messages and simply drop them, ensuring
that they are not propagated any further. A simple form of this attack is when a malicious
node behaves like a black hole and refuses to forward every packet she sees. However, such
an attacker runs the risk of neighboring nodes concluding that she has failed and deciding to
seek another route. A more subtle form of attack is to selectively forwards packets. An
adversary interested in suppressing or modifying packets originating from a few select nodes
can reliably forward the remaining traffic and thus limit suspicion of her wrongdoing.

• Sinkhole attacks: In a sinkhole attack, the adversary’s goal is to lure nearly all the traffic
from a particular area through a compromised node, creating a metaphorical sinkhole with
the adversary at the center. Because nodes on, or near, the path that packets follow have
many opportunities to tamper with application data, sinkhole attacks can enable many other
attacks (selective forwarding, for example).

• Sybil attacks: In a Sybil attack, a single node presents multiple identities to other nodes in
the network. Any system whose correct behavior is based on the assumption that most nodes
will behave properly may be at risk for Sybil attacks. In a scenario, where the system behavior
is based on some form of voting system between the network nodes, an attacker with
sufficient identities can manipulate the end result of such a scheme. The Sybil attack is
especially threatening to fault-tolerant schemes such as distributed storage, dispersity and
multipath routing, and topology maintenance

• Wormholes: In the wormhole attack, an adversary tunnels messages received in one part
of the network over a low latency link and replays them in a different part. The simplest
instance of this attack is a single node situated between two other nodes forwarding
messages between the two of them. However, wormhole attacks will more commonly involve
two distant malicious nodes colluding to understate their distance from each other by relaying
packets along a channel available only to the attacker

• HELLO flood attacks: Many protocols require nodes to broadcast HELLO packets to
announce themselves to their neighbors, and a node receiving such a packet may assume
that it is within the (normal) radio range of the sender. This assumption may be false: a laptop-
class attacker broadcasting routing or other information with large enough transmission
power could convince every node in the network that the adversary was its neighbor, allowing
the attacker to execute more sophisticated attacks. With proper protocol rules, this attack can
be avoided.

• Acknowledgement spoofing: Several sensor network routing algorithms rely on implicit or
explicit link layer acknowledgements. Due to the inherent broadcast medium, an adversary
can spoof link layer acknowledgments for “overheard” packets addressed to neighboring
nodes. Goals include convincing the sender that a weak link is strong or that a dead or
disabled node is alive.

• Jamming: Jamming is defined as the act of intentionally directing electromagnetic energy
towards a communication system to disrupt or prevent signal transmission [8]. Jamming
attacks can be viewed as a kind of DoS attacks, which pose a threat to WSN (Wireless
Sensor Network) even with strong security mechanism, simply by targeting the physical
channels of the communication.

4.2.3 Security of Service layer

Most of the threats discussed here are not so different from any other server-side application. In
most of the cases, these servers have web access, which without proper countermeasure pose a
huge security risk for the server. The possible attack methods include code injection, session
hijacking, arbitrary code execution etc.

Denial of Service: This threat is similar as in the other layers, but in this case making the server
unavailable often makes the functioning of the IoT system impossible. As another source of concern,
if a portion of the IoT devices are compromised, these can be used as part of a DDoS attack.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 31 of 58

Privacy threats: In the case of IoT, a lot of data is collected about the user. This data can be
processed on the end nodes, but in most of the cases it is collected on a central server. This data
can be stored anonymously to avoid privacy leakage. However in some cases, the identity can be
restored from this partial information as well [9].

API abuse: An Application Programming Interface (API) is a set of clearly defined methods of
communication between software components33. APIs are regularly used by cloud service providers
to allow access to their system. An example for the API abuse threat is the path traversal attack,
where the attacker can access unauthorized files outside the restricted directory through using
relative paths.

Unauthorized access: An attacker can exploit web vulnerabilities or server misconfigurations to
access to the related services or sensitive data without proper authorization. In case of a typical IoT
ecosystem, unauthorized access may provide access not only to the server functionality, but to the
IoT device also.

Code execution: Code execution caused by an exploitable vulnerability in the server or the
application layer code enables the attacker to access or modify all data and even the code executed
by the server.

4.3 Security requirements for IoT

For specifying the requirements for IoT, we followed the same layered approach that we used in the
threat examination. With this approach, we can separate the layers from each other, which is often
the case in the real world scenarios, where the device vendor is separate from the network provider.

We give an overview of the most important security requirements in the scope of IoT. Instead of
setting a complete requirement list, we tried to give a list of the most important requirements
concerning the IoT. To achieve this, we set high level functional goals, and set other sub
requirements to achieve the desired functionality.

4.3.1 Requirements for Endpoint Ecosystem

Implement secure TCB

To ensure endpoint security it is inevitable to implement some kind of Trusted Computing Base
(TCB). From the Orange Book [10], TCB is the totality of protection mechanisms within it, including
hardware, firmware, and software, the combination of which is responsible for enforcing a computer
security policy. Any bugs and vulnerabilities occurring inside the TCB means a potential threat to the
entire system. Systems that don't have a trusted computing base as part of their design do not
provide security of their own: they are only secure insofar as security is provided to them by external
means (e.g. a computer sitting in a locked room without a network connection may be considered
secure depending on the policy, regardless of the software it runs)34. The TCB can be an internal
part of the CPU, or a separate hardware element, such as SIM card, UICC or other kind of HSM
(Hardware Security Module). Since the overall security depends on the security of the TCB, it is
important to implement additional protection against additional threats such as power analysis and
glitching attacks, or reverse engineering and microprobing attacks. In addition to the aforementioned
functionalities, the following functionalities can be implemented using the TCB to achieve additional
protection:

• Endpoint application image validation

• Network authentication and/or peer authentication

• A separation of duties

33 https://en.wikipedia.org/wiki/Application_programming_interface
34 https://en.wikipedia.org/wiki/Trusted_computing_base

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 32 of 58

• Provisioning and personalization

• Isolated environment (connectionless site) provisioning and communication

• Cryptographically secure randomization

Implement secure Endpoint Identity and Authentication

In order to prevent cloning of an IoT device, the device must be capable to prove that it is
manufactured by the IoT service provider. In order to do this, the endpoint is required to incorporate
a trust anchor into the TCB. To enhance security, the endpoint can utilize personalised cryptographic
keys, in order to minimize the impact of a compromised trust anchor. Another form of a trust anchor
is using HSM as an application layer trust anchor, which over secure key storage can provide other
crypto-processing functionalities.

Implement secure Firmware and software against tampering

In order to prevent tampering of executable code on the endpoint, it is recommended to implement
a Minimal Viable execution Platform (MVeP. This platform is capable of configuring peripherals,
authenticate code snippets, which will be executed by the CPU, and manages software updates.
This way, a minimal bootloader can be defined, which can check cryptographically signed application
images, ensuring that the image is from a trusted source. In order to further increase security,
security critical code such as the first stage bootloader or the TCB should be stored in read-only
memory.

Implement secure communication between services and Endpoints

In an IoT network, not only the Endpoints must be authenticated by the services, but the services
must also be authenticated by the Endpoints, so critical services, such as application updates,
cannot be subverted. Although clear text messages between the Endpoint devices are not strictly
prohibited, it has to be ensured that communication channels with privacy data, commands or system
critical messages are secured. For this purpose, the Endpoint has to be capable of authenticate
another endpoint, encrypt/decrypt critical data and check integrity of a message.

Consumer privacy requirements

Since the IoT devices have the ability to interact with their environments, this raises a lot of security
concern in the field of what data should be handled, and how. It is also important to inform the user
properly about what data is collected, and give him the ability to decide whether he wants to expose
this data to third parties. This is not limited only to personal data, since many endpoint specific data
can be used as a fingerprint (BLE, Wi-fi, cellular address etc.) to track down a user, if the malicious
actor can link these data with the actual user.

Use exploit mitigation and hardening techniques

Similar to any other computer system, IoT devices may contain exploitable vulnerabilities. The
possibility of a vulnerability can be decreased, but it cannot be avoided completely. So, the IoT
device should implement any possible mitigation and hardening techniques, which is possible. In
some case, especially the low-power devices executing a Real-Time OS cannot support all of the
following exploit mitigation and hardening techniques.

• Enforce memory protection with implementation of Data Execution Prevention (DEP) and
Address Space Layout Randomization (ASLR) techniques.

• Use internal memory for secrets and delete them if the secret is not used anymore.

• Run applications with least privilege levels necessary.

• Use buffer overflow protection measures, such as stack canaries.

• Enforce operating system level security enhancements.

• Minimize hardware and logical access and remove any unnecessary debug port or logical
access.

• Use secure default configurations with particular regard to enforced authentication,
supported strong authentication mechanisms, use of encryption features (see also Crypto)
and reliable authorization components.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 33 of 58

4.3.2 Requirements for Network Layer

When it comes to designing the communications architecture of an IoT system, there is one pitfall
that is the root of most issues – using custom cryptography, or no cryptography at all. As in any
reasonably complex architecture the network layer encompasses several layers of third party
infrastructure, it opens up an enormous attack surface if left unsecured. Designing and implementing
protocols that can stand the test of time against attackers is no small feat – and as industry standards
have already been established, implemented and tested, it should not be attempted at all.

By far the most widely deployed solution for securing the communications between two parties is
Transport Layer Security (TLS). This protocol and its assurances have been extensively
documented, reviewed and updated, as necessary to create the current version (1.2) of the protocol.
While TLS is based on TCP, Datagram Transport Layer Security (DTLS) has also been defined for
applications that require UDP based communication. Both protocols have publicly available, open-
source implementations, even for embedded systems, and most common operating systems support
them out of the box. These implementations are subject of significant public scrutiny, and as such
should be preferred over any custom solutions. TLS and DTLS should be used to secure all
communications.

TLS has a plethora of configuration options, and some configurations are more secure than others.
As of version 1.2 of the standard, these best practices should be followed:

• Only allow connections using version 1.2 of the standard – neither the server nor the client
should permit earlier versions.

• Only allow cipher suites that:
o Provide forward secrecy – even if the private keys used by the client or the server

leak, previously sent data will remain undecipherable to third parties.
o Use AES for encryption – earlier algorithms, such as DES or RC4, have known

weaknesses that may undermine the security of the whole protocol.
o Use at least SHA256 for data integrity – earlier algorithms, such as MD5 or SHA1,

have known weaknesses that may undermine the security of the whole protocol.

• Some cipher suites may use Elliptic Curve Cryptography (ECC) for key exchange –
whether this is desirable depends on performance requirements and available hardware
acceleration.

• The performance overhead of 256 bit AES over 128 bit AES is usually not worth the rather
small increase in security.

While it is out of the scope of this document to examine all available cipher suites, the following two
match these requirements:

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

Since TLS depends on a Public Key Infrastructure (PKI), another issue that should be addressed is
generating certificates and establishing trust between devices. Without a well-designed PKI, the
protections of TLS can be easily defeated. While TLS can be used without authenticating the other
party or only performing authentication of the server by the client, this is discouraged. Mutual
authentication is recommended to be used for all communications.

A guide for establishing the PKI is out of the scope of this document, but the following best practices
should nonetheless be followed:

• Private keys should be generated on device, preferably stored in a hardware security enclave
– or if unavailable, in a software enclave provided by the operating system.

• Private keys should be at least 3072 bits (RSA/DSA) or 256 bits (ECC) long. Shorter keys –
2048 bits (RSA/DSA) or 224 bits (ECC) – can be used on performance-constrained devices.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 34 of 58

• Have clear policies for signing Certificate Signing Requests (CSRs) when deploying
hardware or software. Ensure that only authorized personnel can perform such an operation
and that all signatures can be audited.

• Certificates should use at least SHA256 as their hash algorithm, and should be clearly
identified by their metadata.

• The chain should have at least one layer of intermediate certificates. The private key
belonging to the root certificate should be only used on an offline machine to sign
intermediary certificates.

• Certificate Revocation Lists (CRLs) should be maintained and checked against on each
connection. Certificates suspected of compromise should be revoked and reissued.

• On device redeployment existing certificates should be revoked and new certificates should
be issued.

• Have clear policies in place for updating certificates – avoid using certificates that cannot be
updated on embedded devices.

• Only include trusted root certificates in the trust store of individual devices. Ensure that the
trust store can be updated when needed.

• Have separate chains of trust for certificates that have no way to expire or cannot be validated
against a CRL – for bootloaders or code signatures, for example. Treat the private keys
associated with these certificates with extreme care, use them only in offline environments
and set up strict physical access controls.

While this list is by no means complete, a PKI set up using these guidelines combined with the latest
version of TLS can ensure the confidentiality and integrity of all communications. To help ensure the
availability of the system, and to further increase its resilience against different attacks, a number of
additional tools and measures can be used on the network level:

• Firewalls should be used on the edge network to monitor and filter incoming and outgoing
network traffic. Network layer firewalls allow packets to pass through based on a predefined
set of rules, such as the IP address or port of the source or destination. More complex
firewalls might have additional services, such as:

o Deep Packet Inspection (DPI) – examines the data part of a packet, searching for
protocol non-compliance, viruses, spam or other malicious content. It may allow a
packet to pass, may redirect it to a different destination, or may reject it altogether.

o Intrusion Detection System (IDS) – monitors the network for malicious activity or
policy violations. It matches traffic to a library of known attacks. Once an attack is
identified, or abnormal behavior is detected, an alert can be sent to the administrator
or automatic action can be taken.

• ARP whitelisting should be used to ensure that attackers cannot exploit the lack of
authentication in the ARP protocol. It is done by software that relies on some form of
certification or cross-checking of ARP responses. This way, uncertified ARP responses are
blocked, preventing ARP spoofing attacks.

• DNSSec (Domain Name System Security Extensions) should be used to protect the
integrity of DNS data used by applications - such as DNS data forged or manipulated by DNS
cache poisoning – by ensuring that all answers from the DNSSEC protected zones are
digitally signed.

• TCP/IP cookies (also referred to as SYN cookies) should be turned on to prevent SYN flood
attacks. This technique allows a server to drop connections in case the SYN queue fills up -
after sending back an appropriate SYN+ACK response to the client - and enables it to
reconstruct the connection after it gets a valid ACK response from the client.

• Router level filtering should be used to ensure that the private address space does not leak
out into the global internet and to filter incoming network traffic as a protection against DoS
attacks.

• VPN (Virtual Private Networks) should be used to provide confidentiality in such a way that
even if the network traffic is sniffed at the packet level, an attacker would only see encrypted
data. As opposed to consumer VPNs, the objective is not to make online connections

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 35 of 58

anonymous, but to increase privacy and security by adding an additional layer of encryption
and authentication to all protocols running on the network. Even if all communications are
otherwise encrypted using TLS, a VPN tunnel can add additional security by encrypting the
headers and service packets of lower level protocols.

• Centralized logging should be deployed to log all security incidents and possible malicious
behavior that has been identified for later audit. While logging all events might be a serious
performance burden, at the least failures and errors should be logged.

4.3.3 Requirements for Service Ecosystem

Implement Service TCB

Implementing a TCB is important on every platform to guarantee security, however depending on
the on the system, it can have different characteristics. In the service ecosystem, this can be
achieved through application images, which are deployed on the servers. These images contain all
of the information, which are required to a server to function properly, including executable files,
configuration files, and other metadata. This method is also useful for more flexible functioning of
the service, since servers can be deployed dynamically depending on demand.

To achieve this, the service provider has to standardize hardware and software, and to configure it
according to the needs. To ensure that the image is not tampered with malicious entities, the image
must be signed, and an Organisational Root of Trust is required, which ensures that the images are
signed properly. The Organisational root of trust can be a form of HSM and it can have additional
functionalities, like authenticating other parties within the ecosystem.

To have a trustworthy system, the following additional countermeasures should be considered:

• each secret must be protected from abuse

• internal use of each secret must be verifiably tracked and monitored,

• each individual approved to utilize a secret must use multi-factor authentication when
accessing the secret(s),

• define a set of policies and procedures that enforce consistent and secure usage,

• build a process to sunset or revoke a certificate,

• identify whether a key has been abused and

• choose the correct set of cryptographic algorithms.

User authentication

Authenticating a user through an endpoint relies on both the trustworthiness of the endpoint and the
communication channel between the service and the endpoint. Since the user is independent from
the device endpoint, user credentials should be managed separately from the endpoint. During
implementing user authentication, the following should be considered:

• Enforce strong password policy: The authentication system should enforce strong password
policy, which instead of being complex (numbers + special characters) should be long
enough to prevent brute force attacks. To prevent brute forcing, the service provider should
limit the threshold for the total number of attempts, increase the minimum required time
between the guesses or use captcha to prevent automatic trials.

• Force authentication through the Service Ecosystem: If it is possible, avoid user
authentication on the field, since it is easier to bypass authentication on the endpoint. Instead,
use the secured service channels, and API for this purpose.

• Separate storage systems for duties: If the application layer of the service is compromised
through SQL injection or other attack methods, the service provider can prevent privilege
escalation through physically separating the systems.

• Consider using Network Authentication Services: Network Operators authenticate the
endpoint on the network layer. Since a lot of network operators enforce network-based
authentication, if these tokens provide meaningful security, they can be reused for application

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 36 of 58

level authentication, so the service provider don’t have to maintain its own secure store
technology.

Requirements to improve availability

Denial of service attacks are common on the internet, and pose a major threat to the service
ecosystem. To avoid this kind of threats several countermeasure techniques can be applied.

• Harden systems exposed the Public Internet: Use DDoS resistant, load balancing
infrastructure, which contains redundancy systems and firewalls.

• Systems Logging and Monitoring Approach: Each system must be monitored in order to
detect anomalies.

• Define a Recovery Model: In case of security compromise, the system must be able to
revert back to a safe version.

Countermeasures against endpoint compromising

• Define secure boot process: the service during boot should be able to authenticate itself to
external endpoints, acquire identity etc.

• Define a Persistent Storage Model: a lot of cloud based service do not implement persistent
storage model, since the resources are allocated on demand. However if the service provider
needs persistent storage for its services it should be designed in a way, that in an event of a
compromising, the attacker can’t access other user’s data.

• Administration: To troubleshoot and diagnose application faults, some kind of
administration model should be implemented. To achieve this, system changes should be
tracked, and two factor authentications should be considered to enhance security.

Countermeasures against anomalous endpoint behaviour

For the overall health of the service ecosystem, it is important to determine anomalously behaving
endpoints, to protect the services from further compromising. Since it is not usually possible to
completely exclude every source of malicious activity (environmental factors, social engineering), it
is recommended to equip the services with extra protections against these threats. The following
techniques can be implemented to enhance security:

• Input validation: one of the easiest routes of attack for an adversary is to abuse the data
originating from the endpoint, resulting in unwanted behaviour in the service system. For this
purpose, it is important to check the incoming information for malicious parts.

• Implement output filtering: complementing the Input validation, data leaving the services
should be also filtered against malicious code or to prevent the exposure of confidential data.

• Intruder detection system: in order to detect malicious activity, the service should be
capable to monitor its own network against malicious activity. Honeypot mechanism can be
implemented in order to detect and deflect unauthorized users within the system.

• Incident response model: During a security breach, it is important to the service provider
to react quickly to external attacks, which involve cleansing or completely shutting down
services, detect the source of compromise, restart and patch systems on the whole
infrastructure.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 37 of 58

Chapter 5 Risk assessment techniques

 As has been stated in previous chapters, the rapid growth and interconnectedness of the IoT
gives rise to a multiplicity of security-related risks and the proper identification of exposures makes
a solid risk assessment a necessity. This chapter therefore aims to provide an outline of the principal
process involved as well as a discussion on different risk assessment tools and their mutual
relevance in context of VESSEDIA. Two major standards for risk assessment, ISO/IEC 31010:2009
and NIST Special Publication 800-30 are briefly outlined and compared. Then we present different
risk assessment techniques based on the ISO/IEC 31010:2009 standard. We give key
considerations on those techniques as well as relevant characteristics of the techniques in the
context of software safety and security verification tools.

5.1 Risk assessment for IoT applications

Organizations and enterprises regardless of their nature pursue a certain set of objectives and
expend effort towards reaching those objectives. The achievement of the latter can be affected by
what will be subsequently referred to as “risk”.

ISO 31000, which is used as a reference within ISO/IEC 31010:2009, defines risk as the “effect of
uncertainty on objectives”, with the effect being a “deviation from the expected – positive or
negative”, and can be described as a deficiency in information regarding potential events and their
consequences.35 36

It is important to note, that the consequences of risk as referred to above, can be positive as well as
negative, being able to enhance as well as to diminish the achievement of an objective.

NIST Special Publication 800-30 [11], on the other hand, refers to risk in a more specific way by
stating that risk is a “measure of the extent to which an entity is threatened by a potential
circumstance or event”, with the consequences of potential events being “adverse impacts”. Here,
“risk” bears an inherently negative meaning.

Similarly, NIST SP 800-30 also employs a different and more complex terminology when it comes to
potential events, labelling them “threats”, which more specifically decompose into several different
factors. For sake of brevity only the most important terms will be presented here; their meaning and
relation to each other are briefly summarized in the following:

• Predisposing condition – a condition that in- or decreases the likelihood that threat events
result in adverse impact (e.g. a facility being located in a flood-prone region or not)

• Vulnerability – a weakness in an information system that could be exploited by a threat source
in the context of a predisposing condition

• Threat source - an intent, situation or method that deliberately or accidentally exploits a
vulnerability

• Threat event – an event or situation that potentially causes adverse impact and is in turn
caused or initiated by a threat source

The magnitude of risk, which is called the “level of risk” in either standard, is a function of the
consequences or impact of an event as well as the likelihood of an event to occur, and the
determination of both factors is an integral part of the respective risk assessment processes. Within
NIST the term likelihood can be further decomposed into the likelihood that a threat event will be
initiated and the likelihood of impact.

35 https://www.iso.org/iso-31000-risk-management.html
36 https://www.iso.org/standard/51073.html

https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/standard/51073.html

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 38 of 58

The risk assessment itself is a structured process that serves the following main purposes:

• identifying, analysing and evaluating risks to an organizations objectives and

• providing evidence-based information to make informed decisions on how to treat particular
risks.

The process of risk assessment as given in ISO 31010:2009 as well as in NIST SP 800-30 are
procedurally similar and consist of the following principal steps:

• preparation for the risk assessment and establishing a context,

• conducting the actual risk assessment and

• exploiting the results.

Generally, the purpose of the first step is to establish a context for the assessment by identifying its
purpose and scope, assumptions made, as well as the sources of information that is used as input
for the assessment, among others.

In ISO/IEC 31010:2009, the actual risk assessment process comprises of the following main
activities:

• Risk identification: find, recognize and describe risks, including risk sources, events, their
causes and potential consequences.

• Risk analysis: understand the nature of a risk and determine its level of risk.

• Risk evaluation: determine if a risk is acceptable or tolerable to the organization or not and
decide which risks need treatment.

The process given in NIST SP 800-30 is very similar in structure and provides a more fine grained
description of the process that corresponds to its more specific terminology.

The concluding step of the process focuses on exploiting the acquired knowledge and findings of
the risk assessment process. Within NIST SP 800-30 instructs to communicate the risk assessment
results and to share information developed in the execution of the risk assessment, in order to
support other risk management activities. ISO/IEC 31010:2009 specifically implements a step called
“risk treatment”, in which options for changing the likelihood or impact of a risk are selected and
agreed to.

In addition, communication and review of information involved is maintained continuously during the
course of the assessment.

Both risk assessment methodologies are compared in the figures below.

Figure 9: ISO/IEC 31010:2009 risk assessment
process

Figure 10: NIST SP 800-30 risk assessment
process

ISO/IEC 31010:2009 as well as NIST SP 800-30 are both accepted as industry standards and aim
at organizations of all types and sizes. While ISO/IEC 31010:2009 is an international standard, NIST
SP 800-30 is the preferred risk assessment methodology of the US government and is thus heavily

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 39 of 58

US-focused and mostly aimed at the US public sector. However, NIST SP 800-30 is designed to be
consistent with ISO standards and adequate with flexibility in mind, so that it can be used with other
frameworks. As stated before, in contrast to ISO/IEC 31010:2009, NIST SP 800-30 also is more
specifically focused on information security, while the former is kept more broad and generic. 37

ISO/IEC 31010:2009 also provides an overview of various risk assessment techniques, which will
be discussed in the subsequent section.

5.2 Risk assessment methods (based on ISO/IEC 31010:2009)

5.2.1 Introduction

This section discusses different risk assessment techniques/tools and their relevance in context of VESSEDIA.
One of the VESSEDIA methodology’s objectives is to offer a versatile and cost effective approach
for certifying the use of security and safety verification tools during the software development
lifecycle. The label “Verified in Europe” itself will provide added-value to system designers by
documenting which toolset has been applied for verification.

In relation with the objectives described in the DoA, we consider a wider range of risk assessment
techniques than the techniques of HazOP, Delphi, SWOT and FMEA, as they were stated in the
DoA. Risk assessment is critical in order to understand the mechanisms behind the vulnerabilities,
and increase safety as well as the security of connected applications and devices against risks,
especially with regards to IoT systems.

Risks assessment techniques allow thorough risk appraisal, and help demonstrating the benefits of
using the VESSEDIA methodology on connected applications, where improvements in verification
lead to safer and more secure IoT environments. It is important to note that the above mentioned
“Verified in Europe” label aims at supporting the IoT community stakeholders’ efforts and building
users’ trust in IoT devices.

Various methods may be chosen to perform a risk assessment. While risk assessment lacks of
consensus (for example in cloud computing38), we decided to consider the use of different
techniques/tools and discuss their relevance if integrated to the VESSEDIA approach.

The tools are presented following the ISO/IEC 31010:2009 process of risk identification, risk analysis
and risk evaluation. For each technique or set of techniques sharing similarities, we present key
considerations and some information about their relevance in the context of safety and security
verification tools:

37 https://www.ncsc.gov.uk/guidance/summary-risk-methods-and-frameworks
38https://www.isaca.org/Journal/archives/2012/Volume-5/Pages/Cloud-Risk-10-Principles-and-a-Framework-for-
Assessment.aspx

https://www.ncsc.gov.uk/guidance/summary-risk-methods-and-frameworks
https://www.isaca.org/Journal/archives/2012/Volume-5/Pages/Cloud-Risk-10-Principles-and-a-Framework-for-Assessment.aspx
https://www.isaca.org/Journal/archives/2012/Volume-5/Pages/Cloud-Risk-10-Principles-and-a-Framework-for-Assessment.aspx

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 40 of 58

5.2.2 Risk identification tools

Risk identification is defined as the “process of finding, recognizing and recording risks” (ISO/IEC
31010:2009). Among the techniques considered “strongly applicable” for the purpose of risk
identification, we have selected the following:

Technique Key considerations Relevance in the context of
safety and security
verification tools

Check-lists This “look-up” method lists
typical uncertainties. It is
simple, and low resource
consuming.

Available standards (e.g. ISO)
and metrics allow to use well
established listings for checking
uncertainties on well-defined
targets of verification.

Scenario analysis Imagining future scenarios
offers insight into possible
outcomes. searching
comprehensively for the
sources of problems.

Those techniques bring insight
on possible occurrences, for
example when considering the
quality in use of a given
software (e.g. when embedded
on an operating IoT hardware).
Scenario analysis is very
relevant towards environments
characterized by technological
changes (IoT).

Cause-and-effect analysis Investigation of the
contributory factors to an
effect.

Failure mode effect analysis
(FMEA and FMECA)

FMEA is applicable for both
system, service and software
risk identification. It can be
extended to consider criticality
(FMECA).

The method can tackle issues
ranging from design
alternatives dependability to
human errors identification.

Brainstorming Those techniques are rather
supportive to the above
techniques through gathering
opinions and finding
consensus

Involve stakeholders (e.g. user,
software developer, validator,
certification body, hackers) in
identifying new sources of risks
given the versatility, volatility
and innovative nature of IoT
environments.

Delphi

SWIFT-structured

5.2.3 Risk analysis

The risk analysis phase is split in three distinct steps that are firstly the consequence analysis,
secondly the likelihood analysis and finally, through combination of those, the determination of the
level of risk. For simplicity and for narrowing down the range of available techniques for risk analysis,
we have ruled out techniques which were not characterized as “strongly applicable”, leading to the
selection that follows:

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 41 of 58

Technique Key considerations Relevance in the context of
safety and security
verification tools

Root cause analysis Is a type of scenario analysis,
with the gathering a team, of
the evidences on a failure or
loss and through performing a
structured analysis.

For verification purpose, there
is a lot to learn from failure
situations. This is especially
true in context of complex
systems such as IoT
environments. The resulting
documentation will prove
useful for the community
stakeholders in the future (e.g.
validators, and certification
bodies). Technological
innovations may void learning
from the past, and there it is
relevant to continuously
monitor the actual roots of new
failures. Resource
consumption and complexity
are medium while providing
deep insight.

Failure mode effect analysis
(FMEA and FMECA)

The technique offers insight on
failure modes and
mechanisms as well as their
effects.

This method is particularly
interesting in that it can be
applied along the software
development life-cycle and
adaptable to requirements in
terms of verification efforts (i.e.
VESSEDIA intends to create
levels of applied tool
capabilities). The method can
provide both qualitative and
quantitative inputs to other
analyses techniques such as
fault tree analysis.

Human reliability analysis
(HRA)

As a supporting method, HRA
considers humans’ impact on
the system performance.

As far as security matters,
attack scenario give attention
to attacker behaviors. On the
other hand, much of safety
issues will imply consideration
on the misuse or mistakes
done by users when interacting
with the software/system and
throughout its lifecycle.
Damages to users and their
surroundings are potentially
critical in IoT environments.
Operators and maintenance
personnel can also be
considered for treatment
efforts.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 42 of 58

Technique Key considerations Relevance in the context of
safety and security
verification tools

Reliability centred
maintenance (RCM)

An industry spread method
which is applicable throughout
the whole risk assessment
process. RCM identifies
policies to implement for
managing failures while
efficiently reaching safety,
availability and economic
objectives.

The method is critically
relevant to the maintenance
stages of the verification
process as described in D6.4.

Consequence/probability
matrix

Coupling consequence and
likelihood scales in a matrix
table to produce a risk rating or
risk levels.

Easy to use, the interpretation
can be biased due to ambiguity
and limited due to subjectivity.
However, it can help for
sharing understanding
between
stakeholders/members of the
community about the impact of
enhanced verification efforts.

Structure « What if? » (SWIFT) This supporting method would
be used in conjunction with a
risk analysis and risk
evaluation technique.

The technique gives
opportunities for improvement of
processes (e.g. verification efforts
in the software development
life-cycle).

If the need, time and resources allow, some dedicated techniques may be used for the purpose of
each step of the Risk Analysis phase. The technique we present in the following table are again a
selection of techniques described as strongly applicable (ISO/IEC 31010:2009):

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 43 of 58

Step of Risk
Analysis

Technique Key considerations Relevance in the
context of safety and
security verification
tools

Consequence Hazard and operability
analysis or HAZOP

The structured
examination of a system
will identify the risks and
define the deviations
from the expected or
intended performances,
rather than only
focusing on well-known
sources of accidents.

Despite its complexity,
HAZOP has the
advantage of giving the
possibility to anticipate
unforeseen events.

Probability Fault tree analysis The logical tree shaped
diagram, starting from
top with the undesired
event, displays all the
ways in which it could
occur.

Fault tree can be built
from a FMEA/FMECA
during verification and
be used both
qualitatively (pathways
to failure) and
quantitatively (for
probabilities), useful for
systems with many
interfaces and
interactions.

Probability and
Level of Risk

Bow tie analysis The simple bow-tie
shaped diagram
displays causes and
consequences of an
event as well as the
reviewing controls.

Not requiring high level
of expertise to use, it is
clear to display for
example controls for
prevention and
mitigation. It may over-
simplify the reality if
compared with fault
tree where
simultaneous multiple
causes can be
illustrated.

Level of risk Multi-criteria decision
analysis (MCDA)

A range of criteria,
which are assigned
weights, is used to order
between options in a
decision-making
process.

This technique is
relevant in context of
ranking criticality of
alarms in the
verification process.
Where there are many
alerts because of
potential risks or
vulnerabilities, the
developer/validator
needs a supporting tool
to prioritize the alerts to
handle.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 44 of 58

5.2.4 Risk evaluation

In this phase, the level of risk formulated in the risk analysis is compared to the risk criteria set when
establishing the context. The significance of the level and the type of risk supports the decision
making process towards the risk treatment phase.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 45 of 58

Technique Key considerations Relevance in the context of
safety and security verification
tools

Hazard Analysis and
Critical Control Points
(HACCP)

Specific characteristics are
checked to be within defined
limits through this preventive
system for assuring product
quality, reliability

and safety of processes.

HACCP helps minimizing risks by
controls throughout the process
rather than through inspection of
the end product. It can be applied
on the stages of the verification
process.

Root cause analysis See in risk analysis techniques See in risk analysis techniques

Failure mode effect
analysis (FMEA and
FMECA)

FMEA/FMECA allow to define
significance levels. It also
allows identifying how to avoid
and/or mitigate failures and
their effects on the system

As criticality of alarms is a major
issue in security and safety
verification, the method can serve
the purpose of ranking alarms.

Reliability centred
maintenance

See in risk analysis techniques See in risk analysis techniques

Monte Carlo simulation This technique evaluates the
effect of uncertainty on the
system considered.

Monte carlo simulation is a good
candidate for supporting
verification efforts at program
lower levels, in that software
algorithmic structure are prone to
be fed with test inputs. However,
being a resource consuming and
complex technique, it may be
difficult to engage stakeholders.

Bayesian statistics and
Bayes Nets

This statistics approach
displays variables and their
probabilistic relationships.

While the requirements are simple,
the definition of the interactions for
complex systems is problematic. In
addition expert judgment
assumptions are needed on a
multitude of conditional
probabilities.

FN curves FN stands for the cumulative
frequency (F) at which N or
more members of the
population will be harmed.

It is not intuitive how to integrate
this technique to VESSEDIA, but
the related concept of ALARP, by
showing when a risk threshold is
outreached, can support decision
making for resolving an alert or
initiating a treatment.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 46 of 58

Technique Key considerations Relevance in the context of
safety and security verification
tools

Risk indices It is a risk estimate that uses
ordinal scales. Scores can be
applied to components of
risks, allowing to rank the risks.

It is a good tool for ranking risks,
but the numerical value has to be
used with care, as the quantitative
value does not necessarily have
other purpose than allowing
manipulation.

5.2.5 Conclusion

For sake of simplicity and comfort of use, we noted that some techniques are strongly applicable
throughout the whole of the three phases of the Risk assessment process, namely:

• Environmental risk assessment

• Structure “What if?” (SWIFT)

• Reliability centred maintenance

• Failure mode effect analysis (FMEA/FMECA)

Among those, the FMEA/FMECA and reliability centered maintenance stand out. FMEA/FMECA is
a unique technique in that it can be independently applied throughout the risk assessment process.
This technique also showed strong relevance in the context of use of software safety and security
verification tools. In addition, the HAZOP technique (figuring out possible deviations starting from
unwanted outcomes) can be used in conjunction with FMEA (using component failures as a starting
point) during the risk analysis stage. This provides comprehensive insight on security and safety
matters during the verification process. Reliability centered maintenance is very relevant for the
maintenance stages of the verification process.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 47 of 58

Chapter 6 Formal specification of simple security

requirements with ACSL

Static analysis approaches to software quality assurance range from a basic level, like compiler
warnings, via heuristic-based tools, until mathematically rigorous formal methods. The latter are
known to be powerful in their results, but they can be challenging to integrate in the development
process.

Some formal static analysis tools, such as Polyspace, Astree, and the EVA plug-in of Frama-C use
a formal method called abstract interpretation to reliably identify undefined behaviour in embedded
software that can lead to serious run time errors. An advantage of these tools is that they can work
on large programs. A principal disadvantage is that they only over-approximate the behaviour of the
program under analysis, and hence produce often quite a substantial number of false alarms. The
investigation of false alarms typically requires the intervention of experts which tarnishes the
marketing claims of a high degree of automation.

On the other hand, formal static analysis tools that rely on deductive verification, such as the WP
plug-in of Frama-C, can verify software properties whose complexity goes far beyond undefined
behaviours. They require, however, that the expected behaviour is specified with explicit code
annotations. These annotations are similar to Doxygen comments; however, they convey a machine-
understandable semantics against which the source code can be formally verified. While this sounds
very promising, our experience shows that complex properties can be tackled only for relatively small
and well-designed software components. This is sometimes a problem in practice where unduly large
and poorly designed software components regularly occur.

Abstract interpretation and deductive verification thus represent different ends of the spectrum of
formal methods, their application areas apparently being quite complementary, yet they need not to
be seen as unrelated approaches. In this chapter, we aim at combining the advantages of both
approaches.

6.1 The concept of minimal contracts

In order to minimize the amount of manual specification effort, we are developing within the
VESSEDIA project context a set of minimal function contract clauses, tailor-made to IoT security
aspects.

Devising full contracts for a given set of function implementations usually is a substantial amount of
work. In addition, each loop in the code needs manual provision of own appropriate invariants, and
often additional assert clauses are to be interspersed as verification hints to the provers employed
by Frama-C/WP.

In the context of VESSEDIA, where the main emphasis is on security properties, we can thus assign
the available quality assurance efforts in a more efficient way by concentrating on the detection of
undefined behaviours for a large part of the software, rather than devoting it to a full verification of a
small part only.

To this end, we investigate an approach using minimal contracts only, i.e. specifying just sufficient
information for the verification of absence of run-time errors (RTE). A run-time error is here meant to

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 48 of 58

be undefined program behaviour in the sense of the C standard.39 Such behaviours are undesired
irrespective of the program's intended functionality and include out-of-bounds memory accesses,
division by zero, etc., which also can be checked by hardware at run-time. Other run-time errors
include read access to uninitialized memory, (unintended) non-terminating loops, etc., which cannot.

Abstract interpretation can be used with a high degree of automation to check for RTEs. However, it
usually reports false positives, i.e. warnings about undesired program behaviours that are members
of the computed approximation set of possible program behaviour, but not of the (incomputable)
precise set. It would be desirable, after a manual post-analysis check for true/false positives, to
provide appropriate hints to the tool that help to avoid known false positives for future runs. This kind
of hints is exactly what we introduced above as minimal contracts.

Minimal-contract annotations are reusable with some reasonable probability. That is, they are likely
to guide Frama-C to a 100% verification rate even after minor changes in the implementation code.

Verifying minimal contracts can be a synthesis of both approaches that combines each's
advantages, viz. local specifications and global analysis. A minimal contract specifies just sufficient
properties of a function to verify the absence of undefined behaviours. For example, the minimal
contract of the function int abs(int) that computes the absolute value might just state that the

result is non-negative and that no side effects occur.

Contrary to a written report about manual post-analysis of abstract interpretation alarms, minimal
contract annotations are reusable with high probability for follow-up analyses of the software. On the
other hand, specifying and verifying of minimal contracts requires far less effort than more elaborate
contracts for the business logic.

Using minimal contracts helps assigning the available efforts for quality assurance in a more efficient
way by concentrating on run-time error detection for a large part of the software, rather than devoting
it to the verification of complex properties for a small part only. In practical projects, this selectivity
gains the more importance as the main emphasis is on particular aspects of software quality, such
as security issues.

Within the collaborative effort of VESSEDIA task 1.1, FOKUS has annotated a critical part of a
INRIA’s Contiki use-case with minimal contracts (i.e. RTE requirements only) and started to evaluate
the practical feasibility of this approach. This work is described in the following. We demonstrate the
methodology we developed during this case-study to enable tool-support in writing minimal
contracts. We discuss the issue of a basic library function needing additional requirements on its
result range in order to verify a minimal contract of its caller. As a first step towards increased
software robustness, we strongly recommend to include minimal contract information into the
informal documentation (e.g. Doxygen) of each function. In the Contiki software, we actually found
a run-time error during computation of a value that was, however, never used. We briefly discuss
the pros and cons of ostracizing such kind of code.

6.2 Description of the software for annotation

In order to evaluate our minimal-contracts approach in a more realistic context, we performed a
medium-scale annotation experiment within Task 1.1 of the VESSEDIA project. As target we chose
a subset of the Contiki operating system, which is the use-case provided by INRIA and handled in
VESSEDIA task 5.1.

Contiki is an Operating System for the Internet of Things. It was among the pioneers in advocating
IP in the low-power wireless world. In particular, it features a 6LoWPAN stack, that is, a compressed
IPv6 stack for IEEE 802.15.4 communication. This enables constrained devices to inter-operate and

39 Since most abstract interpretation tools, as well as most deductive verification tools, are available for C, we restrict to
this language. Comparable, but less versatile, tool support is available for Ada and Java. An extension of Frama-C to C++
is currently under development.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 49 of 58

connect directly to the Internet. Sensors, actuators or consumer devices can be brought together
and create applications in various areas such as home automation or the smart grid.

Contiki is targeted at constrained devices with an 8, 16 or 32-bit MCU and no MMU. The devices
usually feature a low-power radio module, some sensors, a few kB RAM and tens of kB ROM. Contiki
has a kernel, written in portable C, which is linked to platform-specific drivers at compile-time. It
supports more than 35 different hardware platforms.

When Contiki started in 2003, the focus was on enabling communication in the most constrained
devices, with no particular attention given to security. As it matured and as commercial applications
arose, communication security was added at different layers, via standard protocols such as IPsec
or DTLS. The security of the software itself, however, did not receive much attention. Although a
continuous integration system is in place, it lacks serious quality assurance efforts and, not
surprisingly, does not rely on formal verification.

Selected modules of Contiki have already been verified with Frama-C/WP.

In a VESSEDIA WP1 meeting in March 2017, the modules of Contiki were assessed with respect to
their priority in the project. Two of them, lib and sys, were assessed as highly critical, and were

assigned top priority. The former is concerned with memory management, lists, cryptography, etc.,
while the latter contains core operating system components like scheduler and timers. We
concentrated our efforts on module lib, and had a glance at module sys.

6.3 Minimal-contract verification of selected files

We found that Frama-C/WP was easy to use for the native configuration of Contiki. However, it is
important to keep in mind that Contiki has a huge amount of configuration parameters.

The main emphasis of Frama-C has been initially on analysis of embedded software. As a
consequence, we had experienced problems with Frama-C support for software running on standard
platforms, like e.g. Linux, where appropriately adapted versions are unavailable for less commonly-
used include files. In such cases, manual adaptation of existing include files, often causing additional
discussion with the software provider, had been necessary before start of analysis.

In contrast, Contiki is a fully self-contained operating system that comes with its own include files. At
least in the modules we considered for analysis, no adaptation of the latter was necessary.

For the Frama-C setup, we obtained the necessary pre-processor directives from the output of the
build process for a hello-world application which was recommended for tutorial purposes by the main
README file of the Contiki sources. These directives are rather lengthy and hence are not shown
here in detail. We also employed an external Frama-C/WP driver file registering a file Lemmas.v

which contains some ACSL lemmas and their Coq proofs.

• For the following files, we built minimal contracts and verified them:
o lib/crc16.c
o lib/gcr16.c
o lib/ifft.c
o lib/ringbuf.c
o lib/ringbufindex.c

• Besides these files we found that some files were trivial to analyse. No manual annotations
were needed for them in order to make Frama-C prove the absence of run-time exceptions.
These were:

o lib/assert.c
o lib/metabs.c
o lib/print-stats.c
o lib/random.c
o lib/settings.c

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 50 of 58

o sys/arg.c
o sys/energest.c

• On the other hand, some files were intractable, i.e. couldn't be handled with Frama-C/WP
due to implementation restrictions. These were, grouped by intractability reason:

• validity of unsized-array not implemented yet:
o lib/sensors.c
o sys/procinit.c

• \valid_function not yet implemented:
o lib/aes-128.c
o lib/ccm-star.c
o lib/trickle-timer.c
o sys/process.c
o sys/rtimer.c

• calculus failed on strategy for XXX behaviour YYY, all properties, both assigns or not
because unsupported non-natural loop(s): try [-wp-invariants] option (abort):
o sys/ctimer.c
o sys/etimer.c

• Finally, the following files can be handled by Frama-C, but require additional manual
annotations that we did not yet provide:

o lib/crc16.c
o lib/gcr.c
o lib/list.c
o lib/me.c
o lib/memb.c
o lib/mmem.c
o lib/petsciiconv.c
o sys/autostart.c
o sys/compower.c
o sys/mt.c
o sys/stimer.c
o sys/timer.c

For details, we refer to the technical report "Annotating IoT-Software With Minimal Contracts" (May
2017).

6.4 Discussion

In this chapter, we discuss our experiences and give some preliminary conclusions.

As a future work, it remains to be investigated if and how minimal contracts can be helpful in
combining static and analyses and testing. Checks of parameter range limits can be automatically
generated from a contract. On the other hand, array length information can't be observed e.g. in a
running C program, but is important for fuzzing tools, and can be taken from a minimal contract.

6.4.1 A methodology to obtain minimal contracts

From our experience with the case study, we suggest the following methodology to write and verify
minimal contracts.

• Provide an assigns clause for the function.

• Provide an assigns clause for each loop in its body.
o Both clause sets just collect the memory locations that may be altered.

• Provide a variant clause for each loop, to establish its termination.

• Run "frama-c -wp -wp-rte" to obtain possible run-time errors.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 51 of 58

• Repeatedly enhance the contract until that run doesn't report any unproven obligations.

• For an array access a[i] out of bounds:

o Add a function requirement \valid (read/write access) or \valid_read (read-only
access) about the size of a.

o Make sure the array size is reasonable; requiring it to be greater than zero might
suffice.

o Take care of establishing the index expression i is within the array size.
▪ In the frequent case that i is the running variable of a simple loop

for (i=0; i<n; ++i), it will usually be sufficient to add the annotation

/*@ loop invariant 0 <= i <=n */

• In the final contracts version, check if Frama-C happens to be able to prove "for free" any
additional property suggesting itself.

• Often a clause about the result value's range can be established which may be helpful later
on in the minimal-contract verification of other functions.

This summarizes our typical approach in cases where no particular issues occurred. The latter are
discussed separately in the following subsections.

6.4.2 Context dependency

During our experiments we experienced (unsurprisingly) that the notion of a function's minimal
contract depends on the context the function is used in.

For a simple illustrating example, assume a function foo(int n) just performs some simple

arithmetic on its argument n, and won't cause a run-time error if 0 < n holds. That is, in a standalone

context, the latter requirement is minimal to guarantee absence of run-time errors.

However, if e.g. foo is called inside another function, bar, and the result of the former is used as an

array index, the array size induces another constraint, now on the result value of foo.

Arbitrarily complex properties may arise in this way as ensures clauses in minimal contracts.

In this sense, there is a smooth transition from minimal to full contracts. However, as our experiments
show, for the overwhelming majority of functions minimal contracts are much simpler and more
tractable than full ones.

6.4.3 Prover limitations

We encountered problems in verifying even simple properties about bit operations, in particular
shifting. This is a common problem with Frama-C/WP. Such operations are rarely used in average
software, and their verification support is therefore neglected to a certain extent. Our application,
however, was taken from the low-level application domain of operating system kernels, and hence
used these operations more often. We could circumvent most problems by devising appropriate
ACSL lemmas and proving them manually with Coq, which required a considerable amount of work.

6.4.4 Visibility issues

It is well-known that–contrary to naive expectation–Frama-C cannot rely on const data fields being

unaltered. However, when a field is additionally declared static, i.e. local to its file,

Frama-C/WP could check whether the file contains code that might alter the field, and if not, rely on
the initial values being kept forever. As soon as data invariants are supported by Frama-C/WP, they
can be used express immutability of the data field.

Since the Contiki code is self-contained, we didn't have problems writing appropriate assigns
clauses. However, in general a software may call routines from an external library, where the
memory footprint is unknown or can only be guessed. For example, after an initialization call

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 52 of 58

foo(&data), a call bar(&data) may, or may not, alter the contents of the local variable data,

depending on the implementation of the external module both foo and bar belong to.

6.4.5 Tacit prerequisites

We found that some functions might cause an RTE, unless their parameters are restricted beyond
what the documentation requires. For example, the array sizes of the Fast Fourier Transform function
needed to be a power of two. While a look into a textbook indicated that this requirement goes without
saying, we consider it good practice to state it nevertheless explicitly in the functions informal
description.

6.4.6 Dispensible RTE programming

Using our minimal-contracts methodology, we found an actual underflow in the code. However, the
underflown value could be shown not to be used. From a conceptional point of view, this kind of
practice forces us to distinguish between

• run-time errors that actually occur and

• run-time errors that influence the program behaviour.

Note that hardware-implemented protection mechanisms don’t admit this distinction: e.g. a read from
a non-existing memory location will cause the MMU to throw an interrupt, even if the read value is
never used.

Thus, we consider it a valid point of view to reject programs that have an RTE, even if it can't cause
any damage. A warning to the programmer should be issued in such a case anyway.

This issue should be discussed among all project partners to find a consensus.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 53 of 58

Chapter 7 Summary and Conclusion

As commonly said, the “S” in the IoT stands for security, it is either non-existent or unnoticeable.
However with the increasing use of the internet connected products, this insufficient security is
becoming more and more relevant. The VESSEDIA project aims to address this issue, by providing
the developers with software analysis tools, which can be used to enhance security, and which also
have the capability to be used during a certification process.

To achieve the goal of the VESSEDIA project, we gathered the most important security aspects of
the IoT. Determining the general security requirements is a hard task, since the requirements depend
on a lot of factors, like the architectural and device specific constraints or other environmental factors.
During our work, we set the requirements on a system level, so the results can be applied to several
use cases. Although the presented requirements do not cover every aspects of security, it gives an
overview, what are the most important areas which have to be addressed during the design phase,
and it can be used as a starting point during the development or security evaluation.

This document will serve multiple purposes during the VESSEDIA project. The security properties in
this document will be directly examined during the evaluation of the use cases, and it also highlights
potential areas, where the VESSEDIA tools can be applied during a verification process. It is also
gives a general overview on the field of security, which helps for setting the general direction of
further development. During our work, we will apply these conclusions and examine how these
results can be incorporated into the future work of the VESSEDIA project.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 54 of 58

Glossary

Abbreviation Translation

Asset Assets are entities that someone places value upon.

(from CC– ISO/IEC 15408).

Examples:

• [Asset 1] Confidential data,

• [Asset 2] Service or access to a service,

• [Asset 3] A given functionality,

...

Attack / attacker An actor willing to cause harm. Harm is caused deliberately, so if the
possibility is there, we should assume that the attack will take place.

Attack surface The lack of specific separations and functional controls that exist for that
[attack] vector.

In other words, the set of all inputs that the code uses, and which should
be considered to be in the control of an attacker.

Attack tree Multi-levelled diagrams describing either multiple steps, conditions, or
kinds of a complex attacks.

Attack trees are related to fault trees (used in safety analysis) since a
node, in an attack tree, is considered realized when a Boolean operation
is satisfied on its children nodes.

Attack Vector Vector generally describes an interaction on an IT product.

An attack vector is a single- or multi-step method by which an attacker
exploits a vulnerability in an IT product.

Backdoor
(also called trapdoor)

Confidential access point to functionality of an IT product.

A backdoor can be created by the developers of the product or by an
attacker as a part of an attack vector.

Bug A flaw describes a vulnerability introduced at the implementation level
of an IT product.

Example: Vulnerability [Vul_secretprotect] would be a bug.

Computer security
model / Security
properties

A computer security model is a scheme which aims at enforcing a
security policy. Such a model is generally based on security properties,
which are constraints that must be enforced by the concerned system,
and often expressed as logical assertions.

Some examples of computer security models are Bell-LaPadula, Brewer
and Nash Clark-Wilson, LBAC or RBAC (Lattice-based and Role-based
access models).

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 55 of 58

Abbreviation Translation

DSP Digital Service Provider

ENISA European Union Agency for Network and Information Security

Flaw A flaw describes a vulnerability introduced at the design level of an IT
product.

Examples: Vulnerabilities [Vul_repeat] and [Vul_bruteforce] would be
flaws.

i18n Usual abbreviation of the word internationalization, denoting starting “i”
and closing “n”, in between which there are 18 characters.

NVD National Vulnerability Database

OES Operators of Essential Services

Safety The degree to which accidental harm is prevented, detected, and
reacted to.

(from Common Concepts Underlying Safety, Security, and Survivability
Engineering – SEI - CMU/SEI-2003-TN-033)

In case of safety accidental harm means that undesired events are
caused by “mother nature” and not deliberately by an intelligent actor.

Security The degree to which malicious harm is prevented, detected, and reacted
to.

(from Common Concepts Underlying Safety, Security, and Survivability
Engineering – SEI - CMU/SEI-2003-TN-033)

Malicious harm means that in case of dealing with security we always
have to assume the presence of an attacker, who is an intelligent actor
looking for possibilities of an attack.

Security objective A security objective is the statement of an intent to counter identified
threats.

(simplified, from CC– ISO/IEC 15408)

Examples:

• [Threat 1] would be covered by [Objective 1]: [Asset 1] shall not
be available in plain text until user authentication is successfully
performed,

• ...

Security objectives are high-level statements, and need to be
implemented through security functional requirements.

Security policy A security policy is a consistent set of rules intended to cover security
objectives. Security policies can typically be implemented as a set of
security functional requirements.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 56 of 58

Abbreviation Translation

Security requirement Security requirements are non-ambiguous and verifiable statements
implementing security objectives. They may include:

• Security assurance requirements, which lead to organizational
means (rules, procedures, guidelines), or

• Security functional requirements, within an IT product.

The term “security requirement” will hereafter be considered a synonym
to “security functional requirement”, since this study focuses on
requirements that are to be implemented in a product.

NB: Security requirements are commonly expected to be architecture-
and implementation-independent:

• Common Criteria has standardized several Security Functional
Requirement, which are all architecture- or implementation
independent

• SQUARE methodology considers a mistake to “elicit
implementations or architectural constraints instead of
requirements” and states that “requirements are concerned with
what the system should do, not how it should be done”.

Examples: [Objective 1] would be covered by

• [Req_auth] The TOE shall authenticate each user before
allowing any action

• [Req_user_secret] The TOE shall use [user secret X] to
authenticate users

• [Req_keygen] The TOE shall generate cryptographic keys with
[algorithm X] and [keysize Y]

• [Req_dataencrypt] The TOE shall encrypt/decrypt [Asset 1] with
[algorithm X] and [keysize Y]

...

TCB Trusted Computing Base

Threat A threat is an adverse action on an asset.

(from CC– ISO/IEC 15408)

Examples:

• [Threat 1] An attacker tries to disclose [Asset 1],

• [Threat 2] An attacker performs a denial of service on [Asset 2],

• [Threat 3] An attacker modifies the operation of [Asset 3],

• ...

In particular, a threat can be considered a breach to security attributes
on assets, such security attributes being e.g. the “CIA triad”
(Confidentiality/Integrity/Availability, see section 2.3.1

TOE Target of Evaluation, i.e. the system that is being evaluated, in our
context from security point of view.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 57 of 58

Abbreviation Translation

Trojan horse A program which appears to perform a legitimate or useful functionality,
while concealing malicious functions such as backdoor, data theft,
keyboard logging, etc.

TSF TOE Security Function

Virus A virus is a program which has the capacity to spread and replicate itself
when executed by a user. In order to be executed, a virus attaches itself
to a legitimate executable file, a boot sector, a script or a macro (in this
sense it basically uses the file system to spread).

Viruses do not necessarily perform malicious actions on top of their
replication functionalities.

Vulnerability A vulnerability is a flaw or weakness in a system's design,
implementation, or operation, procedure and management that could be
exploited to violate the system's security policy.

(based on RFC 2828)

Consequently a threat can also be seen as a potential threat.

Examples:

• [Vul_repeat] Not having a control on the number of
authentication attempts can be a vulnerability to [Req_auth], as
it enables an attacker to perform a repeat attack.

• [Vul_secretprotect] An implementation flaw enables an attacker
to access plain text user secrets in memory space.

[Vul_bruteforce] the algorithm used to generate cryptographic keys is
vulnerable to brute force attack.

Worm A worm is a program which has the capacity to spread and replicate
automatically. Unlike a virus, a worm does not require an action from the
user, and generally use network vulnerabilities to spread.

Worms do not necessarily perform malicious actions on top of their
replication functionalities.

Zero-day attack A zero-day attack consists in exploiting a zero-day vulnerability.

Zero-day vulnerability A yet undisclosed vulnerability, unknown to the developer and not fixed.

D1.1 - Security requirements for connected medium security-critical applications

VESSEDIA D1.1 Page 58 of 58

Chapter 8 Bibliography

[1] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “WALNUT: Waging doubt on the integrity
of mems accelerometers with acoustic injection attacks,” in Security and Privacy (EuroS&P), 2017
IEEE European Symposium on, 2017, pp. 3–18.

[2] S. Li and L. D. Xu, Securing the Internet of Things. Syngress, 2017.

[3] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “DolphinAttack: Inaudible Voice
Commands,” arXiv:1708.09537 [cs], Aug. 2017.

[4] Y.-S. Park, Y. Son, H. Shin, D. Kim, and Y. Kim, “This Ain’t Your Dose: Sensor Spoofing Attack
on Medical Infusion Pump.,” in WOOT, 2016.

[5] G. Eberhardt, Gy. Bácsi, I. Rad, A.Szász, “Evaluation Report, Security evaluation of the Compal
Broadband networks CH7465LG “Mercury” Modem”, July 2016, http://www.search-
lab.hu/media/Compal_CH7465LG_Evaluation_Report_1.1.pdf

[6] D. R. Raymond and S. F. Midkiff, “Denial-of-service in wireless sensor networks: Attacks and
defenses,” IEEE Pervasive Computing, vol. 7, no. 1, 2008.

[7] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and
countermeasures,” in Proceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications, 2003., 2003, pp. 113–127.

[8] A. Mpitziopoulos and D. Gavalas, “An effective defensive node against jamming attacks in sensor
networks,” Security Comm. Networks, vol. 2, no. 2, pp. 145–163, Mar. 2009.

[9] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in Security
and Privacy, 2008. SP 2008. IEEE Symposium on, 2008, pp. 111–125.

[10] S. Brand, “Department of defense trusted computer system evaluation criteria,” 2005.

[11] J. T. F. T. Initiative and others, “SP 800-53 Rev. 3. Recommended Security Controls for Federal
Information Systems and Organizations,” 2009.

[12] B. Schneier, Attack Trees. Dr. Dobb's Journal, vol. 24, pp. 21 - 29, 1999.

[13] J. R. C. Nurse, A. Erola, I. Agrafiotis, M. Goldsmith, and S. Creese. Smart insiders: Exploring
the threat from insiders using the internet-of-things. International Workshop on Secure Internet of
Things 2015 (SIoT 2015), in conjunction with ESORICS’15, LNCS. Springer, 2015.

[14] Florian Kammüller, Jason R. C. Nurse Christian W. Probst, Attack Tree Analysis for Insider
Threats on the IoT Using Isabelle, HAS 2016: Human Aspects of Information Security, Privacy, and
Trust pp 234-246

[15] G. Sindre and A. L. Opdahl, Eliciting security requirements with misuse cases, Requirements
Engineering, vol. 10, pp. 34-44, Jan 2005.

[16] Hilpinen Risto, Deontic Logic, in Goble, Lou, ed., the Blackwell Guide to Philosophical Logic.
Blackwell, 2001.

http://www.search-lab.hu/media/Compal_CH7465LG_Evaluation_Report_1.1.pdf
http://www.search-lab.hu/media/Compal_CH7465LG_Evaluation_Report_1.1.pdf

